

QC 61 566 1914

1320

JUI 10 1915

AUG 22 1918

*92<u>9</u>

ater von 11

1 63

HOME USE RULES.

All Books subject to Recall,

All books must be returned at end of college year for inspection and repairs.

Students must return all books before leaving town. Officers should arrange for the return of books wanted during their absence from town.

Books needed by more than one person are held on the reserve list.

Volumes of periodicals and of pamphlets are held in the library as much as possible. For special purposes they are given out for a limited time.

Borrowers should not use their library privileges for the benefit of other persons.

Books of special value and gift books, when the giver wishes it, are not allowed to circulate.

Readers are asked to report all cases of books marked or mutilated.

Do not deface books by marks and writing.

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

http://www.archive.org/details/cu31924024566030

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 63, NUMBER 6

SMITHSONIAN PHYSICAL TABLES

SIXTH REVISED EDITION

PREPARED BY FREDERICK E. FOWLE aid, smithsonian astrophysical observatory

(PUBLICATION 2269)

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1914

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises : Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the 5th revised edition issued in 1910. That revision has been still further continued for the present sixth edition.

> CHARLES D. WALCOTT, Secretary of the Smithsonian Institution.

June, 1914.

PREFACE TO THE 5TH REVISED EDITION.

The present Smithsonian Physical Tables are the outcome of a radical revision of the set of tables compiled by Professor Thomas Gray in 1896. Recent data and many new tables have been added for which the references to the sources have been made more complete; and several mathematical tables have been added, — some of them especially computed for this work. The inclusion of these mathematical tables seems warranted by the demand for them. In order to preserve a uniform change of argument and to facilitate comparison, many of the numbers given in some tables have been obtained by interpolation in the data actually given in the papers quoted.

Our gratitude is expressed for many suggestions and for help in the improvement of the present edition: to the U. S. Bureau of Standards for the revision of the electrical, magnetic, and metrological tables and other suggestions; to the U. S. Coast and Geodetic Survey for the revision of the magnetic and geodetic tables; to the U. S. Geological Survey for various data; to Mr. Van Orstrand for several of the mathematical tables; to Mr. Wead for the data on the musical scales; to Mr. Sosman for the new physical-chemistry data; to Messrs. Abbot, Becker, Lanza, Rosa, and Wood; to the U. S. Bureau of Forestry and to others. We are also under obligation to the authors and publishers of Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen (1905) and B. O. Peirce's Mathematical Tables for the use of certain tables.

It is hardly possible that any series of tables involving so much transcribing, interpolation, and calculation should be entirely free from errors, and the Smithsonian Institution will be grateful, not only for notice of whatever errors may be found, but also for suggestions as to other changes which may seem advisable for later editions.

F. E. FOWLE.

ASTROPHYSICAL OBSERVATORY OF THE SMITHSONIAN INSTITUTION, June, 1910

PREFACE TO THE 6TH REVISED EDITION.

The revision commenced for the fifth edition has been continued; a large proportion of the tables have been rechecked, typographical errors corrected, later data inserted and many new tables are added, including among others a new set of wire tables from advance sheets courteously given by the Bureau of Standards, new mathematical tables computed by Mr. Van Orstrand and those on Röntgen rays and radioactivity. The number of tables has been increased from 335 to over 400. We express our gratitude to the Bureau of Standards, to the Geophysical Laboratory, the Geological Survey, and to those who have helped through suggested improvements, new data, or by calling our attention to errors in the earlier editions.

F. E. FOWLE.

ASTROPHYSICAL OBSERVATORY OF THE SMITHSONIAN INSTITUTION, October, 1913.

TABLE OF CONTENTS.

Intro	duction on units of measurement	and	conv	ersio	n fact	ors				ige Kvii
	of measurement: general discus							•	2	cvii
	nsion formulæ for dynamic units									xix
	" " heat units								3	xxv
	• of electric and magnetic un	its :	gene	ral di	scuss	ion			x	cvii
6	formulæ in electrostatic sys								xx	viii
	" " electromagnetic								x	xxi
Pract	ical units of electricity, legalizati								x	xxv
TABLE										
1.	Formulæ for conversion factors :					nits	•	•		2
		(b)		ived u			•	•		2
				Geom				nic ur	its	2
				Heat				•	•	3
				. Ma		and	elect	ric un	its	3
2.	Tables for converting U.S. weig	hts ;	and n	neasu	res:					
	(1) Customary to metric	•				•	•	•	•	5
	(2) Metric to customary	•							•	6
3.	Equivalents of metric and British	h im	peria	l weig	hts a	nd m	easur	es :		
	(r) Metric to imperial	•	•	•	•	•	•	•	•	7
	(2) Multiples, metric to i	mpei	rial	•	•	•	•	•	•	8
	(3) Imperial to metric	•	•	•	•	•	•	•	•	9
	(4) Multiples, imperial to	met	ric	•	•	•	•	•	•	10
4.	Volume of a glass vessel from w	eight	t of it	s volu	ime o	f wat	er or	merc	ury	II
5.	Derivatives and integrals .	•	•	•	•	•	•	•	•	12
6.	Series	•	•	•	•	•	•	•	•	r3
7.	Mathematical constants .	•	•	•	•	•	•	·	•	14
8.	Reciprocals, squares, cubes and	l squ				ural i	numb	ers	•	r 5
9.	Logarithms, 1000–2000 .	•	•	•	•	•	•	•	•	24
10.	Logarithms	•	,	•	•	•	•	•	•	26
11.	Antilogarithms	•	•	•	•	•	•	•	•	28
12.	Antilogarithms, .9000–1.0000	•	•	•	•	•	•	•	•	30
13.	Circular (trigonometric) function	ons, a	argun	nent ((°, ′)	•	•	•	•	32
14.	66 65 66		•	nent	-	.ns)	•	•	•	37
15.	Logarithmic factorials, n!, n ==					•	•	•	•	40
16.	Hyperbolic functions			•		•	•	•	•	4 1
17.	Factorials, 1–20.	•		•	•	•	•	•	•	47
•										

•										•
18,	Exponential functions .	• •	•	•	•	•	•	•	•	48
19.	Values of e^{x^2} and e^{-x^2} and th	eir log:	arithms	•	•	•	•	•	•	54
	$\frac{\pi}{-x}$ $\frac{-\pi}{-x}$									
20.	" " $e^{\frac{\pi}{4}}$ and $e^{\frac{\pi}{4}}$ "	"	"	•	•	•	•	•	•	55
	$\frac{\sqrt{\pi}}{-x}$ $\frac{-\sqrt{\pi}}{-x}$									
21.	e and e	"	"	•	•	• .	•	•	•	55
22.	" " e^x and e^{-x} and	"		for fr			lues o	of x	•	56
23.	Probability of errors of obset		s : proba	ability	integ	ral	•	•	•	56
24.	66 25 66 55	66	"	"	"		•	•	•	57
	Values of 0.6745 $\sqrt{\frac{1}{n-1}}$									
25.	Values of 0.0745 $\sqrt{n-1}$	• •	•	•	•	•	•	•	•	57
,										~0
26.	" " 0.6745 $\sqrt{\frac{1}{n(n-1)}}$	• •	•	•	•	•	•	•	•	58
27.	" " 0.8453 $\sqrt{\frac{I}{n(n-1)}}$	• •	•	•	•	•	•	•	•	58
28.	" " 0.8453 $\frac{1}{n\sqrt{n-1}}$		•	•	•	•	•	•	•	58
	v <i>n</i> -1									
29.	Least-squares formulæ	· ·		•	•	•	•	•	•	59
30.	Inverse of probability integra		ffusion	•	• • • • •	• • boto	•	•	•	60 62
31.	Logarithms of the gamma fun Values for the first seven zor								2	62 64
32.	_						-		•	04
33.	Value for $\int_{-\pi}^{\pi} (1 - \sin^2\theta \sin^2\phi)$	±łdΦfα	or differe	ent va	lues c	$f \theta$:	also t	he co	r-	
00	• •					,				2.
	responding logarithms	• •	•	• .		•	•	•	•	66
34.	Moments of inertia, radii of		n, corre	spond	ing w	eights	5	•	•	67
35.	Strength of materials: (a) m		•	•	•	•	•	•	•	6 8
		tones	•	•	•	•	•	•	•	6 8
		rick .	•	•	•	•	•	•	•	68
		oncrete	s .	•	•	•	• •	•	•	68
36.	""""""""""""""""""""""""""""""""""""""	r tests	•	•	•	•	•	•	•	69
37.			•	•	•	•	•	•	•	70
38.	Moduli of rigidity	• • •	•	·	• .	•	•	•	•	71
39.	Variation of the moduli of rig	giaity v	with the	temp	eratur	e	•	•	•	71
40.	Young's modulus .	•	· · · · ·	•••	•	•	•	•	•	72
41.	Compressibility of the more	importa	ant solic	i elem	ents	•	•	•	•	73
42.	Hardness	• •	•	·	•	•	•	•	•	73
4 3 •	Relative hardness of the eler	nents	•	•	•	•	•	•	•	73
44•	Poisson's ratio	• .•	•	•	•	•	•	•	•	73
45	Elastic moduli of crystals, fo		•	•	•	•	•	•	•	74
46.			l results		•	•	•	•	•	75
47.	Compressibility of O, air, N,		lifferent "	press	ures a		-	ature	s	76
48.	"" " ethylene	"	"	••		"	••		•	76
49				•• ••		"	"		•	76
50.	Carbon un			"		"	"		•	77
51.	" " gases, val	ues of a	ι.	•	•	•	•	•	•	77

vi

52.	Compressibility of air and oxygen between 18° and 22°C .			
53.	Relation between pressure, temperature and volume of sulphu	r diox	ide	77 78
54.	" " " " " " " ammor		c	78
55.	Compressibility of liquids			79
56.	" solids			80
57.	Specific gravities corresponding to the Baumé scale			81
58.	Reduction of weighings in air to vacuo			82
59 .	" " densities " " " " "			82
60.	Densities of the solid and liquid elements			83
61.	" " various woods			85
62.	""" solids			86
63.	"""alloys			87
64.	" " " natural and artificial minerals			88
65.	" " molten tin and tin-lead eutectic			88
66.	Weight in grams per square meter of sheet metal			89
67.	" " various common units of sheet metal			89
68 .	Densities of various liquids			90
69.	" " gases		Ż	90 91
70.	" " " aqueous solutions of salts, bases and acids			92 92
71.	Density of water free from air between 0° and 36° C			94
72.	Volume of water at temperatures between o° and 36° C in ter	ms of	its	77
1	volume at the temperature of maximum density			95
73.	Density and volume of water at different temperatures from-10	0 250	°Ċ	95 96
73. 74.		" 360		90 97
75.	Densities aqueous ethyl alcohol. Temp. variation			98
76.	" " mixtures methyl alcohol, cane-sugar or sulphy	ric a	cid	
77.	Velocity of sound in solids			101
78.	" " " " liquids and gases			102
79.	Musical scales			103
79. 80.				103
81.	Acceleration of gravity at sea level and different latitudes			104
82.	Results of some of the more recent gravity determinations .			105
83.	Value of gravity at some of the U. S. C. and G. Survey station			106
84.	Length of seconds pendulum for sea level and different latitude			107
	Determinations of the length of the seconds pendulum .			107
85. 86.	Miscellaneous geodetic data	•		108
	Lengths of degrees on earth's surface	•		r08
87.	Miscellaneous astronomical data	•		100
88.		•		110
89.	Planetary data	•		110
90.	Equation of time	•		110
9r.	Miscellaneous astronomical data	•		110
92.	Terrestrial magnetism : secular change of declination	•		
93·	up of menhation	•		113
94.	securar change of dip	•		113 114
95. 96.	" " horizontal intensity	•		114 114
			-	11/1

	-						
97.	Terrestrial magnetism:	•		•••	• •	•	115
98.	** **	secular chang	e of total i	ntensity	• •	•	115
99.	66 66	agonic line	• •	• •		•	116
100.	Magnetic elements at m	agnetic observ	atories			•	117
101.	Pressure of mercury and	l water colum	1S •				1 r8
102.	Reduction of barometer	to standard to	emperature				119
103.	** ** **	" " g	ravity, inc	h and me	tric scales		120
104.	** ** **	" latitude 45					121
105.	** ** **	" " "	metric s				122
106.	Correction of barometer	for capillarity	: inch and	metric so	cale .		123
107.	Volume of mercury men						123
108.	Aerodynamics : data for						124
109.		the soaring of					125
110.	Coefficients of friction			_			126
111.	Lubricants	•					126
112.	" for cutting to	ols .			• •		126
113.	<i>a</i> Viscosity of water at a				•••		127
113.	 b Specific viscosity of water at a 			11765	•••		127
114.	Coefficients of viscosity				• •		127
114.	Specific viscosity of min			u watei	• •		128
115.		ous oils .	•••		•••		_
	Viscosity of various liqu				• •	•	128
117. 118.		temperatur	· ·		• •	•	129
					• •		130
119.	Specific viscosity of solu		concentrat		temperatu		-
120.		atomic			• •		135
121.	Viscosity of gases and v " air 20?2 C	-	• •		• •		136
122.		• • •			• •		136
123.	gases and v				• •		137
124.	Diffusion of an aqueous				• •	٠	138
125.	vapors .	• • •	•••	•	•••	٠	139
126.	gases and v		• •	•	• •	•	140
127.	metais into		• •	•	• •	٠	140
128.	Solubility of inorganic sa					•	141
129.	a iew organ	ic salts in wat			riation	•	142
130.	" " gases in wa		• •		• •	•	142
131.	", change produ	•	-		• •.	•	143
132.	Absorption of gases by l		• •	•	•••	•	144
133.	Capillarity and surface t					•	145
1 34 .	66 66 66		llaneous lio			•	145
135.	66 66 66	" aqueo	us solution	s of salts			145
136.	Capillarity and surface to	ension : liquid	s in conta	ct with a	ir, water o	or	
			• •	•			146
137.	Capillarity and surface to				t.		146
138.	66 66 66		ness of soa				146
139.	Vapor pressures				• •		147
140.	" " of ethyl	alcohol .					149

		IX
141.	Vapor pressures of methyl alcohol	• 149
142.	" " and temperatures: (a) carbon disulphide.	· 149
	(b) chlorobenzine	. 150
	(c) bromobenzine	. 150
	(d) aniline	. 150
	(e) methyl salicylate	. 151
	(f) bromonaphthaline .	. 151
	(g) mercury	. 151
143.	Vapor pressure of solutions of salts in water	. 152
144.	Pressure of saturated aqueous vapor at low temperature over ice	• 154
145.	" " water	· 154
146.	""""o° to 50° C	• 154
147.	"""" 50° to 374° C	. 155
148.	weight in grains of aqueous vapor in a cubic foot of saturated air	. 156
149.	" " grams " " " " " meter of " "	. 156
150.	Hygrometry, vapor pressure in the atmosphere	. 157
151.	"dew-points Polative humidity	. 158
152.	Relative humidity	• 160
153.	Values of 0.378e in the atmospheric pressure equation $h = B - 0.378e$. Table for facilitating the calculation of k/c	
154.		
155. 156.	Values of $1 + 0.00367 t$:	. 162
130.		
		• 164
		• 165 • 166
		. 168
157.		. 169
158.	Barometric pressures corresponding to different temperatures of the	• 109 e
U	boiling-point of water :	-
		. 170
		. 171
159.		. 172
160.	" Secondary " standards Fe. arc lines	. 172
161.	Additional standard Fe. lines	. 172
16 2.	Stronger lines of some of the elements	. 172
163.		· 173
164.		. 176
165.		• 177
166.	Photometric standards	. 178
167.	Intrinsic brightness of various lights	. 178
168.	Visibility of white lights	. 178
169.		· 179
170.	Sensitiveness of the eye to radiation of different wave-lengths: low	-
		. 180
171.	Sensitiveness of the eye: greater intensities	. 180
172.	Sensibility of the eye to small differences of intensity (Fechner)	. 180

173.	The sol	lar co	onstant	and ten	nperat	ure		•	•	•	•	•		181
174.				rgy; at				sparer	ncy	•		•		181
175.				ir energ				.		•		•		181
176.				nsity of				solar	disk		•			181
177.				radiatio										18 2
178.	Brightn		•			-								18 2
179.				of sun-				•	•	•				18 2
180.	Air ma			or sum-	auu 5	п.у-11	5	•	•	·	•	•	Ţ	182
180.				of sola	r radia	• tior	• • m	• onthl	· v cha	• nae	•	•	•	183
									-	nge	•	•	•	183
182.				yearly t				•	•	•	•	•	•	184
183.	indices	01 T	erractio	n of Jer	a gias	ses	•	•	•	•	•	•	•	184
184.	"	"	"		"		•	•	•	• •	•	•	•	
185.							-	eratu	re coe			•	•	184
186.	"	**	"		ock sal		•	•	• ~	:	•	•	•	185
187.	"	"	44		•• ••		mper	ature	coeffic	cients	•	•	٠	185
188.	"	"	"		vlvine .		•	•	•	•	•	•	•	185
189.	"	"	"		lorite .		•	•	•	•	•	•	•	185
190.	"	"	"	"		-		re co	efficie	nts	•	•		186
191.	"	"	**		eland			•	•	•	•	•		186
192.	66	"	"	" ni	troso-o	dime	ethyl-	anilin	е	•	•	•	•	186
193.	"	"	"		lartz.		•	•	•	•	•	•	•	187
194.	"	"	**	" Va	irious	alur	ns	•	•	•	•	•		187
195.	"	"	**	"	"	mor	orefr	ingen	ts	•	•	•		188
196.	"	46	"	"	66	unia	axial	crysta	ls	•				189
197.	""	"	"	66	"	biax	ial ci	ystals			•	•		190
198.	66	"	"	" sc	lution	s of	salts	and a	icids :					-
					(a) so	luti	ons i	n wate	er			•		19 1
					(b)	"		' alco						191
					(c)	"	6	' pota	ssium	ı pern	nanga	anate		
199.	"	"	"		rious	liqu	ids	•			. 0	•		192
200.	**	"	44		ises an									193
201.	Standa	rd re	fractive	media :										194
202.	"		66	"	n = 1	• •		•		•				194
203.	"		"	"	n = 1									194
204.	Ontical	cons	stants o	f metals									Ì	195
205.	"		(6 6					,					Ī	195
205.	"												•	195 196
200.	Reflecti	ina n	ower of	metals	•				•	•	•	•	•	
207.				perpend		, inc				• •••]•••	• e of a	•	•	196
	1.CHeC() "	1011 U 11								Value	5 01 7	L		197
209.	"	"		incideno "	e vary				-	•	•	•		197
210.							n =	= 1.55	•	•	•	•	٠	197
211.	Reflecti	ion r			•	•	•	•	•	•	•	•	٠	198
212.			vai	ious ma				•	•	•	•	•	٠	198
213.	Transm		ality of	radiatio	n by J "	ena "	glass	ses	•	•	•	•	•	199
214.		"							•.	•	•	•	•	199
215.		"	"	"	"	"	ultra	violet	glass	ses	•	•	•	199

х

216.	Transmissibility of radiation by alum, rock salt, sylvine, fluo land spar, quartz	orite,	Ice-
217.	Color screens (Landolt)	•	. 200
218.		•	. 201
	(1000)	•	. 201
219.	(Jena glasses)	•	. 202
219a.		•	. 202
220.	Rotation of the plane of polarized light by solutions .	•	. 203
221.	sodium chlorate ar	nd qu	artz 203
222.	Colors of thin films, Newton's rings	•	. 204
223.	Thermal conductivity of metals and alloys		. 205
224.	Thermal conductivity at high temperature	•	. 206
225.	or various substances		. 207
226.	" " water and salt solutions		. 207
227.	" " organic liquids		. 207
228.	" " gases		. 207
229.	Diffusivities	•	. 208
230.	Heat of combustion		. 209
231.	Heat values and analyses of various fuels : (a) coals .		. 210
	(b) peats		. 210
	(c) liquid fuels		. 210
232.	Chemical and physical properties of explosives		. 211
233.	Heat of combination		. 212
234.	Latent heat of vaporization		• 214
235.	""fusion		. 216
236.	Melting-points of the chemical elements		. 217
237.	Boiling-points """"""		. 218
238.	Densities, melting and boiling points, inorganic compounds		• 219
239.	Effect of pressure on melting points	•	. 220
240.	" " " freezing point of water	•	. 220
241.	Melting points of various mixtures of metals		. 222
242.			. 222
243.	Low-melting-point alloys	•	. 222
244.	Densities, melting-points, boiling-points of organic compounds		
- 14	(a) Paraffin series	•	. 223
	(b) Olefine series	•	. 223
	(c) Acetylene series	•	· 223
	(d) Monatomic alcohols	•	•
	(c) Alcoholic ethers	•	• 224
	(f) Ethyl ethers	•	. 224
	(g) Miscellaneous	•	. 224
	Transformation and melting-points, minerals and eutectics.	•	. 225
	Lowering of freezing-points by salts in solution	•	. 226
		•	. 227
	0 01 7	•	. 229
248.	Freezing mixtures	•	. 230
	Critical temperatures, pressure, volumes and densities of gases		. 231
250.	Coefficients of linear expansion of the chemical elements .	•	. 232

xī

251.	Coefficients of linear expansion of miscellaneous substances	•		233
252.	" " cubical " " crystalline and other solids	•	•	234
253.	""""""liquids	•		235
254.	" " thermal expansion of gases	•	•	236
255.	Mechanical equivalent of heat : various data	•	•	237
256.	" " " adopted values (Ames) .	•		237
257.	" " " conversion values			237
258.	Specific heats of the chemical elements			238
259.	" " water and mercury			239
260.	Additional specific heats of the elements			240
261.	Mean specific heats of quartz, silica glass and platinum .			240
262.	Specific heats of various solids			241
263.	" " " liquids			241
203. 264.	" " " " minerals and rocks			242
-	" " " gases and vapors	•		
265.		•		243
266.	Gas and mercury thermometers: formulæ \ldots	•		244
267.	Comparison of hydrogen and 16^{11} thermometers : o° to 100° C.			244
268.	59 0 10 100 C.			244
269.	10 and 59 incrimometers5 10 ⁻			
270.	Comparison of air and 16 ^m glass thermometers: 0° to 300° C.			245
271.	""""" 59 ¹¹¹ "" 100° to 200° (245
272.	" " hydrogen and various mercury thermometers			246
273.	" " air and high temperature (59 ¹¹) mercury thermor			246
274.	" " H., toluol, alcohol, petrol ether, pentane thermo-	meter	s	246
275.	Platinum resistance thermometry	•	•	247
276.	Thermodynamic scale; temperature of ice-point	•	•	247
27 7 .	Standard points for calibration of thermometers	•	•	247
278.	Stem correction for thermometers	•		248
279.	66 66 66 e e e e e	•	•	249
280.	« « « · · · · ·	•	•	249
281.	Calibration of thermo-element PtPt. Rh	•	•	250
282.	""""Cu–Constantan		•	250
283.	Radiation formulæ and constants for perfect radiator .			251
284.	" in calories for perfect radiators at various temperatur			251
285.	" distribution in spectrum at various temperatures			251
286.	Cooling by radiation and convection : ordinary pressures .			252
287.	" " " different pressures .			252
288.	" " " very small pressures			253
289.	" " " " temperature and pressure	• effects		253
290.	Properties and constants of saturated steam : metric measure			
290. 291.	" " " " " common measure			254
•	Ratio of the electrostatic to the electromagnetic unit of electrici	•		255
292.	Electromotive force of standard cells : absolute current measure			260
293.	Data for voltaic cells : (a) double fluid cells	5		261
294.		•		262
	(b) single fluid cells	•		263
	(c) standard cells \ldots	•	• :	263

xii

294.	Data for voltaic cells: (d) secondary (storage) cells	-
295.	Contact differences of potential, solids with liquids and liquids with	• 26;
	liquids in air .	
296.	Contact differences of potential, solids with solids in air	· 26
297.	Potential difference between metals in various salt solutions	· 200
298.	Thermoelectric powers	· 20
299.	" " with alloys .	
300.	" · · · · ·	. 269
301.	" of Pt. with Pt. Rh. alloys	. 270
302.	Peltier effect	• 270
303.	" " Fe-constantan, Cu-constantan.	. 271
304.	" " E. M. F. in volts	· 27
305.	Various determinations of the ohm	. 271
305.	Specific resistance of metallic wires	. 272
307.		. 273
308.	Tomporative register as a for significant	• 274
309.	Conductivities of three metal and athen 11	. 276
	<i>" " " "</i>	. 277
310.		• 278
311.	Allowable carrying capacity rubber-covered copper wires	· 279
312.	Resistance of metals and alloys at low temperatures	- 280
313.	Temperature variation of electrical resistance of glass, porcelain .	. 282
314.	Temperature resistance coefficients of glass, porcelain, quartz	. 282
315.		. 283
316.		. 284
317.	remperature coefficients of copper	. 285
318.	Reduction to standard temperatures	. 285
319.	Standard anneared copper wire, English units	. 286
320.	metric units .	• 289
321.	fiand-drawn aldinnuth whe, English units .	• 292
322.	metric units .	• 293
323.	Dielectric strength; steady potential for spark in air	• 2 94
324.		• 294
325.		• 295
326.		• 295
327.		• 296
328.		• 296
3 29•		• 297
330.	" for high frequencies	· 297
33r.	Wireless telegraphy; wave-lengths, frequencies, oscillation constant	. 29 8
332.		. 300
333.		• 301
334.		. 302
335.	Electrochemical equivalents and densities of nearly normal solutions	. 302
336.		. 303
337.		• 304
338.	" " temperature coefficients	. 304

xiii

AI V	CONTENTS.	
339.	Equivalent conductivity of salts, acids, bases in solution	. 305
340.	" " some additional salts in solution .	. 307
341.	" conductance of the separate ions	. 308
342.	Hydrolisis of ammonium acetate : ionization of water	. 308
343.	Dielectric constants (specific inductive capacity) of gases	. 309
344.	" " " temperatu	re
	coefficient	. 309
345.	Dielectric constants (specific inductive capacity) of gases : pressure c	0-
	efficient	. 310
346.	Dielectric constants of liquids	• 310
347.	" " " temperature coefficient	· 312
348.	" " liquefied gases	• 312
349•	" " standard solutions for calibrations	• 313
350.	" " solids	· 313
351.	" " crystals	• 314
352.	Permeability of iron rings and wire, various inductions	· 315
35 3 .	Permeability of transformer iron :	
	(a) specimen of Westinghouse No. 8 transformer	. 315
		. 316
		. 316
	(<i>n</i>) Thomson-fronston 1500 wate transformer	. 316
354.	Magnetic properties of iron and steel	· 317
355.		• 317
356.	" corrections for ring specimens	· 317
357.	Composition and magnetic properties of iron and steel Permeability of some of the specimens in Table 303	. 318
358.	Magnetic properties of soft iron at o° and 100° C.	. 320
359• 36 0.	" " steel at 0° and 100° C	• 320 • 320
361.	" " " cobalt at 100° C	· 320
362.	" " " nickel " " "	. 321
363.	" " magnetite	· 321
364.	" " Lowmoor wrought iron	. 321
365.	" " Vicker's tool steel	. 321
366.	" " Hadfield's manganese steel	. 321
367.	Saturation values for different steels	. 321
368.	Magnetic properties of iron in very weak fields	. 322
369.	Dissipation of energy in cyclic magnetization of magnetic substances	
370.	" " " " " " " cable transformers	. 322
371.	Demagnetizing factors for rods	. 323
372.	" " Shuddemagen's values	· 323
373.	Dissipation of energy in cyclic magnetization of various substances	· 324
374.	" " " " " " " transformer steels	· 325
375.	Magneto-optic rotation, formulæ : Verdet's constant	. 326
376.	" " in solids	· 327
37 7 -	""""liquids	. 328
378.	" " " solutions of salts and acids in water .	· 329

xiv

379.	Magneto-optic rotation, gases	•	•	• 330
380.	Verdet's and Kundt's constants	•	•	• 330
381.	Values of Kerr's constant	•	•	• 331
382.	Dispersion of Kerr's effect. Ingersoll's values .	•		· 331
383.	""""Foote's"	•	•	• 331
384.	Magnetic susceptibility	•		• 33 ²
385.	Variation of the resistance of bismuth in magnetic field			• 333
386.	" " " " " " nickel " " "		•	• 333
387.	" " " " various metals in a magnetic	: field	•	• 333
388.	Transverse galvanomagnetic and thermomagnetic effects		•	· 334
389.	Variation of the Hall constant with the temperature .	•	•	• 3 34
390.	Röntgen rays (x-rays) ionization due to	•	•	• 335
391.	" " Secondary Röntgen rays	•	•	• 335
392.	" " Cathodic rays	•	•	• 335
393.	" " absorption coefficients	•	•	. 336
394.	X-R spectra and atomic numbers	•	•	. 336
395.	Radioactivity: production of phosphorescence	•		· 337
396.	" " <i>a</i> -particles	•	•	• 337
397.	" heating effects	•	•	· 337
398.	" various constants	•	•	• 338
399.	" stopping powers for a rays	•	•	• 340
400.	<i>"""</i> "β"····	•	•	• 340
401.	""" ["] """	•	•	• 340
402.	" ions produced by the a, β , and γ rays .	•	•	• 341
403.	" radium emanation ; units	•	•	· 341
404.	" vapor pressure of Ra emanation	•	•	• 341
405.	" spectra	•	•	• 341
406.	Miscellaneous constants, molecular, atomic, etc.	•	•	· 342
407.	Periodic system of the elements	•	·	· 343
	Definitions of units			• 345
		•	•	• 349

xv

INTRODUCTION.

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. — The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. For example, the distance between two places may be stated as a certain number of miles or of yards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are either familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, - and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is 1, when a yard is taken as the unit the magnitude-number is 1760, and when a foot is taken it is 5280. Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass. — It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these, they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the customary, and the French or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the customary system the standard unit of length is the yard and is now defined as 3600/3937 meter. The unit of mass is the avoirdupois pound and is defined as 1/2.20462 kilogram.

The British yard is defined as the "straight line or distance (at 62° F.) between the transverse lines in the two gold plugs in the bronze bar deposited in the office of the exchequer." The British standard of mass is the pound avoirdupois and is the mass of a piece of platinum marked "P. S. 1844, 1 lb.," preserved in the exchequer office.

In the metric system the standard of length is the meter and is defined as the distance between two lines at o^o Centrigrade on a platinum iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "mètre des Archives," which was made by Borda. Copies of the International Prototype Meter are possessed by the various governments, and are called "National Prototypes."

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is not now defined in terms of the meridian length, and hence subsequent measurements of the length of the meridian have not affected the length of the meter.

The metric standard of mass is the kilogram and is defined as the mass of a piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogramme des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C. Copies of the International Prototype Kilogram are possessed by the various governments, and as in the case of the meter standards are called National Prototypes.

INTRODUCTION.

Comparisons of the French and customary standards are given in tabular form in Table 2; and similarly Table 3, differing slightly, compares the British and French systems. In the metric system the decimal subdivision is used, and thus we have the decimeter, the centimeter, and the millimeter as subdivisions, and the dekameter, hektometer, and kilometer as multiples. The centimeter is most commonly used in scientific work.

Time. — The unit of time in both the systems here referred to is the mean solar second, or the 86,400th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. -- Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "derived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terms of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a vard is 3×3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the vard as new unit, we have to multiply the old area-number by 1/9, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if l be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is l^2 . Similarly the ratio of two units of volume will be l^8 , and so on for other quantities.

Dimensional Formulæ. — It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, m, t are known, and the powers of l, m, and t involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of l was 1/3 and the power of l involved in the expression for area is l^2 ; hence, the factor for transforming from square feet to square yards is 1/9. These factors

have been called by Prof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. — In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L/T, an acceleration by a velocity-number divided by an interval of time-number, or L/T^2 , and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, l/t and l/t^2 . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$E = ML^2T^{-2}$$

is the dimensional equation for energy, and ML²T⁻² is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$Q = CL^a M^b T^c$$

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_i M_i T_i$, we have to find the value of $\frac{L_i}{L}, \frac{M_i}{M}, \frac{T_i}{T}$, which in accordance with the convention adopted above will be lm t, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_i = Ll$, $M_i = Mm$, $T_i = Tt$, and if Q_i be the new quantity-number

$$Q_{i} = CL_{i}^{a}M_{i}^{b}T_{i}^{c}$$

= $CL^{a}l^{a}M^{b}m^{b}T^{c}t^{c} = Ql^{a}m^{b}t^{c},$

or the conversion factor is $l^a m^b t^c$, a quantity of precisely the same form as the dimension formula $L^a M^b T^c$.

We now proceed to form the dimensional and conversion factor formulæ for the more commonly occurring derived units.

r. Area. — The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$S = CL^2$$
,

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $C = \pi/4$, and so on. The dimensional formula is thus L², and the conversion factor l^2 .

2. Volume. — The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

 $V = CL^{3}$,

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L^3 and the conversion factor l^8 .

3. Density. — The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M/V or ML^{-8} , and conversion factor ml^{-8} .

Example.— The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here *m* is the number of grains in a pound = 7000, and *l* is the number of inches in a foot = 12; $\therefore ml^{-8} = 7000/12^8 = 4.051$. Hence the density is 150 \times 4.051 = 607.6 in grains per cubic inch.

NOTE. — The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.

4. Velocity. — The velocity of a body at any instant is given by the equation $v = \frac{dL}{dT}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT^{-1} , and the conversion factor \mathcal{U}^{-1} .

Example. — A train has a velocity of 60 miles an hour: what is its velocity in feet per second ?

Here l = 5280 and t = 3600; $\therefore lt^{-1} = \frac{5280}{3600} = \frac{44}{30} = 1.467$. Hence the velocity = $60 \times 1.467 = 88.0$ in feet per second.

5. Angle. — An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.

6. Angular Velocity. — Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1} , and the conversion factor is t^{-1} .

7. Linear Acceleration. — Acceleration is the rate of change of velocity or $a = \frac{dv}{dt}$. The dimension formula is therefore VT⁻¹ or LT⁻², and the conversion factor is lt^{-2} .

Example. — A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometers per hour: what is the acceleration in centimeters per second per second?

Since the velocity gained was 20 kilometers per hour in one minute, the acceleration was 1200 kilometers per hour per hour.

Here $l = 100\ 000\ \text{and}\ t = 3600$; $\therefore \ lt^{-2} = 100\ 000/3600^2 = .00771$, and therefore acceleration $= .00771 \times 1200 = 9.26$ centimeters per second.

8. Angular Acceleration. — Angular acceleration is rate of change of angu-

INTRODUCTION.

lar velocity. The dimensional formula is thus $\frac{\text{angular velocity}}{T}$ or T⁻², and the conversion factor t^{-2} .

9. Solid Angle. — A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{\text{area}}{L^2}$ or 1, and hence the conversion factor is also 1.

10. Curvature. — Curvature is measured by the rate of change of direction of the curve with reference to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L⁻¹, and the conversion factor is l^{-1} .

11. Tortuosity. — Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L^{-1} , and the conversion factor is l^{-1} .

12. Specific Curvature of a Surface. — This was defined by Gauss to be, at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text{solid angle}}{\text{surface}}$ or L⁻², and the conversion factor is thus l^{-2} .

13. Momentum. — This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocity-number for the body.

Thus the dimension formula is MV or MLT⁻¹, and the conversion factor *mlt*⁻¹. *Example.* — A mass of 10 pounds is moving with a velocity of 30 feet per second: what is its momentum when the centimeter, the gram, and the second are fundamental units?

Here m = 453.59, l = 30.48, and t = 1; $\therefore mlt^{-1} = 453.59 \times 30.48 = 13825$. The momentum is thus $13825 \times 10 \times 30 = 4147500$.

14. Moment of Momentum. — The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus ML^2T^{-1} , and hence the conversion factor is ml^2t^{-1} .

15. Moment of Inertia. — The moment of inertia of a body round any axis is expressed by the formula Σmr^2 , where *m* is the mass of any particle of the body

xxii

and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML². The conversion factor is therefore ml^2 .

16. Angular Momentum. — The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.

17. Force. — A force is measured by the rate of change of momentum it is capable of producing. The dimension formulæ for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT^{-2} . The conversion factor is thus mlt^{-2} .

NOTE. — When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grams, centimeters, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.

Here m = 453.59, l = 30.48, and t = 1; $\therefore mlt^{-2} = 453.59 \times 30.48 = 13825$ nearly. The number of dynes is thus $13825 \times 25 = 345625$ approximately.

18. Moment of a Couple, Torque, or Twisting Motive. — These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or $ML^{2}T^{-2}$, and the conversion factor is $ml^{2}t^{-2}$.

19. Intensity of a Stress. — The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $ML^{-1}T^{-2}$, and the conversion factor is $ml^{-1}t^{-2}$.

20. Intensity of Attraction, or "Force at a Point." — This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM^{-1} or LT^{-2} , the same as acceleration. The conversion factors for acceleration therefore apply.

21. Absolute Force of a Centre of Attraction, or "Strength of a Centre." — This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes FL^2M^{-1} or L^8T^{-2} . The conversion factor is therefore l^8t^{-2} .

22. Modulus of Elasticity. — A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $ML^{-1}T^{-2}$, and the conversion factor is thus also $ml^{-1}t^{-2}$.

23. Work and Energy. — When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or ML^2T^{-2} .

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is ml^2t^{-2} .

24. Resilience. — This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $ML^{2}T^{-2}L^{-8}$ or $ML^{-1}T^{-2}$, and the conversion factor $ml^{-1}t^{-2}$.

25. Power, or Activity. — Power — or, as it is now very commonly called, activity — is defined as the time rate of doing work, or if W represent work and P power $P = \frac{dw}{dt}$. The dimensional formula is therefore WT⁻¹ or ML²T⁻⁸, and the conversion factor ml^2t^{-6} , or for problems in gravitation units more conveniently flt^{-1} , where f stands for the force factor.

Examples. (a) Find the number of gram centimeters in one foot pound.

Here the units of force are the attraction of the earth on the pound * and the gram of matter, and the conversion factor is \mathcal{A} , where f is 453.59 and l is 30.48.

Hence the number is $453.59 \times 30.48 = 13825$.

(b) Find the number of foot poundals in 1000000 centimeter dynes.

Here m = 1/453.59, l = 1/30.48, and t = 1; $\therefore ml^2 t^{-2} = 1/453.59 \times 30.48^2$, and $10^6 ml^2 t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.

(c) If gravity produces an acceleration of 32.2 feet per second per second, how many watts are required to make one horse-power?

One horse-power is 550 foot pounds per second, or $550 \times 32.2 = 17710$ foot poundals per second. One watt is 10^7 ergs per second, that is, 10^7 dyne centimeters per second. The conversion factor is ml^2t^3 , where m = 453.59, l = 30.48, and t = 1, and the result has to be divided by 10^7 , the number of dyne centimeters per second in the watt.

Hence, $17710 ml^2 t^6 / 10^7 = 17710 \times 453.59 \times 30.48^2 / 10^7 = 746.3$.

(d) How many gram centimeters per second correspond to 33000 foot pounds per minute?

The conversion factor suitable for this case is flt^{-1} , where f is 453.59, l is 30.48, and t is 60.

Hence, $33000 \ lt^{-1} = 33000 \times 453.59 \times 30.48/60 = 7604$ oco nearly.

* It is important to remember that in problems like that here given the term "pound" or "gram" refers to force and not to mass.

HEAT UNITS.

1. If heat be measured in dynamical units its dimensions are the same as those of energy, namely ML^2T^{-3} . The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature ; and hence, if we denote temperature-numbers by Θ and their conversion factors by θ , the dimensional formula and conversion factor for quantity of heat will be $M\Theta$ and $m\theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes $L^{3}\Theta$, and hence the conversion factor is to be calculated from the formula $l^{3}\theta$.

For other physical quantities involving heat we have : ---

2. Coefficient of Expansion. — The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulæ are Θ^{-1} and θ^{-1} .

3. Conductivity, or Specific Conductance. — This is the quantity of heat transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$\mathbf{K} = \frac{\mathbf{H}}{\frac{\mathbf{\Theta}}{\mathbf{L}}\mathbf{L}^{2}\mathbf{T}}$$

and the dimensional formula $\frac{H}{\Theta LT} = \frac{M}{LT}$, which gives $ml^{-1}t^{-1}$ for conversion factor.

In thermometric units the formula becomes $L^{2}T^{-1}$, which properly represents diffusivity. In dynamical units H becomes $ML^{2}T^{-2}$, and the formula changes to $MLT^{-3}\Theta^{-1}$. The conversion factors obtained from these are $l^{2}t^{-1}$ and $mlt^{-3}\theta^{-1}$ respectively.

4. Thermal Capacity. — This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and m.

5. Latent Heat. — Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore $M\Theta/M$ or Θ , and hence the conversion factor is simply the ratio of the temperature units or θ . In dynamical units the factor is l^2t^{-2} .*

6. Joule's Equivalent. — Joule's dynamical equivalent is connected with quantity of heat by the equation

$$ML^{2}T^{-2} = JH \text{ or } JM\Theta.$$

This gives for the dimensional formula of J the expression $L^2T^{-2}\Theta^{-1}$. The conversion factor is thus represented by $l^2t^{-2}\theta^{-1}$. When heat is measured in dynamical units J is a simple number.

7. Entropy. — The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $M\Theta/\Theta$ or M, and the conversion factor is m. When heat is measured in dynamical units the factor is $ml^2t^{-2}\theta^{-1}$.

Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The *British thermal unit* is the quantity of heat required to raise the temperature of one pound of water 1° F. The *calorie* is the quantity of heat required to raise the temperature of one kilogramme of water 1° C. The *therm* is the quantity of heat required to raise the temperature of one gramme of water 1° C. Hence:—

(1) To find the number of calories in one British thermal unit, we have m = .45359 and $\theta = \frac{5}{2}$; $\therefore m\theta = .45359 \times 5/9 = .25199$.

(2) To find the number of therms in one calorie, m = 1000 and $\theta = 1$; $\therefore m\theta = 1000$.

It follows at once that the number of therms in one British thermal unit is $1000 \times .25199 = 251.99$.

(b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

* It will be noticed that when Θ is given the dimension formula L^2T^{-2} the formulæ in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

xxvi

mula $ml^{-1}l^{-1}\theta^{\circ}$, where m = .064799, l = 30.48, and t = 1, and is therefore = $.064799/30.48 = 2.126 \times 10^{-8}$.

(c) Find the relation between the units stated in (b) for emissivity.

In this case the conversion formula is $ml^{-2}t^{-1}$, where ml and t have the same value as before. Hence the number of the latter units in the former is $0.064799/30.48^2 = 6.975 \times 10^{-9}$.

(d) Find the number of centimeter gram second units in the inch grain hour unit of emissivity.

Here the formula is $ml^{-2}t^{-1}$, where m = 0.064799, l = 2.54, and t = 3600. Therefore the required number is $0.064799/2.54^2 \times 3600 = 2.790 \times 10^{-6}$.

(e) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitation units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^2 t^{-2} \theta^{-1}}{l t^{-2}}$ or $l \theta^{-1}$, where l = .3048 and $\theta^{-1} = 1.8$; $\therefore 776 \times .3048 \times 1.8 = 425.7$.

(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogram meter second and degree-Centigrade units are used?

The conversion factor is $l^2 t^{-2} \theta^{-1}$, where l = .3048, t = 1, and $\theta^{-1} = 1.8$; $\therefore 24832 \times l^2 t^{-2} \theta^{-1} = 24832 \times .3048^2 \times 1.8 = 4152.5$.

In gravitation units this would give 4152.5/9.81 = 423.3.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force,

quantity of electricity, and length by the equation $f = a \frac{qq_1}{l^2}$, where f is force, a a

quantity depending on the units employed and on the nature of the medium, q and q_i quantities of electricity, and l the distance between q and q_i . The magnitude of the force f for any particular values of q, q_i and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q = q_i$, and f, a, and l are each unity. A formal definition is given below.

In the electromagnetic system the repulsion between two magnetic poles or

quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by an equation of the form

$$f = a \frac{mm_l}{l^2},$$

where m and m_i are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. These numbers, by analogy with specific inductive capacity for electricity, might be called specific inductive capacities for magnetism. They are usually called permeabilities. (*Vide* Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m = m_D$ and f, a, and l each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the one system to those in the other. The character of this relation can be directly inferred from the dimensional formulæ of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formulæ k and p are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P equal to unity.

ELECTROSTATIC UNITS.

1. Quantity of Electricity. — The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimeter gram second system.

In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is therefore the same as that for [force \times length² \times inductive capacity]³ or M³L³T⁻¹K³, and the conversion factor is $m^{3}l^{3}t^{-1}k^{3}$. 2. Electric Surface Density and Electric Displacement. — The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantities have therefore the same dimensional formula, namely, the ratio of the formulæ for quantity of electricity and for area or $M^{3}L^{-3}T^{-1}K^{3}$, and the conversion factor $m^{3}t^{-3}t^{-1}k^{3}$.

3. Electric Force at a Point, or Intensity of Electric Field. — This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formulæ for force and electric quantity, or

$$\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}t^{-\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}}$.

4. Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

$$\frac{ML^{2}T^{-2}}{M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}} = M^{\frac{3}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{3}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}l^2t^{-1}k^{-\frac{1}{2}}}$.

5. Capacity of a Conductor. — The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formulæ for electric quantity and potential, or

$$\frac{M^{i}L^{i}T^{-1}K^{i}}{M^{i}L^{i}T^{-1}K^{-i}} = LK,$$

which gives lk for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.

6. Specific Inductive Capacity. — This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K/K or 1.*

7. Electric Current. — Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulæ for electric quantity and for time, or

$$\frac{\mathrm{M}^{i}\mathrm{L}^{i}\mathrm{T}^{-1}\mathrm{K}^{i}}{\mathrm{T}} = \mathrm{M}^{i}\mathrm{L}^{i}\mathrm{T}^{-2}\mathrm{K}^{i},$$

and the conversion factor $m^{\frac{1}{2}t^{-2}k^{\frac{1}{2}}}$.

* According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is K, or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be taken as 1 on the electrostatic and as $l^{-2}l^{2}$ on the electromagnetic system.

8. Conductivity, or Specific * Conductance. — This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore

 $\frac{M^{i}L^{i}T^{-1}K^{i}}{L^{2}\frac{M^{i}L^{i}T^{-1}K^{-i}}{L}T} = T^{-1}K, \text{ or } \frac{\text{electric quantity}}{\text{area } \times \text{ potential gradient } \times \text{ time}}.$

The conversion factor is $t^{-1}k$.

9. Specific * Resistance. — This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and tk^{-1} .

10. Conductance. — The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}} = LT^{-1}K,$$

from which we get the conversion factor $lt^{-1}k$.

11. Resistance.—This is the reciprocal of conductance, and therefore the dimensional formula and the conversion factor are respectively $L^{-1}TK^{-1}$ and $l^{-1}tk^{-1}$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

(a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.

By (1) the formula is $m^{\frac{1}{2}t-1}k^{\frac{1}{2}}$, in which in this case m = 0.0648, l = 30.48, t = 1, and k = 1; \therefore the factor is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{1}{2}} = 4.2836$.

(b) Find the factor required to convert electric potential from millimeter milligram second units to c. g. s. units.

By (4) the formula is $m^{\frac{1}{2}l^2t^{-1}k^{-\frac{1}{2}}}$, and in this case m = 0.001, l = 0.1, t = 1, and k = 1; \therefore the factor $= 0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}} = 0.01$.

(c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.

By (5) the formula is lk, and in this case l = 30.48 and k = 6; \therefore the factor = $30.48 \times 6 = 182.88$.

* The term "specific," as used here and in 9, refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

ELECTROMAGNETIC UNITS.

As stated above, these units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the electrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for electric quantity may have their dimensional formulæ derived from those of the corresponding quantity by substituting P for K.

1. Magnetic Pole, or Quantity of Magnetism. — Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length² \times inductive capacity]ⁱ or MⁱLⁱT⁻¹Pⁱ, and the conversion factor is $m^{i}L^{i}T^{-1}P^{i}$.

2. Density of Surface Distribution of Magnetism. — This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{-\frac{1}{2}}l^{\frac{1}{2}}$.

3. Magnetic Force at a Point, or Intensity of Magnetic Field. — The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

$$\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}}t^{-\frac{1}{2}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$.

4. Magnetic Potential. — The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$\frac{ML^{2}T^{-2}}{M^{2}L^{3}T^{-1}P^{3}} = M^{2}L^{3}T^{-1}P^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

5. Magnetic Moment. — This is the product of the numbers for pole strength and length of a magnet. The dimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $M^{2}L^{4}T^{-1}P^{3}$, and the conversion factor $m^{3}l^{4}t^{-1}P^{3}$.

6. Intensity of Magnetization. — The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magnitude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formulæ for magnetic moment and volume, or

$$\frac{\mathrm{M}^{i}\mathrm{L}^{i}\mathrm{T}^{-1}\mathrm{P}^{i}}{\mathrm{L}^{s}} = \mathrm{M}^{i}\mathrm{L}^{-i}\mathrm{T}^{-1}\mathrm{P}^{i}.$$

The conversion factor is therefore $m^{\frac{1}{2}t-\frac{1}{2}t-\frac{1}{2}p^{\frac{1}{2}}}$.

7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity. — This is the analogue in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.

8. Magnetic Susceptibility. — This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formulæ for intensity of magnetization and magnetic field or

 $\frac{M^{i}L^{-i}T^{-1}P^{i}}{M^{i}L^{-i}T^{-1}P^{-i}} \text{ or } P.$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.

9. Current Strength. — A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2\pi c/r$. The dimensional formula is therefore the product of the formulæ for magnetic field intensity and length, or M⁴L⁴T⁻¹P⁻⁴, which gives the conversion factor $m^{\frac{3}{2}t^{-1}}P^{-4}$.

10. Current Density, or Strength of Current at a Point. — This is the ratio of the numbers for current strength and area. The dimensional formula and the conversion factor are therefore $M^{i}L^{-i}T^{-1}P^{-i}$ and $m^{i}l^{-i}t^{-i}p^{-i}$.

11. Quantity of Electricity. — This is the product of the numbers for current and time. The dimensional formula is therefore $M^{i}L^{j}T^{-1}P^{-j} \times T = M^{i}L^{j}P^{-j}$, and the conversion factor $m^{i}l^{j}p^{-i}$.

12. Electric Potential, or Electromotive Force. — As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$\frac{ML^{s}T^{-2}}{M^{t}L^{t}P^{-t}} = M^{t}L^{t}T^{-2}P^{t},$$

and the conversion factor $m^{\frac{1}{2}l^{\frac{3}{2}}}t^{-2}p^{\frac{1}{2}}$.

• Permeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is here taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as r in the electromagnetic and $J^{-2}t^{2}$ in the electrostatic systems.

xxxii

INTRODUCTION.

13. Electrostatic Capacity. — This is the ratio of the numbers for quantity of electricity and difference of potential. The dimensional formula is therefore

$$\frac{M^{i}L^{i}P^{-i}}{M^{i}L^{i}T^{-2}P^{i}} = L^{-1}T^{2}P^{-1},$$

and the conversion factor $l^{-1}t^2p^{-1}$.

14. Resistance of a Conductor. — The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or

$$\frac{\mathbf{M}^{\mathbf{i}}\mathbf{L}^{\mathbf{i}}\mathbf{T}^{-2}\mathbf{P}^{\mathbf{i}}}{\mathbf{M}^{\mathbf{i}}\mathbf{L}^{\mathbf{i}}\mathbf{T}^{-1}\mathbf{P}^{-\mathbf{i}}} = \mathbf{L}\mathbf{T}^{-1}\mathbf{P}.$$

The conversion factor thus becomes $\mathcal{U}^{-1}p$, and in the ordinary system resistance has the same conversion factor as velocity.

15. Conductance. — This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $L^{-1}TP^{-1}$ and $l^{-1}tp^{-1}$.

16. Conductivity, or Specific Conductance. — This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows: —

$$\frac{\frac{M^{i}L^{j}P^{-j}}{L^{2}\frac{M^{i}L^{i}T^{-2}P^{i}}{L}}}{L^{2}} = L^{-2}TP^{-1}.$$

The conversion factor is therefore $l^{-2}tp^{-1}$.

17. Specific Resistance. — This is the reciprocal of conductivity as defined in 16, and hence the dimensional formula and conversion factor are respectively $L^{2}T^{-1}P$ and $l^{2}t^{-1}p$.

18. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. — These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formulæ for electromotive force and time divided by that for current or

$$\frac{M^{i}L^{i}T^{-i}P^{i}}{M^{i}L^{i}T^{-1}P^{-i}} \times T = LP.$$

The conversion factor is therefore lp, and in the ordinary system is the same as that for length.

19. Coefficient of Mutual Induction. — The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.

20. Electro-kinetic Momentum. — The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $M^{i}L^{i}T^{-1}P^{-i} \times LP$ = $M^{i}L^{i}T^{-1}P^{i}$, and the conversion factor is $m^{i}l^{i}l^{-1}\rho^{i}$.

21. Electromotive Force at a Point. — The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12, and for length. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}l^{\frac{1}{2}}-\frac{2}{2}p^{\frac{1}{2}}}$.

22. Vector Potential. — This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 21 by multiplying by T, or from 20 by dividing by L. It is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}l}t^{-1}P^{\frac{1}{2}}$.

23. Thermoelectric Height. — This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulæ for these two quantities, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}\Theta^{-1}$, and the conversion factor $m^{\frac{1}{2}l^{\frac{1}{2}}t^{-2}}p^{\frac{1}{2}}\Theta^{-1}$.

24. Specific Heat of Electricity. — This quantity is measured in the same way as 23, and hence has the same formulæ.

25. Coefficient of Peltier Effect. — This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

 $\frac{M\Theta}{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{\frac{-1}{2}}} = M^{\frac{1}{2}}L^{\frac{-1}{2}}P^{\frac{1}{2}}\Theta,$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}p^{\frac{1}{2}}\theta$.

EXAMPLES OF CONVERSION IN ELECTROMAGNETIC UNITS.

(a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.

By (3) the formula is $m^{\frac{1}{2}l-\frac{1}{2}t^{-\frac{1}{2}}}$, and in this case m = 0.0648, l = 30.48, t = 60, and p = r; \therefore the factors $= 0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} \times 60^{-1} = 0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^3 \times 30.48^{-3} = 0.046108$.

(b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?

By (5) the formula is $m^{\frac{1}{2}l_{p}^{t-1}}p^{\frac{1}{2}}$, and the values for this problem are m = 0.0648, l = 30.48, t = 1, and p = 1; \therefore the number $= 0.0648^{\frac{1}{2}} \times 30.48^{\frac{1}{2}} = 1305.6$.

(c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimeter milligram second units?

xxxiv

By (6) the formula is $m^{1/4}t^{-1}p^{1}$, and in this case m = 1000, l = 10, t = 1, and p = 1; \therefore the intensity $= 700 \times 1000^{1} \times 10^{1} = 70000$.

(d) Find the factor required to convert current strength from c. g. s. units to earth quadrant 10^{-11} gram and second units.

By (9) the formula is $m^{\frac{1}{2}l}t^{-1}p^{-\frac{1}{2}}$, and the values of these quantities are here $m = 10^{11}$, $l = 10^{-9}$, t = 1, and p = 1; \therefore the factor $= 10^{\frac{1}{2}} \times 10^{-\frac{9}{2}} = 10$.

(e) Find the factor required to convert resistance expressed in c. g. s. units into the same expressed in earth-quadrant 10^{-11} gram and second units.

By (14) the formula is $lt^{-1}p$, and for this case $l = 10^{-9}$, t = 1, and p = 1; ... the factor = 10^{-9} .

(f) Find the factor required to convert electromotive force from earth-quadrant 10^{-11} gram and second units to c. g. s. units.

By (12) the formula is $m^{i}l^{n}t^{-2}p^{i}$, and for this case $m = 10^{-11}$, $l = 10^{9}$, t = 1, and p = 1; \therefore the factor = 10⁸.

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimeter, the gram, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893, by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893:—

"Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the *international ohm*, which is based upon the ohm equal to 10⁹ units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.4521 grams in mass, of a constant crosssectional area and of the length of 106.3 centimeters.

"As a unit of current, the *international ampère*, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of 0.001118 of a gram per second.

* "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has been kept constant, the current itself can be deduced.

"In employing the silver voltameter to measure currents of about one ampère, the following arrangements should be adopted : ---

"As a unit of electromotive force, the *international volt*, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampère, and which is represented sufficiently well for practical use by $\frac{1000}{1434}$ of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C., and prepared in the manner described in the accompanying specification.*

"As a unit of quantity, the *international coulomb*, which is the quantity of electricity transferred by a current of one international ampère in one second.

"As a unit of capacity, the *international farad*, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.[†]

"As a unit of work, the *joule*, which is equal to 10^7 units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampère in an international ohm.

"As a unit of power, the *watt*, which is equal to 10^7 units of power in the c. g. s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.

"As the unit of induction, the *henry*, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.

"The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July 12th, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894, the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

"The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimeters in diameter and from 4 to 5 centimeters in depth.

"The anode should be a plate of pure silver some 30 square centimeters in area and 2 or 3 millimeters in thickness.

"This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.

"The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by weight of the nitrate to 85 parts of water.

"The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than 10 ohms."

* A committee, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell, but no report was made, on account of Helmholtz's death.

+ The one millionth part of the farad is more commonly used in practical measurements, and is called the microfarad.

PHYSICAL TABLES

TABLE 1. FUNDAMENTAL AND DERIVED UNITS.

To change a quantity from one system of units to another : substitute in the corresponding conversion factor from the following table the ratio of the magnitudes of the old units to the *new* and multiply the old quantity by the resulting number. For example : to reduce velocity in miles per hour to feet per second, the conversion factor is lt^{-1} ; l=5280/1, t=3600/1, therefore the factor=5280/3600=1.467.

(a) FUNDAMENTAL UNITS.

Name of Unit.	Symbol.	Conversion Factor.
Length.	L	ί
Mass.	M	m
Time.	T	t
Temperature.	©	θ
Electric Inductive Capacity.	K	k
Magnetic Inductive Capacity.	P	¢

(b) DERIVED UNITS.

Name of Unit.	Conversion Factor.
Area.	<i>[</i> ²
Volume.	Z ⁸
Angle.	I
Solid Angle.	I
Curvature.	l ⁻¹
Tortuosity.	l^{-1}
Specific curvature of a surface.	1-2
Angular velocity.	t∸I
Angular acceleration.	t^{-2}
Linear velocity.	l t-1
Linear acceleration.	lt^{-2}
Density.	m l ⁻⁸
Moment of inertia.	$m l^2$
Intensity of attraction, or "force at a point."	$l t^{-2}$
Absolute force of a centre of attraction, or "strength) of a centre."	$l^{8}t^{-2}$
Momentum.	$m l t^{-1}$
Moment of momentum, or angular momentum.	$m l^2 t^{-1}$
Force.	$m l t^{-2}$
Moment of a couple, or torque.	$m l^2 t^{-2}$
Intensity of stress.	$m l^{-1} t^{-2}$
Modulus of elasticity.	$m l^{-1} t^{-2}$
Work and energy.	$m l^2 t^{-2}$
Resilience.	$m l^{-1} t^{-2}$
Power or activity.	$m l^2 t^{-8}$

I. Geometric and Dynamic Units.

TABLE 1. FUNDAMENTAL AND DERIVED UNITS.

II. Heat Units.								
A. 12000 Onicos								
Name of Unit.		Conversion Factor.						
Quantity of heat (thermal units). """(thermometric units). ""(dynamical units). Coefficient of thermal expansion. Conductivity (thermal units). "(thermometric units), or "(dynamical units). Thermal capacity. Latent heat (thermal units). ""(dynamical units). ""(dynamical units). Soule's equivalent. Entropy (heat measured in thermal units). "("""dynamical	$m \theta$ $l^{8} \theta$ $m l^{2} t^{-2}$ θ^{-1} $m l^{-1} t^{-1}$ $l^{2} t^{-1}$ $m l t^{-8} \theta^{-1}$ m θ $l^{2} t^{-2}$ $l^{2} t^{-2} \theta$ m $m l^{2} t^{-2} \theta$							
III. Magnetic and Electric Units. Conversion factor Name of Unit. Conversion factor for electrostatic for electrostatic								
Magnetic pole, or quantity of mag- netism.	$m^{\frac{1}{2}}l^{\frac{1}{2}}k^{-\frac{1}{2}}$	$m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}p^{\frac{1}{2}}$						
Density of surface distribution of magnetism. Intensity of magnetic field. Magnetic potential. Magnetic moment. Intensity of magnetisation. Magnetic permeability. Magnetic susceptibility and mag- netic inductive capacity. Quantity of electricity.	$m^{\frac{1}{2}} l^{-\frac{3}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-2} k^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{3}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{-\frac{3}{2}} k^{-\frac{3}{2}}$ I $l^{-2} t^{\frac{2}{2}} k^{-1}$ $m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-1} k^{\frac{1}{2}}$	$m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} p^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-\frac{1}{2}} p^{\frac{1}{2}}$ I p $m^{\frac{1}{2}} l^{\frac{1}{2}} p^{-\frac{1}{2}}$						
Electric surface density and electric displacement. Intensity of electric field. Electric potential and e. m. f. Capacity of a condenser. Inductive capacity. Specific inductive capacity. Electric current.	$m^{\frac{1}{2}} t^{-\frac{1}{2}} t^{-\frac{1}{2}} k^{\frac{1}{2}}$ $m^{\frac{1}{2}} t^{-\frac{1}{2}} t^{-\frac{1}{2}} k^{-\frac{1}{2}}$ $l k$ k l $m^{\frac{1}{2}} t^{\frac{1}{2}} t^{-2} k^{\frac{1}{2}}$	$m^{\frac{1}{2}} l^{-\frac{3}{2}} p^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-2} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-2} p^{\frac{1}{2}}$ $l^{-1} t^{\frac{2}{2}} p^{-1}$ $l^{-\frac{1}{2}} t^{\frac{2}{2}} p^{-1}$ I $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{-\frac{1}{2}}$						

TABLE 1.

FUNDAMENTAL AND DERIVED UNITS.

III. Magnetic and Electric Units.							
Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.					
Conductivity. Specific resistance. Conductance. Resistance. Coefficient of self induction and coefficient of mutual induction. Electrokinetic momentum. Electromotive force at a point. Vector potential. Thermoelectric height and specific heat of electricity. Coefficient of Peltier effect.	$t^{-1} k$ $t k^{-1}$ $l t^{-1} k$ $l^{-1} t k^{-1}$ $t^{-1} t^{2} k^{-1}$ $m^{1} l^{1} k^{-1}$ $m^{1} l^{-1} t^{-1} k^{-1}$ $m^{1} l^{-1} k^{-1}$ $m^{1} l^{1} t^{-1} k^{-1}$ $m^{1} l^{1} t^{-1} k^{-1} \theta^{-1}$ $m^{1} l^{-1} t k^{-1} \theta$	$\begin{array}{c} t^{-2} t \ p^{-1} \\ t^2 \ t^{-1} \ p \\ t^{-1} \ t \ p^{-1} \\ t \ t^{-1} \ p \\ t \ p \\ m^1 \ t^3 \ t^{-1} \ p^1 \\ m^1 \ t^3 \ t^{-2} \ p^1 \\ m^1 \ t^3 \ t^{-2} \ p^1 \\ m^1 \ t^3 \ t^{-2} \ p^1 \ \theta^{-1} \\ m^1 \ t^3 \ t^{-2} \ p^1 \ \theta \end{array}$					

TABLE 2. TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.* (1) CUSTOMARY TO METRIC.

		LINE	AR.				САРАС	ITY.	
	Ioches to millimeters.	Feet to meters.	Yards to meters.	Milea to kilometers.		Fluid drams to milliliters or cubic centimeters.	Fluid ounces to milliliters.	Liquid quarts to liters.	Gallons to liters.
1 2 3 4 5 6 7 8 9	25.4001 50.8001 76.2002 101.6002 127.0003 152.4003 177.8004 203.2004 228.6005	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65568 11.20543 12.87478 14.48412	1 2 3 4 5 6 7 8 9	3.70 7.39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.01 236.58 266.16	0.94633 1.89267 2.83900 3.78533 4.73167 5.67800 6.62433 7.57066 8.51700	3.78533 7.57066 11.35600 15.14133 18.92666 22.71199 26.49733 30.28266 34.06799
		SQUARE.					WEIG	нт.	
	Square iuches to square cen- timeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milligrams,	Avoirdu- pois ounces to grams.	Avoirdu- pois pounds to kilo- grams.	Troy ounces to grams.
1 2 3 4 5 6 7 8 9	6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065	9.290 18.581 27.871 37.161 46.452 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.345 4.181 5.017 5.853 6.689 7.525	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281 2.8328 3.2375 3.6422	1 2 3 4 5 6 7 8 9	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3913 583.1903	28.3495 56.6991 85.0486 113.3981 141.7476 170.0972 198.4467 226.7962 255.1457	0.45359 0.90718 1.36078 1.81437 2.26796 2.72155 3.17515 3.62874 4.08233	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133
		CUBI	с.						
	Cubic inches to cubic cen- timeters.	Cubic feet to cubic meters.	Cubic yards to cubic metera.	Bushels to hectoliters.					
I 2 3 4 5 6 78 9	16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	0.02832 0.05663 0.08495 0.11327 0.14159 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154					

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 meter, and the avoirdupois pound as 1/2.20462 kilogram. I meter (international prototype) = 153164.13 times the wave-length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, 1007 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Sphe-roid of 1866). . 1 roid of 1866).

* Quoted from sheets issued by the United States Bureau of Standards.

TABLES FOR CONVERTING U.S. WEIGHTS AND MEASURES. (2) METRIC TO CUSTOMARY.

LINEAR.						CAPACITY.						
	Meters to inches.	Meters to feet.	Meters to yards.	Kilometers to miles.		Millili- ters or cubic cen- timeters to fluid drams.	lite flu	enti- ers to uid nces.	Lite to quar	+	Deca- liters to galloos.	Hecto- liters to busbels.
1 2 3 4 5 6 7 8 9	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354.3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.68500 22.96583 26.24667 29.52750	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	1 2 3 4 5 6 7 8 9	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43	0.6 1.0 1.3 2.0 2.3 2.7	338 676 014 353 691 029 367 705 043	1.05 2.11 3.17 4.22 5.28 6.34 7.39 8.45 9.51	34 68 1 36 1 03 1 70 1 37 2	2.6418 5.2836 7.9253 0.5671 3.2089 5.8507 8.4924 21.1342 3.7760	5.6756 8.5135 11.3513 14.1891 17.0269 19.8647 22.7026
	_	SQUAI	RE.			WEIGHT.						
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.		Ki gran grai	ns to	gra: ou	ecto- ms to nces dupois.	Kilo- grams to pounds avoirdupois.
1 2 3 4 5 6 7 8 9	0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950	10.764 21.528 32.292 43.055 53.819 64.583 75.347 86.111 96.875	1.196 2.392 3.588 4.784 5.980 7.176 8.372 9.568 10.764	2.471 4.942 7.413 9.884 12.355 14.826 17.297 19.768 22.239	I 2 3 4 5 6 7 8 9	0.01543 0.03086 0.04630 0.06173 0.07716 0.09259 0.10803 0.12346 0.13889	I	3086 4620 6172 7716 9259	32.36 54.71 97.07 29.43 51.78 94.14 26.49 58.85 91.21	7.0	096 370 644 918 192	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236 17.63698 19.84160
		CUBI	C.					w	EIGI	HT.		
	Cubic centimeters to cubic inches.	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.		Quintals pounds			Millier nes to av.	pound	s to	ilograms o ounces Troy.
I 2 34 5 6 78 9	0.0610 0.1220 0.1831 0.2441 0.3051 0.3661 0.4272 0.4882 0.5492	61.023 122.047 183.070 244.094 305.117 366.140 427.164 488.187 549.210	35.314 70.269 105.943 141.258 176.572 211.887 247.201 282.516 317.830	1.308 2.616 3.924 5.232 6.540 7.848 9.156 10.464 11.771	1 2 3 4 5 6 7 8 9	220.4 440.6 661. 881.5 1102.7 1322.7 1543.2 1763.7 1984.	39 39 35 31 77 24 70		220, 440 661 881 1102 1322 1543 1763 1984	9.2 3.9 8.5 3.1 7.7 2.4 7.0		32.1507 54.3015 96.4522 28.6030 60.7537 92.9045 25.0552 57.2059 89.3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to r of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International proto-type standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C. The metric system was legalized in the United States in 1866. The International Standard Meter is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weierbts and Measures.

Weights and Measures. The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight

in vacuo is the same as that of the Kilogram des Archives. The liter is equal to the quantity of pure water at 4° C, 760 mm. Hg. pressure which weighs 1 kilogram = 1.000027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)

TABLE 3. EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(1) METRIC TO IMPERIAL.

LINEAR MEASURE.	MEASURE OF CAPACITY.
$ \begin{array}{c} \text{I millimeter (mm.)} \\ (.001 \text{ m.}) \\ \text{I centimeter (.01 m.)} \\ \text{I decimeter (.01 m.)} \\ \text{I decimeter (.1 m)} \\ = 0.39370 \text{ if } \\ 3.93701 \text{ if } \\ 3.9370113 \\ \text{I METER (m.)} \\ \text{I METER (m.)} \\ \text{I METER (m.)} \\ \text{I dekameter} \\ (10 \text{ m.)} \\ I . endowskie in the state integration of the state integra$	I milliliter (ml.) (.001 liter) = 0.0610 cub. in. I centiliter (.01 liter) = $\begin{cases} 0.61024 \ 0.070 \text{ gill.} \\ 0.070 \text{ gill.} \end{cases}$ I deciliter (.1 liter) = 0.176 pint. I LITER (1,000 cub. centimeters or I cub. decimeter) = 1.75980 pints. cub. decimeter) = 2.75 bushels. I dekaliter (10 liters) = 2.75 bushels. I hetcoliter (100 \cdots) = 3.437 quarters. APOTHECARIES' MEASURE. I cubic centi- meter (I) = $\begin{cases} 0.03520 \text{ fluid ounce.} \\ 0.28157 \text{ fluid drachm.} \\ 15.43236 \text{ grains weight.} \end{cases}$
SQUARE MEASURE.	1 cub, millimeter $= 0.01693$ minim. AVOIRDUPOIS WEIGHT.
$ \left. \begin{array}{c} \text{I sq. centimeter} \\ \text{I sq. decimeter} \\ \text{(Ioo sq. centm.)} \end{array} \right\} = 15.500 \text{ sq. in.} \\ \text{I sq. meter or centiare (too sq. dcm.)} \\ \text{I sq. meter or centiare (too sq. dcm.)} \\ \text{I ARE (Ioo sq. dcm.)} \\ \text{I hectare (too ares or 10,000 sq. m.)} \\ \end{array} \right\} = 119.60 \text{ sq. yds.} \\ \text{I hectare (too ares or 10,000 sq. m.)} \\ \end{array} \right\} = 2.4711 \text{ acres.} $	I milligram (mgr.) = 0.01543 grain. I centigram (.01 gram.) = 0.15432 " I decigram (.1 ") = 1.54324 grains. I GRAM = I5.43236 " I dekagram (10 gram.) = 5.64383 drams. I hectogram (100 ") = 3.52739 02. (2.2046223 lb ⁻) I KILOGRAM (1,000") = $\begin{cases} 2.32046223 lb^{-}\\ 15432.3564\\ grains.\\ 1 myriagram (10 kilog.) = 22.04622 lbs.\end{cases}$
CUBIC MEASURE.	1 quintal (100 ") = 1.96841 cwt. 1 millier or tonne (1,000 kilog.) $\left\{ \begin{array}{c} . \\ . \end{array} \right\}$ = 0.9842 ton.
I cub. centimeter (c.c.) $(1,000 \text{ cubic})$ = 0.0610 cub. in. millimeters) I cub. decimeter (c.d.) $(1,000 \text{ cubic})$ = 61.024 "" centimeters) I CUB. METER or stere $(1,000 \text{ c.d.})$. = { 35.3148 cub. ft. I.307954 cub. yds.	TROY WEIGHT. I GRAM $\cdot \cdot = \begin{cases} 0.03215 \text{ oz. Troy.} \\ 0.64301 \text{ pennyweight.} \\ 15.43236 \text{ grains.} \end{cases}$ APOTHECARIES' WEIGHT. I GRAM $\cdot \cdot \cdot \cdot = \begin{cases} 0.25721 \text{ drachm.} \\ 0.77162 \text{ scruple.} \\ 15.43236 \text{ grains.} \end{cases}$
	f 0.C. of the state ministrum has deposited at the

NOTE.—The METER is the leogth, at the temperature of 0° C., of the platinum-iridium bar deposited at the International Burcau of Weights and Measures at Sevres, near Paris, France. The present legal equivalent of the meter is 39.37013 inches, as above stated. The KILOGRAM is the mass of a platinum-iridium weight deposited at the same place. The LITER contains one kilogram weight of distilled water at its maximum density (4° C.), the barometer being at see millingter.

at 760 millimeters.

*ID accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

TABLE 3.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEICHTS AND MEASURES.

				· · · · · · · · · · · · · · · · · · ·					
	LII	NEAR MEA	SURE.			ME	ASURE OF	CAPACITY	
	Millimeters to inches.	Meters to feet.	Meters to yards,	Kilo- meters to miles.		Liters to piuts.	Dekaliters to galloos.	Hectoliters to bushels.	Kiloliters to quarters.
1 2 3 4 5	0.03937011 0.07874023 0.11811034 0.15748045 0.19685056	3.28084 6.56169 9.84253 13.12337 16.40421	1.09361 2.18723 3.28084 4.37446 5.46807	0.62137 1.24274 1.86412 2.48549 3.10686	1 2 3 4 5	1.75980 3.51961 5.27941 7.03921 8. 7 9902	2.19975 4.39951 6.59926 8.79902 10.99877	2.74969 5.49938 8.24908 10.99877 13.74846	3.43712 6.87423 10.31135 13.74846 17.18558
6 7 8 9	0.23622068 0.27559079 0.31496090 0.35433102	19.68506 22.96590 26.24674 29.5 2 758	6.56169 7.65530 8.74891 9.84253	3.72823 4.34960 4.97097 5.59235	6 7 8 9	10.55882 12.31862 14.07842 15.83823	13.19852 15.39828 17.59803 19.79778	16.49815 19.24785 21.99754 24.74723	20.62269 24.05981 27.49692 30.93404
	SQI	JARE MEA	SURE.			w	EIGHT (Avo	virdupois).	
	Square ceutimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to graios.	Kilograms to graios.	Kilo- grams to pounds,	Quintals to bundred- weights.
1 2 3 4 5	0.15500 0.31000 0.46500 0.62000 0.77500	10.76393 21.52786 32.29179 43.05572 53.81965	1.19599 2.39198 3.58798 4.78397 5.97996	2.4711 4.9421 7.4132 9.8842 12.3553	1 2 3 4 5	0.01543 0.03086 0.04630 0.06173 0.07716	15432.356 30864.713 46297.069 61729.426 77161.782	2.20462 4.40924 6.61387 8.81849 11.02311	1.96841 3.93683 5.90524 7.87365 9.84206
6 7 8 9	0.93000 1.08500 1.24000 1.39501	64.58357 75.34750 86.11143 96.87536	7.17595 8.37194 9.56794 10.76393	14.8263 17.2974 19.7685 22.2395	6 7 8 9	0.09259 0.10803 0.12346 0.13889	92594.138 108026.495 123458.851 138891.208	13.22773 15.43236 17.63698 19.84160	11.81048 13.77889 15.74730 17.71572
	CUBIC	MEASURE	•	Apothe- caries' Measure.	A	(cont.)	TROY W	EIGHT.	Apothe- caries' Weight,
	Cubic decimeters to cubic incbes.	Cubic meters to cubic feet.	Cubic meters to cubic yards,	Cub. cen- timeters to fluid drachms,		Milliers or tonnes to tons.	Grams to nunces Troy.	Grams to penny- weights.	Grams to scruples.
1 2 3 4 5	61.02390 122.04781 183.07171 244.09561 305.11952	35.31476 70.62952 105.94428 141.25904 176.57379	1.30795 2.61591 3.92386 5.23182 6.53977	0.28157 0.56314 0.84471 1.12627 1.40784	1 2 3 4 5	0.98421 1.96841 2.95262 3.93683 4.92103	0.03215 0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54324 2.31485 3.08647 3.85809
6 7 8 9	366.14342 427.16732 488.19123 549.21513	211.88855 247.20331 282.51807 317.83283	7.84772 9.15568 10.46363 11.77159	1.68941 1.97098 2.25255 2.53412	6 7 8 9	5.90524 6.88944 7.87365 8.85786	0.19290 0.22506 0.25721 0.28936	3.85809 4.50110 5.14412 5.78713	4.62971 5.40132 6.17294 6.94456

(2) METRIC TO IMPERIAL.

TABLE 3.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

NOTE. — The VARD is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade. The POUND is the weight of a piece of platinum weighed in vacuo at the temperature of 0° C., and which is also deposited with the Board of Trade.

The GALLON contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 fuches.

TABLE 3.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

	LI	NEAR ME	ASURE.			MEA	SURE OF	CAPACITY	
	Inches to centimeters.	Feet to meters.	Yards to meters.	Miles to kilo- meters.		Quarts to liters.	Gallons to liters.	Bushels to dekaliters.	Quarters to hectoliters.
1	2.539998	0.30480	0.91440	1. 6 0934	1	1.13649	4.54596	3.63677	2.90942
2	5.079996	0.60960	1.82880	3.21869	2	2.27298	9.09193	7.27354	5.81883
3	7.619993	0.91440	2.74320	4.82803	3	3.40947	13.63789	10.91031	8.72825
4	10.159991	1.21920	3.65760	6.43737	4	4.54596	18.18385	14.54708	11.63767
5	12.699989	1.52400	4.57200	8.04671	5	5.68245	22.72982	18.18385	14.54708
6	15.239987	1.82880	5.48640	9.656 06	6	6.81894	27.27578	21.82062	17.45650
7	17.779984	2.13360	6.40080	11.26540	7	7.95544	31.82174	25.45739	20.36591
8	20.319982	2.43840	7.31519	12.87474	8	9.09193	36.36770	29.09416	23.27533
9	22.859980	2.74320	8.22959	14.48408	9	10.22842	40.91367	32.73093	26.18475
	sQ	UARE ME	ASURE.			w	EIGHT (Avo	irdupois).	
	Square inches to square centimeters.	Square feet to square decimeters,	Square yards to square meters.	Acres to hectares.		Graios to milli- grams.	Ounces to grams.	Pounds to kilo- grams.	Hundred- weights to quintals,
1	6.45159	9.29029	0.83613	0.40468	1	64.79892	28.34953	0.45359	0.50802
2	12.90318	18.58058	1.67225	0.80937	2	129.59784	56.69905	0.90718	1.01605
3	19.35477	27.87086	2.50838	1.21405	3	194.39675	85.04858	1.36078	1.52407
4	25.80636	37.16115	3.34450	1.61874	4	259.19567	113.39811	1.81437	2.03209
5	32.25794	46.45144	4.18063	2.02342	5	323.99459	141.74763	2.26796	2.54012
6	38.70953	55.74173	5.01676	2.42811	6	388.79351	170.09716	2.72155	3.04814
7	45.16112	65.03201	5.85288	2.83279	7	453.59243	198.44669	3.17515	3.55616
8	51.61271	74.32230	6.68901	3.23748	8	518.39135	226.79621	3.62874	4.06419
9	58.06430	83.61259	7.52513	3.64216	9	583.19026	255.14574	4.08233	4.57221
	CUBIC	MEASURI	C.	Apothe- caries' Measure.	A	voirdupois (cont.).	Troy W	BIGHT.	Apothr- caries' Weight.
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Fluid drachıns to cubic centi- meters.		Tops to milliers or tonnes.	Ounces to grams,	Penny- weights to grams.	Scruples to grams.
1	16.38702	0.02832	0.76455	3.55153	1	1.01605	31.10348	1.55517	1.29598
2	32.77404	0.05663	1.52911	7.10307	2	2.03209	62.20696	3.11035	2.59196
3	49.16106	0.08495	2.29366	10.65460	3	3.04814	93.31044	4.66552	3.88794
4	65.54808	0.11327	3.05821	14.20613	4	4.06419	124.41392	6.22070	5.18391
5	81.93511	0.14158	3.82276	17.75767	5	5.08024	155.51740	7.77587	6.47989
6	98.32213	0.16990	4.58732	21.30920	6	6.09628	186.62088	9.33104	7.77587
7	114.70915	0.19822	5.35187	24.86074	7	7.11233	217.72437	10.88622	9.07185
8	131.09617	0.22653	6.11642	28.41227	8	8.12838	248.82785	12.44139	10.36783
9	147.48319	0.25485	6.88098	31.96380	9	9.14442	279.93133	13.99657	11.66381

SMITHSONIAN TABLES.

TABLE 4.

VOLUME OF A GLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at t^{o} C, P grammes of mercury, weighted with brass weights in air at 760 mm. pressure, then its volume in c. cm.

at the same temperature, t_i : $V = PR = P_{\overline{d}}^{\mathcal{P}}$

at another temperature, t_1 , : $V = PR_1 = P p/d \{1 + \gamma (t_1 - t)\}$

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;

d = the density of mercury or water at t° C,

and $\gamma = 0.000$ 025, is the cubical expansion coefficient of glass.

Temper-		WATER.			MERCURY.	
ature t	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 \equiv 20^\circ.$	<i>R</i> .	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^\circ.$
0 ⁰	1.001192	1.001443	1.001693	0.0735499	0.0735683	0.0735867
ī	1133	1 358	1609	5633	5798	5982
2	1092	1292	1542	5766	5914	6098
3	1068	1243	1493	5900	6029	6213
4	1060	1210	1460	6033	6144	6328
5	1068	1 193	1443	6167	6259	6443
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558
7	1131	1206	1456	6434	6490	6674
8	1184	1234	1485	6568	6605	6789
9	1252	1277	1 527	6702	6720	6904
10	1333	1333	1584	6835	6835	7020
11	1.001428	1.001403	1.001653	0.0736969	0.0736951	0.0737135
12	1536	1486	1736	7103	7066	7250
13	1657	1582	1832	7236	7181	7365
14	1790	1690	1940	7370	7297	7481
15	1935	1810	2060	7 504	7412	7 596
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711
17 18	2261	2086	2337	777 I	7642	7826
18	2441	2241	2491	7905	77 57	7941
19	2633	2407	2658	8039	7872	8057 8172
20	2835	2584	2835	8172	7988	
21	1.003048	1.002772	1.003023	0.0738306	0.0738103	0.0738288
21	3271	2970	3220	8440	8218	8403
22	3504	3178	3429	8573	8333	8518
24	3748	3396	3647	8707	8449	8633
24	4001	3624	3875	8841	8564	8748
26	1.004264	1.003862	1.004113	0.0738974	0.0738679	0.0738864
	4537	4110	4361	9108	8794	8979
27 28	4818	4366	4616	9242	8910	9094
29	5110	4632	4884	9376	9025	9210
30	5410	4908	5159	9510	9140	9325
	5.			<u> </u>	<u> </u>	

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

TABLE 5. DERIVATIVES AND INTEGRALS.*

d ax	= a dx	$\int x^n dx$	$=\frac{x^{n+1}}{n+1}$, unless $n=-1$
duv	$=\left(u\frac{dv}{dx}+v\frac{du}{dx}\right)dx$	$\int \frac{dx}{x}$	$= \log x$
		<i>J</i> x	
$d^{\frac{\mu}{2}}$	$= \left(\frac{v \frac{du}{dx} - u \frac{dv}{dx}}{\frac{v^2}{dx}}\right) dx$	$\int e^{2} dx$	$= e^x$
U	v v v	•	-
$d x^n$	$= nx^{n-1} dx$	∫e ^{ax} d x	$=\frac{1}{a}e^{ax}$
d f (u)	$= d \frac{f(u)}{du} \cdot \frac{du}{dx} \cdot dx$	f x e ^{ax} dx	$=\frac{e^{ax}}{a^2}(ax-1)$
$d e^x$	$= e^x dx$	$\int \log x dx$	$= x \log x - x$
d ear	$= a e^{ax} dx$	ſu dv	= u v - f v du
$d \log_e x$	$=\frac{1}{x}dx$	$\int (a+bx)^n dx$	$=\frac{(a+bx)^{n+1}}{(n+1)b}$
$d x^x$	$= x^x (1 + \log_e x)$		
$d \sin x$	$= \cos x dx$	$\int (a^2 + x^2)^{-1} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}=$
			$\frac{1}{a}\sin^{-1}\frac{x}{\sqrt{x^2+a^2}}$
$d \cos x$	$= -\sin x dx$	$\int (a^2 - x^2)^{-1} dx$	
$d \tan x$	$= \sec^2 x dx$	$\int (a^2 - x^2)^{-\frac{1}{2}} dx$	$= \sin^{-1} \frac{x}{a}$, or $-\cos^{-1} \frac{x}{a}$
$d \cot x$	$= -\csc^2 x dx$	$\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$	u u
$d \sec x$	$= \tan x \sec x dx$	$\int \sin^2 x dx$	$=-\frac{1}{2}\cos x\sin x+\frac{1}{2}x$
$d \csc x$	$= -\cot x \cdot \sec x dx$	$\int \cos^2 x dx$	$=\frac{1}{2}\sin x\cos x+\frac{1}{2}x$
$d \sin^{-1} x$	$=(1-x^2)^{-\frac{1}{2}}dx$	$/\sin x \cos x dx$	
$d \cos^{-1} x$	$=-(1-x^2)^{-\frac{1}{2}}dx$	$\int (\sin x \cos x)^{-1}$	
$d \tan^{-1} x$	$=(1+x^2)^{-1}dx$	$\int \tan x dx$	$= -\log \cos x$
$d \cot^{-1} x$	$= -(1+x^2)^{-1} dx$	$\int \tan x dx$ $\int \tan^2 x dx$	$= \tan x - x$
$d \sec^{-1} x$	$= x^{-1} (x^2 - 1)^{-1} dx$	$\int \cot x dx$	$= \log \sin x$
$d \csc^{-1} x$	$= -x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot^2 x dx$	$= \log \sin x$ = $-\cot x - x$
$d \sinh x$	$= \cosh x dx$	$\int \csc x dx$	$= \log \tan \frac{1}{2} x$
$d \cosh x$	$= \sinh x dx$	$\int x \sin x dx$	$= \sin x - x \cos x$
$d \tanh x$	$= \operatorname{sech}^2 x dx$	$\int x \cos x dx$	$= \sin x - x \cos x$ $= \cos x + x \sin x$
$d \coth x$	$= -\operatorname{csch}^2 x dx$	$\int dx \cos dx$	$= \log \cosh x$
$d \operatorname{sech} x$	= -sech x tanh dx	$\int \coth x dx$	$= \log \sinh x$
$d \operatorname{csch} x$	$= -\operatorname{csch} x \cdot \operatorname{coth} x dx$	$\int \operatorname{sech} x dx$	$= 2 \tan^{-1} e^{x} = \operatorname{gd} u$
$d \sinh^{-1} x$	$= (x^2+1)^{-\frac{1}{2}} dx$	$\int \operatorname{csch} x dx$	$= \log \tanh \frac{x}{2}$
$d \cosh^{-1} x$	$=(x^2-1)^{-\frac{1}{2}}dx$	$\int x \sinh x dx$	$= x \cosh x - \sinh x$
$d \tanh^{-1} x$	$= (x^{-1})^{-1} dx$ = $(1-x^2)^{-1} dx$	$\int x \sinh x dx$ $\int x \cosh x dx$	$= x \sinh x - \cosh x$
$d \operatorname{coth}^{-1} x$	$= (1-x^2)^{-1} dx$	$\int \sinh^2 x dx$	$= \frac{1}{2} (\sinh x \cosh x - x)$
$d \operatorname{sech}^{-1} x$	$= (1-x^{2})^{-1} dx$ $= -x^{-1} (1-x^{2})^{-\frac{1}{2}} dx$	$\int \cosh^2 x dx$	$= \frac{1}{2} (\sinh x \cosh x - x)$ $= \frac{1}{2} (\sinh x \cosh x + x)$
$d \operatorname{csch}^{-1} x$	$= -x^{-1} (x^2 + 1)^{-\frac{1}{2}}$	$\int \sinh x \cosh x dx$	
L			

* See also accompanying table of derivatives. For example : $f \cos x \, dx = \sin x + \text{constant.}$ SMITHSONIAN TABLES.

$$\begin{split} &(x+y)^n = x^n + \frac{n}{1} x^{n-1} y + \frac{n(n-1)}{2!} x^{n-2} y^2 + \dots \\ &\frac{n(n-1) \dots (n-m+1)}{m!} x^{n-m} y^m + \dots \quad (y^2 < x^2) \\ &(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2!} \pm \frac{n(n-1)(n-2)x^2}{3!} + \dots + \frac{(\pm 1)^k n + x^k}{(n-k)! k!} + \dots (x^2 < 1) \\ &(1 \pm x)^{-n} = 1 \mp nx + \frac{n(n+1)}{2!} x^3 \mp \frac{n(n+1)(n+2)x^3}{3!} + \dots \\ &(\mp 1)k \frac{(n+k-1)x^k}{(n-1)! k!} + \dots (x^2 < 1) \\ &(1 \pm x)^{-1} = 1 \mp x + x^3 \mp x^j + x^4 \mp x^5 + \dots \\ &(\mp 1)k \frac{(n+k-1)x^k}{(n-1)! k!} + \dots (x^2 < 1) \\ &(1 \pm x)^{-2} = 1 \mp 2x + 3x^2 \mp 4x^3 + 5x^4 \mp 6x^5 + \dots \\ &(x^2 < 1) \\ &(1 \pm x)^{-2} = 1 \mp 2x + 3x^2 \mp 4x^3 + 5x^4 \mp 6x^5 + \dots \\ &(x^2 < 1) \\ &f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!} f''(x) + \dots + \frac{h^n}{n!} f^{(n)}(x) + \dots \\ &f(x) = f(x) + \frac{\pi}{1} f'(x) + \frac{x^2}{2!} f''(x) + \dots + \frac{\pi^n}{n!} f^{(n)}(x) + \dots \\ &e = \lim(t+\frac{1}{n})^n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots \\ &e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \\ &e^x = 1 + x \log a + \frac{(x\log a)^2}{2!} + \frac{(x\log a)^3}{3!} + \dots \\ &(x^2 < x) \\ &\log x = \frac{x-1}{1} + \frac{1}{2} \left(\frac{x-1}{1}\right)^2 + \frac{1}{3} \left(\frac{x-1}{x+1}\right)^3 + \dots \\ &(x^2 < x) \\ &\log (t+x) = x - \frac{1}{3} x^2 + \frac{1}{3} x^3 - \frac{1}{3} x^4 + \frac{1}{5!} - \frac{x^7}{7!} + \dots \\ &(x^3 < \infty) \\ &\log (t+x) = x - \frac{1}{3} x^2 + \frac{1}{3} x^3 - \frac{1}{3} x^4 + \frac{1}{5!} - \frac{x^7}{7!} + \dots \\ &(x^2 < n) \\ &\tan x = x + \frac{x^3}{3!} + \frac{2x^5}{15!} + \frac{17x^7}{2!} + \frac{2}{3!} x^5 - \frac{1}{7} x^7 + \dots \\ &(x^2 < 1) \\ &= \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^3} + \dots \\ &(x^3 < 1) \\ &\sin x = \frac{1}{2} (e^x - e^{-x}) = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots \\ &(x^2 < 1) \\ &\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots \\ &(x^3 < 1) \\ &\sin x = \frac{1}{2} (e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots \\ &(x^3 < 1) \\ &\sin x = \frac{1}{2} (e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{1}{7!} + \dots \end{aligned}$$

SERIES.

$\cosh x = \frac{1}{2} (e^x + e^{-x}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$	$(x^2 < \infty)$
$\tanh x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 - \frac{17}{315}x^7 + \dots$	$(x^2 < \frac{1}{4}\pi^2)$
$\sinh^{-1} x = x - \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^7}{7} + \dots$	$(x^2 < 1)$
$= \log 2x + \frac{1}{2} \frac{1}{2x^2} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^4} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^8} - \cdots$	$(x^2 > I)$
$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^2} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^4} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^6} - \cdots$	$(x^2 > 1)$
$\tanh^{-1} x = x + \frac{1}{3} x^3 + \frac{1}{5} x^5 + \frac{1}{7} x^7 + \dots$	(x ² < 1)
gd $x = \phi = x - \frac{1}{6} x^3 + \frac{1}{24} x^5 - \frac{61}{5040} x^7 + \dots$	(x small)
$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^{3} x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5} - \dots$	(x large)
$x = \mathrm{gd}^{-1} \phi = \phi + \frac{1}{6} \phi^3 + \frac{1}{24} \phi^5 + \frac{61}{5040} \phi^7 + \dots$	$\left(\phi < \frac{\pi}{2}\right)$
$f(x) = \frac{1}{2} b_{o_1} + b_1 \cos \frac{\pi x}{c} + b_2 \cos \frac{2\pi x}{c} + \cdots$	
$+a_1\sin\frac{\pi x}{c}+a_2\cos\frac{2\pi x}{c}+\ldots$. (-c <x<c)< th=""></x<c)<>
$a_m = \frac{1}{c} \int \frac{+c}{-c} f(x) \sin \frac{m \pi x}{c} dx$	
$b_m = \frac{I}{c} \int \frac{f(x)}{c} f(x) \cos \frac{m \pi x}{c} dx$	

TABLE 7.-MATHEMATICAL CONSTANTS.

	Numbers.	Logarithms.
$e = 2.71828 \ 18285$	$\pi = 3.14159$ 26536	0.49714 98727
$e^{-1} = 0.36787 \ 94412$	$\pi^2 = 9.86960$ 44011	0.99429 97454
$M = \log_{10}e = 0.43429 \ 44819$	$\frac{1}{\pi} = 0.31830 \ 98862$	9.50285 01273
$(M)^{-1} = \log_e 10 = 2.3025850930$	$\sqrt{\pi} = 1.77245$ 38509	0.24857 49363
$\log_{10} \log_{10} e = 9.63778 43113$	$\frac{\sqrt{\pi}}{2} = 0.88622 \ 69255$	9.94754 49407
$\log_{10} 2 = 0.30102 99957$	$\frac{1}{\sqrt{\pi}} = 0.56418 95835$	9.75142 50637
$\log_e 2 = 0.69314$ 71806	$\frac{2}{\sqrt{\pi}} = 1.12837$ 91671	0.05245 50593
$\log_{10} x = M.\log_e x$	$\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$	0.09805 99385
$\log_{B} x = \log_{e} x. \log_{B} e$	$\sqrt{\frac{2}{\pi}} = 0.79788$ 45608	9.90194 00615
$= \log_e x \div \log_e B$	$\frac{\pi}{4} = 0.78539 \ 81634$	9.89508 98814
$\log_e \pi = 1.14472 \ 98858$	$\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$	9.64651 49450
$\rho = 0.47693 \ 62762$	$\frac{4}{8}\pi = 4.18879 \ 0.2048$	0.62208 86093
$\log \rho = 9.67846 \ 0.3565$	$\frac{e}{\sqrt{2\pi}} = 1.08443\ 75514$	0.03520 45477

TABLE 8.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

			n ⁸	1.5		1	n^2		1
<i>n</i>	1000. <u>1</u>	n ²	<i>n</i> °	√ <i>n</i>	n 	1000. <u>1</u>	n*	n ⁸	√n
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
II	90.9091	121	1331	3.3166	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	4761	328 509	8.3066
15	66.6667	225 256	3375	3.8730 4.0000	70 71	14.2857 14.0845	4900	343000 357911	8.3666 8.4261
16 17	62.5000 58.8235	289	4096 4913	4.1231	72	13.8889	504 1 5184	373248	8.4853
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	4·35 ⁸ 9	74	13.5135	5476	405224	8.6023
20	50.0000	400	8000	4.4721 4.5826	75	13.3333	5625	421875	8.6603
21	47.6190	44I	9261		76	13.1579 12.9870	5776	438976	8.7178
22	45.4545	484	10648 12167	4.6904	77	12.9870	5929 6084	456533 474552	8.7750 8.8318
23 24	43.4783 41.6667	529 576	13824	4.7958 4.8990	79	12.6582	6241	493039	8.8882
25	40.0000	625	1 562 5	5.0000	80	12.5000	6400	51 2000	8.9443
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104
29	34.4828	841	24389	5.3852	84 85	11.9048	7056	592704	9.1652
30	33-3333	900	27000	5.4772	B5 86	11.7647 11.6279	7225	614125 636056	9.2195 9.2736
31	32.2581	961	29791	5.5678 5.6569	87	11.4943	7396 7569	658503	9.3274
32	31.2500	1024 1089	32768 35937	5.7446	88	11.3636	7744	681472	9.3808
33	29.4118	1156	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161 6.0000	90	11.1111	8100	729000	9.4868
36	27.7778	1296	46656		91	10.9890	8281	753571 778688	9-5394
37 38	27.0270	1369	50653	6.0828	92	10.8696	8464 8649	804357	9.5917 9.6437
38	26.3158 25.6410	1444 1521	54 ⁸ 72 59319	6.1644 6.2450	93 94	10.7527 10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	8 57 37 5	9.7468
41	24.3902	1681	68921	6.4031	96	10.4167	9216	884736	9.7980
42	23.8095	1764	74088	6.4807	97 98	10.3093	9409	91 267 3	9.8489
43	23.2558	1849	79507	6.5574		10.2041	9604	941192	9.8995
44	22.7273	1936	85184	6.6332	99	10.1010	9801	970299	9.9499
45	22.2222	2025	91125	6.7082	100	10.0000	10000	1000000	10.0000
46	21.7391	2116	97 336	6.7823	101	9.90099	10201	1030301 1061208	10.0499 10.0995
47	21.2766	2209	103823	6.8557 6.9282	102 103	9.80392	10404 10609	1001208	10.1489
48 49	20.8333 20.4082	2304 2401	110592 117649	7.0000	103	9.61 538	10816	1124864	10.1980
50	20.0000	2 500	125000	7.0711	105	9.52381	11025	1157625	10.2470
51	19.6078	2601	1 3 2 6 5 1	7.1414	106	9.43396	11236	1191016	10.2956
52	19.2308	2704	140608	7.2111	107	9.34579	11449	1225043	10.3441
53	18.8679	2809	148877	7.2801	108	9.25920	11664 11881	1259712	10.3923 10.4403
54	18.5185	2916	1 57464	7.3485	109	9.17431		1295029	
55	18.1818	3025	166375	7.4162	110	9.09091	12100	1331000	10.4881 10.5357
56	17.8571	3136	175616	7.4833 7.5498	111	9.00901 8.92857	12321 12544	1404928	10.5830
57 58	17.5439	3249	185193 195112	7.6158	112	8.84956	12769	1442897	10.6301
50 59	17.2414 16.9492	3481	205379	7.6811	114	8.77 193	1 2996	1481544	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	1 3225	1 52087 5	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896 1601613	10.7703 10.8167
62	16.1290	3844	238328	7.8740	117	8.54701	13689	1643032	10.8628
63	15.8730	3969	2 50047	7.9373	118 119	8.40336	1 3924 1 41 61	1685159	10.9087
64	1 5.62 50	4096	262144	8.0000	119	0.40330	1		

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

n	1000. <u>Î</u>	n²	n ⁸	√ <i>n</i>	n	1000. <mark>î</mark>	n ²	n ⁸	V n
120	8 22222	14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288
121	8.33333 8.26446	14641	1771561	11.0000	176	5.68182	30976	5451776	13.2665
122	8.19672	14884	1815848	11.0454	177	5.64972	31329	5545233	13.3041
123	8.13008	15129	1860867	11.0905	178	5.61798	31684	5639752	13.3417
124	8.06452	1 5376	1906624	11.1355	179	5.58659	32041	5735339	13.3791
125	8.00000	15625	1953125	11.1803	180	5.55556 5.52486	32400	5 832000	13.4164
126	7.93651 7.87402	15876	2000376	11.2250	181	5.52486	32761	5929741	13.4536
127	7.87402	16129	2048383	11.2694	182	5.4945I	33124	6028568	13.4907
128	7.81250	16384	2097152	11.3137	183 184	5.46448	33489 3385 6	6128487 6229504	13.5277 13.5647
129	7.7 5194	16641	2146689	11.3578		5-43478			
130	7.69231	16900	2197000	11.4018	185 186	5.40541	34225 34596	6331625 6434856	1 3.601 5 1 3.6382
131	7.63359	17161 17424	2248091 2299968	11.4455 11.4891		5.37634 5.34759	34390	6539203	13.6748
132	7.57576 7.51880	17689	22999900 2352637	11.5326	187 188	5.31915	35344	6644672	13.7113
133 134	7.46269	17956	2406104	11.5758	189	5.29101	35721	6751269	13.7477
135	7.40741	18225	2460375	11.6190	190	5.26316	36100	6859000	13.7840
1 36	7.35294	18496	2515456	11.6619	191	5.23560	36481	6967871	13.8203
137	7.29927	18769	2571353 2628072	11.7047	192	5.20833	36864	7077888	1 3.8564
138	7.24638	19044		11.7473	193	5.18135	37249	7189057	13.8924
1 39	7.19424	19321	2685619	11.7898	194	5.1 5464	37636	7301384	13.9284
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	19881	2803221	11.8743	196	5.10204	38416	7 529 5 36	14.0000
142	7.04225	20164	2863288	11.9164	197	5.07614	38809 39204	7645373 7762392	14.0357 14.0712
143 144	6.99301	20449 20736	2924207 2985984	11.9583 12.0000	198 199	5.05051 5.02513	39204 39601	7880599	14.1067
					200			8000000	14.1421
145	6.89655 6.84932	21025 21316	3048625 3112136	12.0416 12.0830	200	5.00000 4.97512	40000 40401	8120601	14.1421
140	6.80272	21310	3176523	12.0330	201	4.95050	40401	8242408	14.2127
148	6.7 5676	21904	3241792		203	4.92611	41209	8365427	14.2478
149	6.71141	22201	3307949	12.1655 12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	337 5000	12.2474	205	4.87805	42025	861 51 25	14.3178
151	6.62252	22801	3442951	12.2882	206	4.85437	42436	8741816	14.3527 14.3875
1 52	6.57895	23104	3511808	12.3288	207	4.83092	42849	8869743	14.3875
153	6.53595	23409	3581577	12.3693	208	4.80769	43264	8998912	14.4222 14.4568
154	6.49351	23716	3652264	12.4097	209	4.78469	43681	9129329	
155	6.45161	24025	3723875	12.4499	210 211	4.76190	44100	9261000	14.4914 14.5258
156	6.41026	24336	3796416	12.4900	211	4·73934 4.71698	44521 44944	9393931 9528128	14.5602
157 158	6.32911	24049	3944312	12.5698	212	4.69484	45369	9663597	14.5945
159	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160	6.25000	2 5600	4096000	12.6491	215	4.65116	46225	9938375	14.6629
161	6.21118	25921	4173281	12.6886	216	4.62963	46656	10077696	14.6969
162	6.17284	26244	4251528	12.7279	217	4.60829	47089	10218313	14.7309
163	6.1 3497	26569	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225	4492125	12.8452	220	4.54545	48400	10648000	14.8324
166	6.02410	27 556	4574296	12.8841	22I 222	4.52489	48841	10793861	14.8661 14.8997
167 168	5.98802 5.95238	28224	4657463	12.9228	222	4.50450	49204	10941048	
169	5.95230	28561	4826809	13.0000	223	4.46429	50176	11239424	14.9332 14.9666
170	5.88235	28900	491 3000	1 3.0384	225	4.44444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	4.42478	51076	11543176	15.0333
172	5.81 395	29584	5088448	13.1149	227	4.40529	51 529	11697083	15.0665
173	5.78035	29929	5177717	13.1529	228	4.38596	51984	11852352	15.0997
174	5.74713	30276	5268024	13.1909	229	4.36681	52441	12008989	15.1327
	1		1	1	ili.	<u> </u>		<u> </u>	

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS, OF NATURAL NUMBERS.

n 1000_{h} n^{3} n^{3} \sqrt{n} 1000_{h} n^{3} n^{3} \sqrt{n} 230 4.34783 52900 12167000 15.1636 285 3.49670 81796 3239365 16.9115 234 4.3295 53243 122437163 15.2215 87 34432 85924 3293657 16.9115 234 4.2753 54756 122439163 12.2437163 12.2437163 12.2437163 12.2437163 12.971675 15.9271 289 3.44621 3.5212 42.37597 15.9706 235 4.25533 55225 12977875 15.3223 291 3.44623 8.4681 4.464271 17.0587 239 4.1841 51661 3316533 3.41205 85644 23133757 17.1726 239 4.1841 57121 3365170 85649 23133757 17.2766 239 4.18417 51661 3310533 87023 2507275 17.2377 241 4.1923 58641 11472488 15.5653 207 3.3570 85002 2907321 7.2377 41.4323 58641 14372488 15.5653 207 3.3570 85002 2700000 17.2376 41.4323 58641 14372488 15.6425 303570 85002 2703099 17.2376 41.4323 58641 14772488 15.5425 303570 85002 2700000 17.2376 41.4323 58641		T		•	, 1		ree l		9	}
21 4.33000 1326.1 12.6309.1 15.050 286 3.4605.0 63.050 16.9115 234 4.3015 5.4459 12489.103 15.2415 287 3.4621 283.09 230.900.3 16.9411 235 4.2532 5.252 1297785 15.3623 290 3.44621 84.001 438.9000 17.0500 236 4.23729 55606 1314220 15.3939 290 3.44623 84.001 248.9000 17.0587 236 4.43611 1312031 15.3948 291 3.46543 84.002 23.947.000 7.07.877 239 4.16667 57600 15.4910 295 3.38983 87025 2501.3375 17.1726 241 4.16393 586.81 1399751 15.5452 290 3.34848 4.645302 17.0247 244 40936 59361 14324807 15.5632 300 3.33333 90000 2700000 17.3205 244 408163 60025 14706125 15.6625 300 3.333333 90000 2700000	n 	1000. [‡]	n ²	<i>n</i> ³	√ <i>n</i>	<i>n</i>	1000. <u>1</u>	n ²	n ⁸	√ <i>n</i>
231 4.33000 53361 1236391 15.1987 286 3.49650 82369 2309656 16.9115 233 4.42350 54755 12812904 15.22971 288 3.447222 82394 23387872 16.94115 234 4.47350 54755 15.3023 290 3.44828 84100 24385070 17.0294 236 4.42329 55606 13144250 15.3043 291 3.44628 84100 243807080 17.0284 239 4.1810 57121 15.4391 293 3.441297 85449 25153757 17.1765 239 4.1810 57121 15.54391 295 3.38883 87025 25072375 17.172647 241 4.14328 58081 1399721 15.5432 296 3.33333 90000 27002001 17.3205 244 4.06567 57600 14326091 15.6425 300 3.33333 90000 27000001 17.3205 244 4.05456 1609115 15.6425 300 3.33333 90000 27418187 <	230	4.34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
233 4.42135 54259 1542937 15.2371 228 3.47222 83944 23854775 16.3760 234 4.27530 54252 152871 15.3297 259 3.46021 83321 2.4137569 17.0000 235 4.25532 55225 13297857 15.3294 291 3.45613 8.4611 2.4639080 17.0294 236 4.20168 56644 1341972 15.4396 293 3.41397 85849 2513377 17.1174 239 4.16667 57600 1384000 15.4919 295 3.35893 87022 25133717 17.1174 244 4.1938 58081 13907521 15.5453 296 3.3570 88804 2613923 17.2237 244 4.0935 59336 14326784 15.6625 299 3.34448 89401 2743089 17.2317 244 4.0936 59336 14326784 15.6625 299 3.34448 89401 2743089 17.2317 244 4.0564 60516 14886036 15.6425 300<	231	4.32900	53361				3.49650		23393656	
234 4.27350 54756 12812904 15.2971 289 3.46021 83521 2413759 17.0000 235 4.2532 55232 12977875 15.3623 201 3.44688 84100 2.4389000 17.0294 237 4.21941 50169 13144356 15.3623 201 3.44648 84100 2.43642171 17.0587 239 4.18410 57121 13651919 15.4526 293 3.41036 86439 25113757 17.17142 240 4.16667 57600 1384000 15.4541 297 3.3670 85809 2503330 17.2047 244 4.1323 39049 1434807 15.5852 290 3.34488 89401 2673389 17.2047 244 4.0524 60516 1486030 15.6843 201 3.33333 90000 2707000 17.3494 244 4.0524 60516 1486936 15.6843 303 3.30333 91602 2773089 17.24			53824						23639903	
235 4.2552 15927 15327 15327 290 3.44828 84100 2438000 17.0294 236 4.2552 5566 1314230 15.3945 291 3.43643 84681 2469708 17.0294 233 4.20168 56644 1341772 15.4372 293 3.41207 85849 2513377 17.1746 239 4.16667 57600 1384000 15.4919 295 3.38983 87032 2501331 17.2337 241 4.14938 58081 1390751 15.5435 296 3.37838 87016 2507337 17.7176 244 4.0935 59536 1438007 15.6265 299 3.34448 89401 2673399 17.9216 244 4.0584 60506 15.6263 300 3.33333 90000 27700001 17.3404 244 4.0584 60516 1486936 15.6425 303 3.30333 90401 27573691 17.4642										
216 4.27749 55605 1314235 15.3948 291 3.43641 2.469708 17.0587 237 4.20168 56044 1341272 15.4396 292 3.44107 85440 251377 17.1172 239 4.18410 57121 13551919 15.4396 294 3.40136 85449 25133757 17.1172 240 4.16667 57600 1384200 15.5363 297 3.37638 87010 25018073 17.2337 241 4.1938 58641 13907521 15.5363 297 3.36700 88500 20198073 17.2337 243 4.1153 59049 1434807 15.5623 209 3.33333 90000 27000000 17.3025 246 4.06504 60015 144706125 15.6624 3001 3.33333 90000 27000000 17.3494 247 4.04858 61009 15.8644 301 3.32739 94212 2743961 17.3494 247 4.0564 62001 15.8342 307333 390252 8877652 17.	_					1 -	• ·			
237 4.21941 50169 1312053 15.3948 292 3.42466 85264 24897685 17.0880 238 4.20165 506441 1348122 15.4396 293 3.41207 85849 2513377 17.1717 239 4.18410 57121 13651919 15.4392 294 3.40136 86435 2513377 17.1764 241 4.1323 39504 14348907 15.5342 297 3.36700 88209 2610370 17.2027 244 4.0564 60516 14866336 15.6842 301 3.33233 90000 27000000 17.2027 244 4.0564 60516 14866336 15.6424 301 3.32226 92651 27270901 17.3494 244 4.0286 61009 15.6425 300 3.33333 90000 27000000 17.3494 247 4.0486 61009 15.9424 307 3.27369 9325 2809464 17.4356 253 3.9625 61504 15.9374 309 3.22635 9344143 17.5381			55225		15.3297					
238 4.20168 56644 13481272 15.4272 203 3.41297 85849 251377 17.17164 240 4.16657 57000 1324000 15.4329 295 3.36943 87016 25672375 17.1756 241 4.14938 58081 13997521 15.5242 296 3.37838 87016 29933444 17.2037 244 4.1323 58641 14172488 15.5562 299 3.34448 89401 20708097 17.2337 244 4.06536 60516 14486031 15.5625 300 3.33220 90601 2700000 17.3305 246 4.06536 60516 14486031 15.5625 300 3.33220 90601 277816127 17.464 247 4.04536 61009 1565243 303 3.3033 90000 27081612 17.4302 246 4.06506 62001 1543131 305 3.27697 93625 2852616 17.4469 251 3.9406 63000 1541331 305 3.27697 93625 2852616 </td <td></td> <td></td> <td>56160</td> <td></td> <td></td> <td></td> <td>3.42466</td> <td></td> <td></td> <td></td>			56160				3.42466			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								8 5849		
214 4.14938 §8081 13997521 15,5242 206 3.37838 87616 2934336 17.2047 242 4.11823 §8041 1417488 15,5025 299 3.34448 88002 26198073 17.2047 243 4.01536 59336 14356784 15,5025 299 3.34448 89401 26738899 17.2027 244 4.06564 60516 14866936 15,6844 301 3.33226 90000 27000000 17.3494 247 4.04938 61009 15050223 15,7162 302 3.31126 91244 2454668 17.47816 246 4.06566 62001 15438249 15,7797 304 3.28947 92416 2894464 17.4452 251 3.9646 63004 16932000 15,8114 3005 3.27697 93357263 17.4642 253 3.93701 64516 16387047 15,9064 307 3.25733 94249 2803443 17.3214 253 3.93705 66504 1777560 308 3.24075								86436		17.1464
242 4.1223 58564 12772488 15,5563 207 5.5670 88209 2618273 17.2372 243 4.09536 59351 14326774 15,6825 299 3.35570 88804 2643592 17.2027 245 4.06163 60025 14476125 15,6525 300 3.33333 90000 27000000 17.3205 246 4.06366 61504 15252902 15,7480 303 3.30033 91800 27818127 17.4069 247 4.06466 62001 1548249 15,7797 304 3.28947 92416 28094464 17.4354 250 4.00000 63001 15813251 15,8433 306 3.26797 93032 2837443 17.5442 253 3.95257 64009 1614277 15,9050 308 3.24075 9464 17.4754 253 3.9257 64009 1614277 15,9057 308 3.24075 9464 2933443 17.514 253 3.9257 640025 16581375 15,9458 310 3.22581 <td>-</td> <td></td> <td>57600</td> <td></td> <td></td> <td></td> <td>3.38983</td> <td></td> <td></td> <td></td>	-		57600				3.38983			
243 4.17521 590.49 14348007 15,585 298 335570 88804 2603302 17.2627 244 4.09836 59336 14526784 15,6225 299 3.34448 89401 26738899 17.2916 245 4.06136 60025 144586936 15,6525 300 3.33333 90000 270000001 17.3205 246 4.06504 60516 14858936 15,56424 301 3.33226 90601 27345081 17.3781 247 4.04538 61009 15505223 15,7162 302 3.31126 91204 27454081 17.4326 249 4.01606 62001 15438249 15,7797 304 3.28947 92416 28034441 17.4326 251 3.96826 63004 1603008 15,8745 307 3.27733 94249 28337623 17.4642 253 3.96257 64009 16194277 15,9067 308 3.24075 94864 29731611 17.5328 254 3.90750 66541 1737397 16.0312										
244 4.09830 39536 14326784 15.6205 299 3.34448 89401 2673859 17.2916 245 4.06804 60031 14386036 15.6424 301 3.332226 90601 2770001 17.3305 246 4.06304 60054 15252992 15.7480 302 3.31126 91204 2744508 17.3781 248 4.03266 61004 15252992 15.7480 303 3.30033 91800 2789474 17.4059 249 4.01606 62001 15813211 15.8433 305 3.27869 93025 28372625 17.4429 253 3.96357 64009 1603008 15.8745 307 3.27573 9484 29218112 17.5784 253 3.90257 650351 16597375 15.9687 310 3.22452 9484 29218172 17.5784 255 3.90257 650350 16974593 16.0312 311 3.12467 99050 3095417										
246 4.06500 60516 14886936 15.6844 301 3.32226 90601 27270901 17.3781 247 4.04386 61504 15252992 15.77480 303 3.30033 91204 27270901 17.4369 249 4.01606 62001 15438249 15.7797 304 3.28847 92416 28094464 17.4392 251 3.96825 63501 15813251 15.8174 3005 3.27869 93025 28372652 17.4642 253 3.96257 64009 16104277 15.9070 308 3.24775 94864 29218112 17.4328 254 3.93716 64516 16387064 15.9374 309 3.23255 95481 2950369 17.6563 256 3.96125 65236 16777216 16.0624 313 3.10489 97249 3037138 17.6632 257 3.86100 67081 17373979 16.0323 314 3.18471 98596 30959144 17.7348 17.6632 257 3.86100 67081 17373979										
246 4.06500 60516 14886936 15.6844 301 3.32226 90601 27270901 17.3781 247 4.04386 61504 15252992 15.77480 303 3.30033 91204 27270901 17.4369 249 4.01606 62001 15438249 15.7797 304 3.28847 92416 28094464 17.4392 251 3.96825 63501 15813251 15.8174 3005 3.27869 93025 28372652 17.4642 253 3.96257 64009 16104277 15.9070 308 3.24775 94864 29218112 17.4328 254 3.93716 64516 16387064 15.9374 309 3.23255 95481 2950369 17.6563 256 3.96125 65236 16777216 16.0624 313 3.10489 97249 3037138 17.6632 257 3.86100 67081 17373979 16.0323 314 3.18471 98596 30959144 17.7348 17.6632 257 3.86100 67081 17373979	245	4.08163	60025			300	3.33333			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					15.6844					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				15625000				93025		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						307				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	255	3.921 57	65025	16581375	1 5.9687	310	3.22581			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	256	3.90625		16777216	16.0000				30080231	17.6352
259 3.86100 67081 17373979 16.0335 314 3.18471 98596 30959144 17.7200 260 3.84615 67600 17576000 16.1245 315 3.17460 99225 31255875 17.7482 261 3.83142 68121 17779581 16.1555 316 3.16456 99856 31554496 17.7764 262 3.80228 69169 18191447 16.2173 318 3.14465 101124 32157432 17.8326 264 3.78788 69696 18399744 16.2788 320 3.1280 10761 32461759 17.8645 265 3.77358 70256 18821096 16.3095 321 3.11526 103041 33076161 17.9165 266 3.77394 71889 19034163 16.3095 322 310559 103644 3376460 17.9488 267 3.74532 71289 19034163 16.3077 323 3.09598 104329 3369267 17.9722 269 3.71747 72361 19465109 16.4012										
260 3.84615 67600 17,576000 16.1245 31.5 3.17460 99225 31255875 17.7482 261 3.83142 68121 17779581 16.1555 316 3.16456 99856 31554496 17.7764 262 3.81679 68644 17984728 16.1555 316 3.16456 99856 31554496 17.7764 264 3.78788 69696 18399744 16.2173 318 3.14465 101124 32157432 17.88455 266 3.77358 70225 18609625 16.2788 320 3.1250 102400 32768000 17.8885 267 3.774532 71289 19034163 16.3095 321 3.11526 103641 33076161 17.9165 267 3.774532 71289 19034163 16.3077 323 3.09598 104329 3369267 17.9722 269 3.71747 72361 19465109 16.4012 324 3.08642 104976 34012224								98596		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-	3.17460	99225	31255875	17.7482
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.83142				316		99856	31554496	17.7764
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.81679	68644			317				17.8045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	263	3.80228							321 57432	17.8320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	264	3.78788	69696	18399744	16.2481			101701	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						11			32768000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									33386248	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270		72900				3.07692		34328125	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271	3.69004			16.4621					18.0555
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						327				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									35611289	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1		108900	35937000	18.1659
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.62319	76176	21024576	16.6132	9	3.02115		36264691	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	277	3.61011	76729		16.6433		3.01205		36594368	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	278		77284		16.6733	333	3.00300			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					16.7033	334	2.99401			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.57143			16.7332				37595375	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.55872			16 7020				3827 27 53	18.3576
			79524		16.8226	33/				18.3848
						339				
	204	3.3	00030		J					

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

<i>n</i>	1000.1	n ²	n ⁸	√n	11	1000. <u>1</u>	n ²	n ⁸	√ <i>n</i>
340	2.94118	115600	39304000	18.4391	395	2.53165	156025	61629875	19.8746
341	2.93255	116281	39651821	18.4662	396	2.52525	156816	62099136	19.8997
342	2.92398	116964	40001688	18.4932	397	2.51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	158404	63044792	19.9499
344	2.90698	118336	40707584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	1 19025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	1 19716	41421736	18.6011	401	2.49377	160801	64481201	20.0250
347	2.88184	1 20409	41781923	18.6279	402	2.48756	161604	64964808	20.0499
348	2.87356	1 21 104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349	2.86533	1 21801	42 5 08549	18.6815	404	2.47525	163216	65939264	20.0998
350	2.85714	122500	4287 5000	18.7083	405	2.46914	164025	66430125	20.1246
351	2.84900	123201	43243551	18.7350	406	2.46305	164836	66923416	20.1494
352	2.84091	123904	43614208	18.7617	407	2.45700	165649	67419143	20.1742
353	2.83286	124609	43986977	18.7883	408	2.45098	166464	67917312	20.1990
354	2.82486	125316	44361864	18.8149	409	2.4499	167281	68417929	20.2237
355	2.81690	126025	447 3 ^{887 5}	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	451 18016	18.8680	411	2.43309	168921	69426531	20.27 31
357	2.80112	127449	45499293	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330	128164	45 ^{88 27} 12	18.9209	413	2.42131	170569	70444997	20.3224
359	2.78552	128881	46268279	18.9473	414	2.41546	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	71473375	20.3715
361	2.77008	130321	4704 5 881	19.0000	416	2.40385	173056	71991296	20.3961
362	2.76243	131044	47437928	19.0263	417	2.39808	173889	72511713	20.4206
363	2.75482	131769	47832147	19.0526	418	2.39234	174724	73034632	20.4450
3 64	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	48627125	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.1311	421	2.37530	177241	74618461	20.5183
367	2.72480	134689	49430863	19.1572	422	2.36967	178084	75151448	20.5426
368	2.71739	135424	49836032	19.1833	423	2.36407	178929	75686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.35849	179776	76225024	20.5913
370	2.70270	1 36900	50653000	19.2354	425	2.35294	180625	76765625	20.6155
371	2.69542	1 37641	51064811	19.2614	426	2.34742	181476	77 308776	20.6398
372	2.68817	1 38384	51478848	19.2873	427	2.34192	182329	77854483	20.6640
373	2.68097	1 391 29	51895117	19.3132	428	2.33645	183184	78402752	20.6882
374	2.67380	1 39876	52313624	19.3391	429	2.33100	184041	78953589	20.7123
375	2.66667	14062 5	527 34 37 5	19.3649	430	2.32558	184900	79507000	20.7364
376	2.65957	141376	531 57 376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	5358 2633	19.4165	432	2.31481	186624	80621568	20.7846
378	2.64550	142884	540101 52	19.4422	433	2.30947	187489	81182737	20.8087
379	2.63852	143641	544 39939	19.4679	434	2.30415	188356	81746504	20.8327
380	2.631 58	144400	5487 2000	19.4936	435	2.29885	189225	82312875	20.8567
381	2.62467	145161	55306341	19.5192	436	2.29358	190096	82881856	20.8806
382	2.61780	145924	55742968	19.5448	437	2.28833	190969	83453453	20.9045
383	2.61097	146689	56181887	19.5704	438	2.28311	191844	84027672	20.9284
384	2.60417	147456	56623104	19.5959	439	2.27790	192721	84604519	20.9523
385 386 387 388 388 389	2.59740 2.59067 2.58398 2.57732 2.57069	1 48225 1 48996 1 49769 1 50544 1 51 321	57066625 57512456 57960603 58411072 58863869	19.6214 19.6469 19.6723 19.6977 19.7231	440 441 442 443 444	2.27273 2.26757 2.26244 2.25734 2.25225	193600 194481 195364 196249 197136	85184000 85766121 86350888 86938307 87528384	20.9762 21.0000 21.0238 21.0476 21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	21.0950
391	2.55754	152881	59776471	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102	153664	60236288	19.7990	447	2.23714	199809	89314623	21.1424
393	2.54453	154449	60698457	19.8242	448	2.23214	200704	89915392	21.1660
394	2.53807	155236	61162984	19.8494	449	2.22717	201601	90518849	21.1896

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	$1000.\frac{1}{n}$	n ²	n ⁸	Vn.	n	1000. <u>1</u>	n²	n ⁸	√ <i>n</i>
450					505				
450	2.22222	202 500	91125000	21.2132	505	1.98020	255025	128787625	22.4722
45 ^I	2.21729	203401	91733851	21.2368	506	1.97628	256036	129554216	22.4944
452	2.21239	204304	92345408	21.2603	507	1.97239	257049	130323843	22.5167
453	2.20751	205209	92959677	21. 2 838	508	1.96850	258064	131096512	22.5389
454	2.20264	206116	93576664	21.3073	509	1.96464	259081	131872229	22.5610
455	2.19780	207025	94196375	21.3307	510	1.96078	260100	132651000	22.5832
456	2.19298	207936	94818816	21.3542	511	1.95695	261121	133432831	22.6053 22.6274
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6495
458 459	2.18341 2.17865	209764 210681	96071912 96702579	21.4009 21.4243	513 514	1.94932 1.94553	263169 264196	135005697	22.6716
460		211600	97336000	21.4476	515	1.94175	265225	126500875	22,6936
461	2.17391		97972181	21.4709	516	1.93798	266256	137388096	22.7156
401	2.16920	212521	98611128	21.4942	517	1.93424	267289	138188413	22.7376
462	2.16450	213444	992 52847	21.5174	518	1.93050	268324	138991832	22.7 596
463	2.15983	214369 215296	9925204/	21.5407	519	1.92678	269361	139798359	22.7816
465	2.1 50 54	216225	100544625	21.5639	520	1.92308	270400	140608000	22.8035
466	2.14592	217156	101194696	21.5870	521	1.91939	271441	141420761	22.8254
460	2.14133	218089	101847563	21.6102	522	1.91571	272484	142236648	22.8473
467	2.13675	219024	102503232	21.6333	523	1.91205	273529	143055667	22.8692
469	2.130/5	219951	103161709	21.6564	524	1.90840	274576	143877824	22.8910
470	2.12766	220900	103823000	21.6795	525	1.90476	27 562 5	144703125	22.9129
471	2.12314	221841	104487111	21.7025	526	1.90114	276676	145531576	22.9347
472	2.11864	222784	105154048	21.7256	527	1.89753	277729	146363183	22.9565
	2.11416	223729	105823817	21.7486	528	1.89394	278784	147197952	22.9783
473 474	2.10970	223/29	106496424	21.7715	529	1.89036	279841	148035889	23.0000
475	2.10526	225625	107171875	21.7945	530	1.88679	280900	148877000	23.0217
476	2.10084	226576	107850176	21.8174	531	1.88324	281961	149721291	23.0434
477	2.09644	227 529	108531333	21.8403	532	1.87970	283024	1 50 568 768	23.0651
478	2.09205	228484	10921 5352	21.8632	533	1.87617	284089	151419437	23.0868
479	2.08768	229441	109902239	21.8861	534	1.87266	285156	1 5227 3304	23.1084
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	1 531 3037 5	23.1301
481	2.07900	231361	111284641	21.9317	536	1.86567	287296	1 53990656	23.1517
482	2.07469	232324	111980168	21.9545	537	1.86220	288369	154854153	23.1733
483	2.07039	233289	112678587	21.9773	538	1.85874	289444	1 55720872	23.1948
484	2.06612	234256	113379904	22.0000	539	1.85529	290521	156590819	23.2164
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	157464000	23.2379
486	2.05761	236196	114791256	22.0454	541	1.84843	292681	158340421	23.2594
487	2.05339	237169	115501303	22.0681	542	1.84502	293764	1 59220088	23.2809
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544	1.83824	295936	160989184	23.3238
490	2.04082	240100	117649000	22.1359	545	1.83486	297025	161878625	23.3452
491	2.03666	241081	118370771	22.1585	546	1.831 50	298116	162771336	23.3666
491	2.03252	242064	119095488	22.1811	547	1.82815	299209	163667323	23.3880
	2.02840	243049	1 198231 57	22.2036	548	1.82482	300304	164566592	23.4094
493 494	2.02429	244036	120553784	22.2261	549	1.82149	301401	165469149	23.4307
495	2.02020	245025	121287375	22.2.486	550	1.81818	302500	16637 5000	23.4521
496	2.01613	246016	122023936	22.2711	551	1.81488	303601	167284151	23.4734
	2.01207		122763473	22.2935	552	1.81159	304704	168196608	23.4947
497 498	2.00803	247009	123505992	22.31 59	553	1.80832	305809	169112377	23.5160
490	2.00401	249004	124251499	22.3383	554	1.80505	306916	170031464	23.5372
500	2,00000	2 50000	125000000	22.3607	555	1.80180	308025	170953875	23.5584
501	1.99601	251001	125751501	22.3830	556	1.79856		171879616	23.5797
502	1.99203	252004	126506008	22.4054	557	1.79533	310249	172808693	23.6008
502	1.98807	2 53009	127263527	22.4277	558	1.79211	311364	173741112	23.6220
	1.98413	254016	128024064	22.4499	559	1.78891	312481	174676879	23.6432
504				I	1	<u></u>	<u>†</u>		

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

		1		·					
n	1000. <u>1</u>	n ²	n ⁸	√ <i>n</i>	n	1000.1	n ²	n ³	√n
560	1.78571	31 3600	175616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	31 5844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	31 6969	178453547	23.7276	618	1.61812	381924	236029032	24.8596
564	1.77305	31 8096	179406144	23.7487	619	1.61551	383161	237176659	24.8797
565	1.76991	319225	180362125	23.7697	620	1.61290	384400	238328000	24.8998
566	1.76678	320356	181321496	23.7908	621	1.61031	385641	239483061	24.9199
567	1.76367	321489	182284263	23.8118	622	1.60772	386884	240641848	24.9399
568	1.76056	322624	183250432	23.8328	623	1.60514	388129	241804367	24.9600
569	1.75747	323761	184220009	23.8537	624	1.60256	389376	242970624	24.9800
570	1.7 5439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000
571	1.7 5131	326041	186169411	23.8956	626	1.59744	391876	245314376	25.0200
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374	628	1.59236	394384	247673152	25.0599
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799
575 576 577 578 578 579	1.73913 1.73611 1.73310 1.73010 1.72712	330625 331776 332929 334084 335241	19010937 5 191102976 192100033 193100552 194104539	23.9792 24.0000 24.0208 24.0416 24.0624	630 631 632 633 634	1.58730 1.58479 1.58228 1.57978 1.57729	396900 398161 399424 400689 401956	250047000 251239591 252435968 253636137 254840104	25.0998 25.1197 25.1396 25.1595 25.1794
580	I.724I4	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	I.72II7	337561	196122941	24.1039	636	1.57233	404496	257259456	25.2190
582	I.7I82I	338724	197137368	24.1247	637	1.56986	405769	258474853	25.2389
583	I.7I527	339889	198155287	24.1454	638	1.56740	407044	259694072	25.2587
584	I.7I233	3410 5 6	199176704	24.1661	639	1.56495	408321	260917119	25.2784
585 586 587 588 588 589	1.70940 1.70648 1.70358 1.70068 1.69779	342225 343396 344569 345744 346921	200201625 201230056 202262003 203297472 204336469	24.1868 24.2074 24.2281 24.2487 24.2693	640 641 642 643 644	1.56250 1.56006 1.55763 1.55521 1.55280	409600 410881 412164 413449 414736	262144000 263374721 264609288 265847707 267089984	25.2982 25.3180 25.3377 25.3574 25.3772
590	1.69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25.3969
591	1.69205	349281	206425071	24.3105	646	1.54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362
593	1.68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755
595	1.68067	354025	210644875	24.3926	650	1.53846	422500	274625000	25.4951
596	1.67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147
597	1.67504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343
598	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
599	1.66945	358801	214921799	24.4745	654	1.52905	427716	279726264	25.5734
600	1.66667	360000	216000000	24.4949	655	1.52672	429025	281011375	25.5930
601	1.66389	361201	217081801	24.5153	656	1.52439	430336	282300416	25.6125
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603	1.65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515
604	1.65563	364816	220348864	24.5764	659	1.51745	434281	286191179	25.6710
605 606 607 608 609	1.65289 1.65017 1.64745 1.64474 1.64204	366025 367236 368449 369664 370881	221445125 222545016 223648543 224755712 225866529	24.5967 24.6171 24.6374 24.6577 24.6577 24.6779	660 661 662 663 664	1.51515 1.51286 1.51057 1.50830 1.50602	435600 436921 438244 439569 440896	287496000 288804781 290117528 291434247 292754944	25.6905 25.7099 25.7294 25.7488 25.7682
610	1.63934	372100	226981000	24.6982	665	1.50376	442225	294079625	25.7876
611	1.63666	373321	228099131	24.7184	666	1.50150	443556	295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	1.49925	444889	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	1.49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447561	299418309	25.8650

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	$1000.\frac{1}{n}$	n^2	11 ⁸	√ <i>n</i>	n	1000, <u>1</u>	n^2	12 ⁸	√n
670	1.49254	448900	300763000	25.8844	725	1.37931	525625	381078125	26.9258
671	1.49031	450241	302111711	25.9037	726	1.37741	527076	382657176	26.9444
672	1.48810	451584	303464448	25.9230	727	1.37552	528529	384240583	26.9629
673	1.48588	452929	304821217	25.9422	728	1.37363	529984	385828352	26.9815
674	1.48368	454276	306182024	25.9615	729	1.37174	531441	387420489	27.0000
675	1.48148	455625	307 54687 5	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308 91 5776	26.0000	731	1.36799	534361	390617891	27.0370
677	1.47710	458329	31 02887 33	26.0192	732	1.36612	535824	392223168	27.0555
678	1.47493	459684	31 166 57 52	26.0384	733	1.36426	537289	393832837	27.0740
679	1.47275	461041	31 30468 39	26.0576	734	1.36240	538756	395446904	27.0924
680	1.47059	462400	314432000	26.0768	735	1.36054	540225	397065375	27.1109
681	1.46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293
682	1.46628	465124	317214568	26.1151	737	1.35685	543169	400315553	27.1477
683	1.46413	466489	318611987	26.1343	738	1.35501	544644	401947272	27.1662
684	1.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	1.35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	1.34953	549081	406869021	27.2213
687	1.45560	471969	324242703	26.2107	742	1.34771	550564	408518488	27.2397
688	1.45349	473344	325660672	26.2298	743	1.34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.2488	744	1.34409	5535 3 6	411830784	27.2764
690	1.44928	476100	328509000	26.2679	745	1.34228	555025	413493625	27.2947
691	1.44718	477481	329939371	26.2869	746	1.34048	556516	415160936	27.3130
692	1.44509	478864	331373888	26.3059	747	1.33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26.3249	748	1.33690	559504	418508992	27.3496
694	1.44092	481636	334255384	26.3439	749	1.33511	561001	420189749	27.3679
695	1.43885	483025	335702375	26.3629	750	1.33333	562500	42187 5000	27.3861
696	1.43678	484416	337153536	26.3818	751	1.33156	564001	4235647 51	27.4044
697	1.43472	485809	338608873	26.4008	752	1.32979	565504	4252 59008	27.4226
698	1.43266	487204	340368392	26.4197	753	1.32802	567009	4269 57777	27.4408
699	1.43062	488601	341532099	26.4386	754	1.32626	568516	428661064	27.4591
700	1.42857	490000	343000000	26.4575	755	1.32450	570025	430368875	27.4773
701	1.42653	491401	344472101	26.4764	756	1.32275	571536	432081216	27.4955
702	1.42450	492804	345948408	26.4953	757	1.32100	573049	433798093	27.5136
703	1.42248	494209	347428927	26.5141	758	1.31926	574564	435519512	27.5318
704	1.42045	495616	348913664	26.5330	759	1.31752	576081	437245479	27.5500
705	1.41844	497025	350402625	26.5518	760	1.31579	577600	438976000	27.5681
706	1.41643	498436	351895816	26.5707	761	1.31406	579121	440711081	27.5862
707	1.41443	499849	353393243	26.5895	762	1.31234	580644	442450728	27.6043
708	1.41243	501264	354894912	26.6083	763	1.31062	582169	444194947	27.6225
709	1.41243	502681	356400829	26.6271	763	1.30890	583696	445943744	27.6405
710	1.40845	504100	357911000	26.6458	765	1.30719	585225	447697125	27.6586
711	1.40647	505521	359425431	26.6646	766	1.30548	586756	449455096	27.6767
712	1.40449	506944	360944128	26.6833	767	1.30378	588289	451217663	27.6948
713	1.40252	508369	362467097	26.7021	768	1.30208	589824	452984832	27.7128
714	1.40056	509796	363994344	26.7208	769	1.30039	591361	454756609	27.7308
715	1.39860		365525875	26.7395	770	1.29870	592900	456533000	27.7489
716	1.39665		367061696	26.7582	771	1.29702	594441	458314011	27.7669
717	1.39470		368601813	26.7769	772	1.29534	595984	460099648	27.7849
718	1.39276		370146232	26.7955	773	1.29366	597529	461889917	27.8029
719	1.39082		371694959	26.8142	774	1.29199	599076	463684824	27.8209
720 721 722 723 724	1.38889 1.38696 1.38504 1.38313 1.38122	521284 522729	37 3248000 374805361 376367048 377933067 379503424	26.8328 26.8514 26.8701 26.8887 26.9072	775 776 777 778 779	1.29032 1.28866 1.28700 1.28535 1.28370	600625 602176 603729 605284 606841	465484375 467288576 469097433 470910952 472729139	27.8388 27.8568 27.8747 27.8927 27.9106

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

<u> </u>				1	-m				
n	1000.1	n ²	n ⁸	√ <i>n</i>	n	1000.1	n ²	<i>11</i> ⁸	\sqrt{n}
780	1.28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
781	1.28041	609961	474552000	27.9205	836	1.19/00	698896	584277056	28.9137
782	1.27877	611524	478211768	27.9404	837	1.19474	700569	586376253	28.9310
783	1.27714	61 3089	480048687	27.9821	838	1.19332	702244	588480472	28.9482
784	1.27551	614656	481890304	28.0000	839	1.19332	703921	590589719	28.9655
		1				I			
7 85	1.27 389	616225	483736625	28.0179	840	1.19048	705600	592704000	28.9828
787	1.27226	617796	485587656	28.0357	841 842	1.18906	707281	594823321	29.0000
788	1.26904	619369 620944	487443403 489303872	28.0535	843	1.18765	708964	596947688	29.0172
789	1.26743	622521	491169069	28.0891	844	1.18483	710649 712336	599077107 601211584	29.0345 29.0517
790				-	845				
791	1.26582	624100 625681	493039000	28.1069 28.1247	846	1.18343	714025	603351125	29.0689
792	1.26263	627264	494913671	28.1425	847	1.18064	715716	605495736 607645423	29.0861
793	1.26103	628849	498677257	28.1603	848	1.17925	717409	609800192	29.1033
793	1.25945	630436	500566184	28.1780	849	1.17786	719104	611960049	29.1204 29.1376
795									
795	1.25786 1.25628	632025 633616	502459875	28.1957	850 851	1.17647	722500	614125000	29.1548
790	1.25471		504358336 506261573			1.17509	724201	616295051	29.1719
797	1.25313	635209 636804	508169592	28.2312	852 853	1.17371 1.17233	725904 727609	618470208 620650477	29.1890 29.2062
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2002
					1				1
800	1.25000	640000	51 2000000	28.2843	855	1.16959	731025	625026375	29.2404
801	1.24844	641601	51 3922401	28.3019	856	1.16822	732736	627222016	29.2575
802	1.24688	643204	515849608	28.3196	857	1.16686	734449	629422793	29.2746
803 804	1.24533	644809	517781627	28.3373	858	1.16550	736164	631628712	29.2916
	1.24378	646416	519718464	28.3549	859	1.16414	737881	633839779	29.3087
805	1.24224	648025	521660125	28.3725	860	1.16279	739600	636056000	29.3258
806	1.24069	649636	523606616	28.3901	861	1.16144	741321	638277381	29.3428
807	1.23916	651249	5 ² 5557943	28.4077	862	1.16009	743044	640503928	29.3598
808	1.23762	652864	527514112	28.4253	863	1.15875	744769	642735647	29.3769
809	1.23609	654481	529475129	2 8.4429	864	1.15741	746496	644972544	29.3939
810	1.23457	656100	531441000	28.4605	865	1.15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.4781	866	1.15473	749956	649461896	29.4279
812	1.23153	659344	535387328	28.4956	867	1.15340	751689	651714363	29.4449
813	1.23001	660969	537367797	28.5132	868	1.15207	753424	653972032	29.4618
814	1.22850	6 625 96	539353144	28.5307	869	1.15075	755161	656234909	29.4788
815	1.22699	664225	541 34337 5	28.5482	870	1.14943	7 56900	658503000	29.4958
816	1.22549	665856	543338496	28.5657	871	1.14811	758641	660776311	29.5127
817	1.22399	667489	545338513	28.5832	872	1.14679	760384	663054848	29.5296
818	1.22249	669124	547343432	28.6007	873	1.14548	762129	665338617	29.5466
819	1.22100	670761	549353259	28.6182	874	1.14416	763876	667627624	29.5635
820	1.21951	672400	551368000	28.6356	875	1.14286	765625	669921875	29.5804
821	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
822	1.21655	675684	555412248	28.6705	877	1.14025	769129	674526133	29.6142
823	1.21507	677329	557441767	28.6880	878	1.13895	770884	676836152	29.6311
824	1.21 359	678976	559476224	28.7054	879	1.13766	772641	679151439	29.6479
825	1.21212	680625	561 51 562 5	28.7228	880	1.13636	774400	681472000	29.6648
826	1.21065	682276	563559976	28.7402	881	1.13507	776161	683797841	29.6816
827	1.20919	683929	565609283	28.7576	882	1.13379	777924	686128068	29.6985
828	1.20773	685584	567663552	28.7750	883	1.13250	779689	688465387	29.7153
829	1.20627	687241	569722789	28.7924	884	1.13122	781456	690807104	29.7321
830	1.20482	688900	571787000	28.8097	885	1.12994	783225	6931 541 25	29.7489
831	1.20337	690561	57 38 56 191	28.8271	886	1.12867	784996	695506456	29.7658
832	1.20192	692224	57 5930 368	28.8444	887	I.12740	786769	697864103	29.7825
833	1.20048	69 38 89	578009537	28.8617	888	1.12613	788544	700227072	29.7993
834	1.19904	695556	580093704	28.8791	889	1.12486	790321	702595369	29.8161
	NIAN TAB								

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. <u>I</u>	n ²	n ⁸	1 n	n	1000.1	n^2	n ⁸	
			<i>π</i> -		<i>n</i>	1000.	<i>n</i> -	<i>n</i> °	
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	I.12233 I.12108	793881	707347971	29.8496	946	1.05708	894916	846590536	30.7571
892 893	1.11982	795664	709732288	29.8664 29.8831	947 948	1.05597	896809 898704	849278123	30.7734
893	1.11857	797449 799236	7121219 5 7 714516984	29.8998	940	1.05485 1.05374	90060I	851971392 854670349	30.7896 30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	8 57 37 5000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
897	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898 899	1.11359	806404 808201	724150792 726572699	29.9666 29.9833	953 954	1.04932 1.04822	908209 910116	865523177 868250664	30.8707 30.8869
900	1.11111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	811801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	81 3604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
904	1.10619	817216	738763264	30.0666	959	1.04275	919681	881974079	30.9677
905	1.10497	819025 820836	741217625	30.0832	960 961	1.04167 1.04058	921600 923521	884736000 887503681	30.9839 31.0000
906 907	1.10375	822649	743677416	30.0998 30.1164	962	1.03950	925521	890277128	31.0161
908	1.10254	824464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	1.10011	826281	7 51089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	828100	753571000	30.1662	965	1.03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913 914	1.09529	833569 835396	761048497 763551944	30.2159 30.2324	968 969	1.03306	937024 938961	907039232 909853209	31.1127 31.1288
915	1.09290	837225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	1.09051	840889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	844561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.3315	975	1.02564	950625	926859375	31.2250
921	1.08578	848241	781229961	30.3480	976	1.02459	952576	929714176 932574833	31.2410 31.2570
922	1.08460	850084	783777448	30.3645 30.3809	977 978	1.02354	954529 956484	9325/4035	31.2730
923 924	1.08342 1.08225	851929 853776	786330467 788889024	30.3974	979	1.02145	958441	938313739	31.2890
925	1.08108	855625	791453125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	964324	946966168 949862087	31.3369
928 929	1.07759 1.07643	861184 863041	799178752 801765089	30.4631 30.4795	983 984	1.01729	968256	952763904	31.3528 31.3688
929 930					985	1.01523	970225	955671625	31.3847
	1.07527	864900 866761	804357000 806954491	30.4959 30.5123	986	1.01 420	972196	958585256	31.4006
931 932	1.07296	868624	8095 57 568	30.5287	987	1.01317	974169	961 504803	31.4166
932	1.07181	870489	812166237	30.5450	988	1.01215	976144	964430272	31.4325
934	1.07066	872356	814780504	30.5614	<u>9</u> 89	1.01112	978121	967361669	31.4484
935	1.06952	874225	817400375	30.5778	990	1.01010	980100	970299000	31.4643 31.4802
936	1.06838	876096	820025856	30. 5941	991	1.00908	982081 984064	973242271 976191488	31.4960
937 938	1.06724	877969	822656953	30.6105 30.6268	992 993	1.00705	986049	979146657	31,5119
938 939	1.06610 1.06496	879844 881721	825293672 827936019	30.6208	993 994	1.00604	988036	982107784	31.5278
940	1.06383	883600	830584000	30.6594	995	1.00503	990025	985074875	31.5436
941	1.06270	885481	833237621	30.67 57	996	1.00402	992016	988047936	31.5595
942	1.06157	887364	833237621 835896888	30.6920	997	1.00301	994009	991026973	31.5753
943	1.06045	889249	838501807	30.7083	998	1.00200	996004	994011992 997002999	31.5911 31.6070
944	1.05932	891136	841232384	30.7246	999	1.00100	998001	99/002999	5
					<u></u>				

TABLE 9. LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	02 2 4	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115	0607	0611	0615	0618	0622	0626	0630	0633	0637	0641	0645
116	0645	0648	0652	0656	0660	0663	0667	0671	0674	0678	0682
117	0682	0686	0689	0693	0697	0700	0704	0708	0711	0715	0719
118	0719	0722	0726	0730	0734	0737	0741	0745	0748	0752	0755
119	0755	0759	0763	0 766	0770	0774	0777	0781	0785	0788	0792
120	0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	0828
121	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860	0864
122	0864	0867	0871	0874	0878	0881	0885	0888	0892	0896	0899
123	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	0934
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	1159	1 163	1166	1169	1173
1 31	1173	1176	1179	1183	1186	1189	1193	1 196	1199	1202	1206
1 32	1206	1209	1212	1216	1219	1222	1225	1 229	1232	1235	1239
1 33	1239	1242	1245	1248	1252	1255	1258	1 261	1265	1268	1271
1 34	1271	1274	1278	1281	1284	1287	1290	1 294	1297	1300	1303
135	1 303	1 307	1 310	1313	1316	1319	1323	1326	1 329	1 332	133 5
136	1 335	1 339	1 342	1345	1348	1351	1355	1358	1 361	1 364	1367
137	1 367	1 370	1 374	1377	1380	1383	1386	1389	1 392	1 396	1399
138	1 399	1 402	1 405	1408	1411	1414	1418	1421	1 424	1 427	1430
139	1 430	1 433	1 4 36	1440	1443	1446	1449	1452	1 455	1 458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1553
143	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	1584
144	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	168 2	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1761

LOGARITHMS.

150 151 152	1761				4	5	6	7	8	9	10
153 154	1790 1818 1847 1875	1764 1793 1821 1850 1878	1767 1796 1824 1853 1881	1770 1798 1827 1855 1884	1772 1801 1830 1858 1886	1775 1804 1833 1861 1889	1778 1807 1836 1864 1892	1781 1810 1838 1867 1895	1784 1813 1841 1870 1898	1787 1816 1844 1872 1901	1790 1818 1847 1875 1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170 171 172 173 174	2304 2330 2355 2380 2405	2307 2333 2358 2383 2408	2310 2335 2360 2385 2410	2312 2338 2363 2388 2388 2413	2315 2340 2365 2390 2415	2317 2343 2368 2393 2418	2320 2345 2370 2395 2420	2322 2348 2373 2398 2423	2325 2350 2375 2400 2425	2327 2353 2378 2403 2428	2330 2355 2380 2405 2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2788
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	29 03	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

TABLE 10. LOGARITHMS.

N													P. I	».	
1	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
10 11 12 13 14	0000. 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 130 3 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0 374 0755 1106 1430 1732	4 4 3 3 3	8 8 76 6	12 11 10 10 9	17 15 14 13 12	21 19 17 16 15
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 28 3 3	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2 989	3 3 2 2 2 2	6 5 5 4	8 8 7 7 7	11 11 10 9 9	14 13 12 12 12
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3 ⁸ 74	3118 3324 3522 3711 3892	31 39 3345 3541 37 29 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2 2 2 2	4 4 4 4	6 6 5 5	8 8 7 7	11 10 10 9 9
25 26 27 28 29	3979 41 50 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	41 33 4298 4456 4609 47 57	2 2 2 2 1	3 3 3 3 3 3	5 5 5 5 4	7 76 66	9 8 8 8 7
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 50 7 9 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	48 57 4997 51 32 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	I I I I	333333	4 4 4 4	6 5 5 5	7 7 7 6 6
35 36 37 3 ⁸ 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5 ⁸ 43 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5 ⁸ 77 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	I I I I I	2 2 2 2 2 2	4 4 3 3 3	5 5 5 5 4	6 6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 64 54	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	I I I I I	2 2 2 2 2 2 2 2	33333	4 4 4 4 4	5 5 5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	1 1 1 1	2 2 2 2 2 2 2 2 2	30000	4 4 4 4	5 5 5 4 4
50 51 52 53 53 54	6990 7076 7160 7243 7324	6998 7 ⁰⁸ 4 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 2 2 2	3 3 3 3 3 3 3	4 4 4 4

LOGARITHMS.

				3		-		7	8]	P. P		
N.	0	1	2	ۍ 	4	5	6	7	8	9	1	2	3	4	5
55 56 5 7 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	743 5 7513 7589 7664 7738	7443 7520 7597 7672 7745	74 51 7528 7604 7679 7752	7459 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	I I I I I	2 2 2 I I	2 2 2 2 2 2 2 2 2	33333	4 4 4 4 4
60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7 ⁸ 75 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	783 2 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 79 ⁸ 7 8055 8122	I I I I I	I I I I I	2 2 2 2 2 2 2	33333	4 4 3 3 3
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	81 56 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	I I I I I	I I I I I	2 2 2 2 2 2 2	33333	3 3 3 3 3 3 3
70 71 72 73 74	8451 8513 8573 8633 8692	84 5 7 8519 8579 8639 8698	8463 8525 8585 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3
75 76 77 78 79	87 51 8808 8865 8921 8976	87 56 8814 887 1 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8938	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	8785 8842 8899 8954 9009	8791 8848 8904 8960 9015	8797 8854 8910 8965 9020	8802 8859 8915 8971 902 5	1 1 1 1 1	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2 2	3 3 3 3 3
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9 117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	1 0 0 0	I I I I I	2 2 1 1 1	2 2 2 2 2 2	3 3 2 2 2
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9 5 62 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	00000	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2
95 96 97 98 99	9777 9823 9868 9912 99 5 6	9782 9827 9872 9917 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	9795 9841 9886 9930 9974	9800 9845 9890 9934 9978	9805 9850 9894 9939 99 ⁸ 3	9809 9854 9899 9943 99 ⁸ 7	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	00000	I I I I	I I I I I	2 2 2 2 2	2 2 2 2 2 2

TABLE 11. ANTILOGARITHMS.

			_									1	P. P		
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
. 00 .01 .02 .03	1000 1023 1047 1072	1002 1026 1050 1074	1005 1028 1052 1076	1007 1030 1054 1079	1009 1033 1057 1081	1012 1035 1059 1084	1014 1038 1062 1086	1016 1040 1064 1089	1019 1042 1067 1091	1021 1045 1069 1094	0000	0000	I I I I	I I I I	1 1 1 1
.04 .05 .06 .07	1096 1122 1148 1175	1099 1125 1151 1178	1102 1127 1153 1180	1104 1130 1156 1183	1107 1132 1159 1186	1109 1135 1161 1189	1112 1138 1164 1191	1114 1140 1167 1194	1117 1143 1169 1197	1119 1146 1172 1199	0000	I I I I	I I I I	I I I I	I I I I
.08 .09 . 10	1202 1230 1259	1205 1233 1262	1208 1236 1265	1211 1239 1268	1213 1242 1271	1216 1245 1274	1219 1247 1276	1222 1250 1279	1225 1253 1282	1227 1256 1285	0 0 0	I I I	I I I	I I I	I I I
.11 .12 .13 .14	1288 1318 1349 1380	1291 1321 1352 1384	1294 1324 1355 1387	1297 1327 1358 1390	1300 1330 1361 1393	1 303 1 334 1 365 1 396	1 306 1 337 1 368 1 400	1309 1340 1371 1403	1312 1343 1374 1406	1315 1346 1377 1409	0000	I I I J	I I I I	I I I I	2 2 2 2
.15 .16 .17 .18 .19	1413 1445 1479 1514 1549	1416 1449 1483 1517 1552	1419 1452 1486 1521 1556	1422 1455 1489 1524 1560	1426 1459 1493 1528 1563	1429 1462 1496 1531 1567	1432 1466 1500 1535 1570	1435 1469 1503 1538 1574	1439 1472 1507 1542 1578	1442 1476 1510 1545 1581	00000	I I I I	I I I I	I I I I I	2 2 2 2 2 2 2
.20 .21 .22 .23 .24	1 58 5 1622 1660 1698 17 38	1 589 1626 1663 1702 1742	1 592 1 629 1 667 1 7 06 1 7 46	1596 1633 1671 1710 1750	1600 1637 1675 1714 1754	1603 1641 1679 1718 1758	1607 1644 1683 1722 1762	1611 1648 1687 1726 1766	1614 1652 1690 1730 1770	1618 1656 1694 1734 1774	00000	I I I I I	I I I I I	I 2 2 2 2	2 2 2 2 2 2 2
.25 .26 .27 .28 .29	1778 1820 1862 1905 1950	1782 1824 1866 1910 1954	1786 1828 1871 1914 1959	1791 1832 1875 1919 1963	1795 1837 1879 1923 1968	17 99 1841 1884 1928 1972	1803 1845 1888 1932 1977	1807 1849 1892 1936 1982	1811 1854 1897 1941 1986	1816 1858 1901 1945 1991	0 0 0 0 0	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2
. 30 .31 .32 .33 .33 .34	1995 2042 2089 2138 2188	2000 2046 2094 2143 2193	2004 2051 2099 2148 2198	2009 2056 2104 2153 2203	2014 2061 2109 2158 2208	2018 2065 2113 2163 2213	2023 2070 2118 2168 2218	2028 2075 2123 2173 2223	2032 2080 2128 2178 2228	2037 2084 2133 2183 2234	0 0 0 1	IIIII	I I I 2	2 2 2 2 2 2	2 2 2 2 3
. 35 .36 .37 .38 .39	2239 2291 2344 2399 2455	2244 2296 2350 2404 2460	2249 2301 2355 2410 2466	22 5 4 2307 2360 2415 2472	2259 2312 2366 2421 2477	2265 2317 2371 2427 2483	2270 2323 2377 2432 2489	227 5 2328 2382 2438 2495	2280 2333 2388 2443 2500	2286 2339 2393 2449 2506	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2 2	3 3 3 3 3
. 40 .41 .42 .43 .44	2512 2570 2630 2692 2754	2518 2576 2636 2698 2761	2 523 2 582 2642 2704 2767	2529 2588 2649 2710 2773	2535 2594 2655 2716 2780	2541 2600 2661 2723 2786	2547 2606 2667 2729 2793	2553 2612 2673 2735 2799	2559 2618 2679 2742 2805	2 564 2624 268 5 2748 2812	I I I I	I I I I I	2 2 2 2 2 2	2 2 2 3 3	3 3 3 3 3
.45 .46 .47 .48 .49	2818 2884 2951 3020 3090	2825 2891 2958 3027 3097	2831 2897 296 5 3034 3105	2838 2904 2972 3041 3112	2844 2911 2979 3048 3119	2851 2917 2985 3055 3126	2858 2924 2992 3062 3133	2864 2931 2999 3069 3141	2871 2938 3006 3076 3148	2877 2944 3013 3083 3155	I I I I I	I I I I I	2 2 2 2 2 2	3 3 3 3 3 3 3	3 3 3 4 4
L												_	-		

ł

	0	1	2	3	4	5	6	7	8	9			P. 1	Ρ.	
	······					-					1	2	3	4	5
. 50 .51 .52 .53 .54	3162 3236 3311 3388 3467	3170 3243 3319 3396 3475	31 77 3251 3327 3404 348 3	3184 3258 3334 3412 3491	3192 3266 334 2 3420 3499	3199 3273 3350 3428 3508	3206 3281 3357 3436 3516	3214 3289 3365 3443 3524	3221 3296 3373 3451 3532	3228 3304 3381 3459 3540	I I I I I	1 2 2 2 2	2 2 2 2 2 2 2	33333	4 4 4 4 4
. 55 .56 .57 .58 .59	3548 3631 3715 3802 3890	355 6 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 391 7	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 3767 3855 394 5	3606 3690 3776 3864 3954	3614 3698 3784 3 ⁸ 73 3963	3622 3707 3793 3882 3972	I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3 3 3 3	3 3 3 4 4	4 4 4 5
. 60 .61 .62 .63 .64	3981 4074 4169 4266 4365	3990 4083 4178 4276 4375	3999 4093 4188 4285 4385	4009 4102 4198 429 5 4395	4018 4111 4207 4305 4406	4027 4121 4217 4315 4416	4036 4130 4227 4325 4426	4046 4140 4236 4335 4436	4055 4150 4246 4345 4446	4064 4159 4256 4355 4457	I I I I	2 2 2 2 2 2 2		4 4 4 4	55555
.65 .66 .67 .63 .69	4467 4571 4677 4786 4898	4477 4581 4688 4797 4909	4487 4592 4699 4808 4920	4498 4603 4710 4819 4932	4 508 461 3 472 1 483 1 4943	4519 4624 4732 4842 495 5	4529 4634 4742 4853 4 966	4539 4645 4753 4864 4977	4550 4656 4764 4875 4989	4560 4667 4775 4887 5000	1 1 1 1 1	2 2 2 2 2 2 2 2 2	3 3 3 3 3 3	4445	5 5 5 6
.70 .71 .72 .73 .74	5012 5129 5248 5370 5495	5023 5140 5260 5383 5508	5035 5152 5272 539 5 5521	5047 5164 5284 5408 5534	5058 5176 5297 5420 5546	5070 5188 5309 5433 5559	5082 5200 5321 5445 5572	5093 5212 5333 5458 5585	5105 5224 5346 5470 5598	5117 5236 5358 5483 5610	I I I I I	2 2 2 3 3	4 4 4 4	55555	6 6 6 6
.75 .76 .77 .78 .79	5623 5754 5888 6026 6166	5636 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 62 0 9	567 5 5808 5943 6081 6223	5689 5821 5957 6095 6237	5702 5834 5970 6109 6252	5715 5848 5984 6124 6266	5728 5861 5998 6138 6281	5741 5875 6012 6152 6295	1 1 1 1 1	333333	4 4 4 4	55566	· 7 7 7 7 7 7
.80 .81 .82 .83 .84	6310 6457 6607 6761 6918	6324 6471 6622 6776 6934	6339 6486 6637 6792 6950	6353 6501 6653 6808 6966	6368 6516 6668 6823 6982	6383 6531 6683 6839 6998	6397 6546 6699 6855 7015	6412 6561 6714 6871 7031	6427 6577 6730 6887 7047	6442 6592 6745 6902 7063	1 2 2 2 2	3333333	455555	6 6 6 6	7 8 8 8 8
. 85 .86 .87 .88 .89	7079 7244 7413 7586 7762	7096 7261 7430 7603 7780	7112 7278 7447 7621 7798	7129 7295 7464 7638 7816	7145 7311 7482 7656 7834	716 1 7328 7499 7674 7852	7178 7345 7516 7691 7870	7194 7362 7534 7709 7889	7211 7379 7551 7727 7907	7228 7396 7568 7745 7925	2 2 2 2 2 2	3 3 3 4 4	55555	777777	8 8 9 9 9
. 90 .91 .92 .93 .94	7943 8128 8318 8511 8710	7962 8147 8337 8531 8730	7980 8166 8356 8551 87 5 0	7998 8185 8375 8570 8770	8017 8204 839 5 8590 8790	8035 8222 8414 8610 8810	8054 8241 8433 8630 8831	8072 8260 8453 8650 8851	8091 8279 8472 8670 8872	8110 8299 8492 8690 8892	2 2 2 2 2 2 2 2 2	4 4 4 4	6 6 6 6 6	7 8 8 8 8	9 9 10 10 10
. 95 .96 .97 .98 .99	8913 9120 9333 9550 9772	8933 9141 9354 9572 9795	8954 9162 9376 9594 9817	8974 9183 9397 9616 9840	8995 9204 9419 9638 9863	9016 9226 9441 9661 9886	9036 9247 9462 9683 9908	9057 9268 9484 9705 9931	9078 9290 9506 9727 9954	9099 9 311 9528 9750 9977	2 2 2 2 2 2	4 4 4 5	6 6 7 7 7	8 8 9 9 9	10 11 11 11 11
										_	_	-	_		

TABLE 12. ANTILOGARITHMS.

0	1	2	3	4	5	6	7	8	9	10
7943	7945	7947	7949	7951	7952	7954	7956	7958	7960	7962
7962	7963	7965	7967	7969	7971	7973	7974	7976	7978	7980
7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
7998	8000	8002	8004	8006	8008	8009	8011	8013	8015	8017
8017	8019	8020	8022	8024	8026	8028	8030	8032	8033	8035
8035	8037	8039	8041	8043	8045	8046	8048	8050	8052	8054
8054	8056	8057	8059	8061	8063	8065	8067	8069	8070	8072
8072	8074	8076	8078	8080	8082	8084	8085	8087	8089	8091
8091	8093	8095	8097	8098	8100	8102	8104	8106	8108	8110
8110	8111	8113	8115	8117	8119	8121	8123	8125	8126	8128
8128	8130	8132	8134	8136	8138	8140	8141	8143	8145	8147
8147	8149	8151	8153	8155	8156	8158	8160	8162	8164	8166
8166	8168	8170	8171	8173	8175	8177	8179	8181	8183	8185
8185	8187	8188	8190	8192	8194	8196	8198	8200	8202	8204
8204	8205	8207	8209	8211	8213	8215	8217	8219	8221	8222
8222	8224	8226	8228	8230	8232	8234	8236	8238	8239	8241
8241	8243	8245	8247	8249	8251	8253	8255	8257	8258	8260
8260	8262	8264	8266	8268	8270	8272	8274	8276	8278	8279
8279	8281	8283	8285	8287	8289	8291	8293	8295	8297	8299
8299	8300	8302	8304	8306	8308	8310	8312	8314	8316	8318
8318	8320	8321	8323	8325	8327	8329	8331	8333	8335	8337
8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
8375	8377	8379	8381	8383	8385	8387	8389	8391	8393	8395
8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
8433	8435	8437	8439	8441	8443	8445	8447	8449	8451	8453
8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
8472	8474	8476	8478	8480	8482	8484	8486	8488	8490	8492
8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	8511
8511 8531 8551 8570 8590	8513 8533 8553 8572 8592	8515 8535 8555 8574 8594	8517 8537 8557 8576 8596	8519 8539 8559 8578 8578 8598	8521 8541 8561 8580 8600	8523 8543 8562 8582 8602	8525 8545 8564 8584 8604	8527 8547 8566 8586 8606	8529 8549 8568 8588 8608	8531 8551 8570 8590 8610
8610	8612	8614	8616	8618	8620	8622	8624	8626	8628	8630
8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
8670	8672	8674	8676	8678	8680	8682	8684	8686	8688	8690
8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
8710 8730 8750 8770 8790	8712 8732 8752 8772 8792	8714 8734 8754 8774 8794	8716 8736 8756 8776 8796	8718 8738 8758 8778 8778 8798	8720 8740 8760 8780 8800	8722 8742 8762 8782 8802	8724 8744 8764 8784 8804	8726 8746 8766 8786 8806	8728 8748 8768 8788 8808	87 30 87 50 8770 8790 8810
8810	8813	8815	8817	8819	8821	8823	8825	8827	8829	8831
8831	8833	8835	8837	8839	8841	8843	8845	8847	8849	8851
8851	8853	8855	8857	8859	8861	8863	8865	8867	8870	8872
8872	8874	8876	8878	8880	8882	8884	8886	8888	8890	8892
8892	8894	8896	8898	8900	8902	8904	8906	8908	8910	8913
	7943 7963 7980 7980 7998 8017 8035 8054 8054 8054 8147 8166 8185 8204 8222 8241 8260 8279 8299 8318 8337 8356 8375 8395 8318 8337 8355 8395 8318 8337 8355 8395 8414 8433 8472 8492 8511 8550 8590 8610 8630 8650 8650 8650 8650 8650 8650 8650 865	7943 7945 7962 7963 7980 7982 7998 8000 8017 8019 8035 8037 8054 8056 8072 8074 8091 8093 8110 8111 8128 8130 8147 8149 8166 8168 8185 8187 8204 8205 8222 8224 8241 8243 8260 8262 8279 8281 8299 8300 8318 8320 8337 8339 8356 8357 8397 8397 8414 8416 8433 8455 8472 8474 8492 8494 8511 8513 8531 8533 8550 8652 8670 8652 8670 <th>- - - 7943 7945 7947 7962 7963 7965 7980 7962 7963 7998 8000 8002 8017 8019 8020 8035 8037 8039 8054 8056 8057 8072 8074 8076 8091 8093 8093 8017 8019 8020 8035 8037 8076 8071 8093 8055 8072 8074 8076 8091 8093 8055 8111 8113 8113 8122 8224 8205 8204 8205 8207 8222 8224 8246 8279 8281 8283 8290 8300 8302 8318 8320 8321 8337 8339 8341 8335 8357 8377</th> <th>7943 7945 7947 7949 7962 7963 7965 7967 7967 7980 7982 7984 7984 7985 7998 8000 8002 8004 8017 8017 8019 8020 8022 8035 8054 8056 8057 8058 8057 8072 8074 8076 8078 8091 8091 8093 8095 8097 8113 8115 8128 8130 8132 8134 8115 8151 8185 8187 8188 8190 8209 8204 8205 8207 8209 8204 8205 8207 8209 8222 8224 8245 8247 8260 8262 8266 8279 8318 8320 8321 8323 8337 8339 8341 8343 8355 8397 8398 840</th> <th></th> <th>1 1</th> <th>1 1</th> <th>1 1</th> <th>1 1</th> <th>1 1</th>	- - - 7943 7945 7947 7962 7963 7965 7980 7962 7963 7998 8000 8002 8017 8019 8020 8035 8037 8039 8054 8056 8057 8072 8074 8076 8091 8093 8093 8017 8019 8020 8035 8037 8076 8071 8093 8055 8072 8074 8076 8091 8093 8055 8111 8113 8113 8122 8224 8205 8204 8205 8207 8222 8224 8246 8279 8281 8283 8290 8300 8302 8318 8320 8321 8337 8339 8341 8335 8357 8377	7943 7945 7947 7949 7962 7963 7965 7967 7967 7980 7982 7984 7984 7985 7998 8000 8002 8004 8017 8017 8019 8020 8022 8035 8054 8056 8057 8058 8057 8072 8074 8076 8078 8091 8091 8093 8095 8097 8113 8115 8128 8130 8132 8134 8115 8151 8185 8187 8188 8190 8209 8204 8205 8207 8209 8204 8205 8207 8209 8222 8224 8245 8247 8260 8262 8266 8279 8318 8320 8321 8323 8337 8339 8341 8343 8355 8397 8398 840		1 1	1 1	1 1	1 1	1 1

ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.950	8913	8915	8917	8919	8921	8923	8925	8927	8929	8931	8933
.951	8933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
.952	8954	8956	8958	8960	8962	8964	8966	8968	8970	8972	8974
.953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
.954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
. 955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
.956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
.957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
.959	9099	9101	9103	9105	9108	9110	9112	9114	9116	9118	9120
.960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
.962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
.963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
.964	9204	9207	9209	9211	9213	9215	9217	9219	9221	9224	9226
. 965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
.966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
.967	9268	9270	9273	9275	9277	9279	9281	9283	9285	9288	9290
.968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	931 1
.969	9311	9313	9315	9318	9320	9322	9324	9326	9328	9330	9333
. 970	9333	9335	9337	9339	9341	9343	9345	9348	9350	9352	9354
.971	9354	9356	9358	9361	9363	9365	9367	9369	9371	9373	9376
.972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
.973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
.974	9419	9421	9423	9425	9428	9430	9432	9434	9436	9438	9441
. 975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
.976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
.977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
.978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
.979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
.9 80	9550	9552	9554	9557	9559	9561	9563	9565	9568	9570	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
.982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
. 985	9661	9663	9665	9667	9669	9672	9674	9676	9678	9681	9683
.986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
.987	9705	9707	9710	9712	97 14	9716	9719	9721	9723	9725	9727
.988	9727	9730	9732	9734	97 36	9739	9741	9743	9745	9748	9750
.989	9750	9752	9754	9757	97 59	9761	9763	9766	9768	9770	9772
. 990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	9811	9813	9815	9817
.992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
.993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
.994	9863	9865	9867	9870	9872	9874	9876	9879	9881	9883	9886
. 995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
.996	9908	9911	9913	991 5	9917	9920	9922	9924	9927	9929	9931
.997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
.998	9954	9956	9959	9961	9963	9966	9968	9970	9972	9975	9977
.999	9977	9979	9982	9984	9986	9988	9991	999 3	9995	9998	0000

TABLE 13.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

RADI- ANS.	DE- GREES.	si	NES.	cos	INES.	TAN	GENTS.	COTANO	GENTS.		1
RA	GRID	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.0000 0.0029 0.0058 0.0087 0.0116 0.0145	0°00' 10 20 30 40 50	.0000 .0029 .0058 .0087 .0116 .0145	∞ 7.4637 .7648 .9408 8.0658 .1627	1.0000 1.0000 1.0000 1.0000 .9999 .9999	0.0000. 0000. 0000. 0000. 0000.	.0000 .0029 .0058 .0087 .0116 .0145	∞ 7.4637 .7648 .9409 8.0658 .1627	∞ 343-77 171.89 114.59 85.940 68.750	∞ 2.5363 .2352 .0591 1.9342 .8373	90°00′ 50 40 30 20	1.5708 1.5679 1.5650 1.5621 1.5592 1.5563
0.0175 0.0204 0.0233 0.0262 0.0291 0.0320	1°00' 10 20 30 40 50	.0175 .0204 .0233 .0262 .0291 .0320	8.2419 .3088 .3668 .4179 .4637 .5050	.9998 .9998 .9997 .9997 .9996 .9995	9-9999 -9999 -9999 -9999 -9999 -9998 -9998	.0175 .0204 .0233 .0262 .0291 .0320	8.2419 .3089 .3669 .4181 .4638 .5053	57.290 49.104 42.964 38.188 34.368 31.242	1.7 581 .691 1 .6331 .5819 .5362 .4947	89°00′ 50 40 30 20 10	1.5533 1.5504 1.5475 1.5446 1.5417 1.5388
0.0349 0.0378 0.0407 0.0436 0.0465 0.0495	2°00' 10 20 30 40 50	.0349 .0378 .0407 .0436 .0465 .0494	8.5428 .5776 .6097 .6397 .6677 .6940	.9994 .9993 .9992 .9990 .9989 .9988	9.9997 .9997 .9996 .9996 .9995 .9995	.0349 .0378 .0407 .0437 .0466 .0495	8.5431 •5779 .6101 .6401 .6682 .6945	28.636 26.432 24.542 22.904 21.470 20.206	1.4569 .4221 .3899 .3599 .3318 .3055	88°00' 50 40 30 20 10	1.5359 1.5330 1.5301 1.5272 1.5243 1.5213
0.0524 0.0553 0.0582 0.0611 0.0640 0.0669	3°00' 10 20 30 40 50	.0523 .0552 .0581 .0610 .0640 .0669	8.7188 .7423 .7645 .7857 .8059 .8251	.9986 .9985 .9983 .9981 .9980 .9978	9.9994 .9993 .9993 .9992 .9991 .9990	.0524 .0553 .0582 .0612 .0641 .0670	8.7194 .7429 .7652 .7865 .8067 .8261	19.081 18.075 17.169 16.350 15.605 14.924	1.2806 .2571 .2348 .2135 .1933 .1739	87°00' 50 40 30 20 10	1.5184 1.5155 1.5126 1.5097 1.5068 1.5039
0.0698 0.0727 0.0756 0.0785 0.0814 0.0844	4°00' 10 20 30 40 50	.0698 .0727 .0756 .0785 .0814 .0843	8.8436 .8613 .8783 .8946 .9104 .9256	.9976 .9974 .9971 .9969 .9967 .9964	9.9989 .9989 .9988 .9987 .9986 .9985	.0699 .0729 .0758 .0787 .0816 .0846	8.8446 .8624 .8795 .8960 .9118 .9272	14.301 13.727 13.197 12.706 12.251 11.826	1.1554 .1376 .1205 .1040 .0882 .0728	86°00' 50 40 30 20 10	1.5010 1.4981 1.4952 1.4923 1.4893 1.4864
0.0873 0.0902 0.0931 0.0960 0.0989 0.1018	5°00' 10 20 30 40 50	·0872 ·0901 ·0929 ·0958 ·0987 .1016	8.9403 .9545 .9682 .9816 .9945 9.0070	.9962 .9959 .9957 .9954 .9951 .9948	9.9983 .9982 .9981 .9980 .9979 .9977	.0875 .0904 .0934 .0963 .0992 .1022	8.9420 .9563 .9701 .9836 .9966 9.0093	11.430 11.059 10.712 10.385 10.078 9.7882	1.0580 .0437 .0299 .0164 .0034 0.9907	85°00' 50 40 30 20 10	1.4835 1.4806 1.4777 1.4748 1.4719 1.4690
0.1047 0.1076 0.1105 0.1134 0.1164 0.1193	6°00 10 20 30 40 50	.1045 .1074 .1103 .1132 .1161 .1190	9.0192 .0311 .0426 .0539 .0648 .0755	•9945 •9942 •9939 •9936 •9932 •9929	9.9976 •9975 •9973 •9972 •9971 •9969	.1051 .1080 .1110 .1139 .1169 .1198	9.0216 .0336 .0453 .0567 .0678 .0786	9.5144 9.2553 9.0098 8.7769 8.5555 8.3450	0.9784 .9664 .9547 .9433 .9322 .9214	84°00' 50 40 30 20 10	1.4661 1.4632 1.4603 1.4574 1.4544 1.4515
0.1222 0.1251 0.1280 0.1309 0.1338 0.1367	7°00' 10 20 30 40 50	.1219 .1248 .1276 .1305 .1334 .1363	9.0859 .0961 .1060 .1157 .1252 .1345	.9925 .9922 .9918 .9914 .9911 .9907	9.9968 .9966 .9964 .9963 .9961 .9959	.1228 .1257 .1287 .1317 .1346 .1376	9.0891 .0995 .1096 .1194 .1291 .1385	7.9530 7.7704 7.5958 7.4287 7.2687	0.9109 .9005 .8904 .8806 .8709 .8615	20 10	1.4486 1.4457 1.4428 1.4399 1.4370 1.4341
0.1396 0.1425 0.1454 0.1484 0.1513 0.1542	8°00' 10 20 30 40 50	.1392 .1421 .1449 .1478 .1507 .1536	9.1436 .1525 .1612 .1697 .1781 .1863	.9899 .9894 .9890 .9886 .9881	9.9958 .9956 .9954 .9952 .9950 .9948	.1435 .1465 .1495 .1524 .1554	9.1478 .1569 .1658 .1745 .1831 .1915	6.9682 6.8269 6.6912 6.5606 6.4348	.8085	82°00' 50 40 30 20 10	1.4312 1.4283 1.4254 1.4224 1.4195 1.4166
0.1 57 1	9°00′	.1 564 Nat.	9.1943 Log.	.9877 Nat.	9.9946 Log.	.1 584 Nat.	9.1997 Log.	6.3138 Nat.	0.8003	81°00′	1.41 37
			INES.	SIN		CO1	Log. TAN- NTS.	TANGI	Log. ENTS.	DE- GREES.	RADI- ANS.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
R/ A	CR C	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.1571	9°00'	.1564 9.1943	.9877 9.9946	.1584 9.1997	6.3138 0.8003	81°00′	I.4137
0.1600	10	.1593 .2022	.9872 .9944	.1614 .2078	6.1970 .7922	50	I.4108
0.1629	20	.1622 .2100	.9868 .9942	.1644 .2158	6.0844 .7842	40	I.4079
0.1658	30	.1650 .2176	.9863 .9940	.1673 .2236	5.9758 .7764	30	I.4050
0.1687	40	.1679 .2251	.9858 .9938	.1703 .2313	5.8708 .7687	20	I.4021
0.1716	50	.1708 .2324	.9853 .9936	.1733 .2389	5.7694 .7611	10	I.3992
0.1745	10°00'	.1736 9.2397	.9848 9.9934	.1763 9.2463	5.6713 0.7537	80°00'	1.3963
0.1774	10	.1765 .2468	.9843 .9931	.1793 .2536	5.5764 .7464	50	1.3934
0.1804	20	.1794 .2538	.9838 .9929	.1823 .2609	5.4845 .7391	40	1.3904
0.1833	30	.1822 .2606	.9833 .9927	.1853 .2680	5.3955 .7320	30	1.3875
0.1862	40	.1851 .2674	.9827 .9924	.1883 .2750	5.3093 .7250	20	1.3846
0.1891	50	.1880 .2740	.9822 .9922	.1914 .2819	5.2257 .7181	10	1.3817
0.1920	11°00'	.1908 9.2806	.9816 9.9919	.1944 9.2887	5.1446 0.7113	79°00'	1.3788
0.1949	10	.1937 .2870	.9811 .9917	.1974 .2953	5.0658 .7047	50	1.3759
0.1978	20	.1965 .2934	.9805 .9914	.2004 .3020	4.9894 .6980	40	1.3730
0.2007	30	.1994 .2997	.9799 .9912	.2035 .3085	4.9152 .6915	30	1.3701
0.2036	40	.2022 .3058	.9793 .9909	.2065 .3149	4.8430 .6851	20	1.3672
0.2065	50	.2051 .3119	.9787 .9907	.2095 .3212	4.7729 .6788	10	1.3643
0.2094	12°00'	.2079 9.3179	.9781 9.9904	.2126 9.3275	4.7046 0.6725	78°00'	1.3614
0.2123	10	.2108 .3238	.9775 .9901	.2156 .3336	4.6382 .6664	50	1.3584
0.2153	20	.2136 .3296	.9769 .9899	.2186 .3397	4.5736 .6603	40	1.3555
0.2182	30	.2164 .3353	.9763 .9896	.2217 .3458	4.5107 .6542	30	1.3526
0.2211	40	.2193 .3410	.9757 .9893	.2247 .3517	4.4494 .6483	20	1.3497
0.2240	50	.2221 .3466	.9750 .9890	.2278 .3576	4.3897 .6424	10	1.3468
0.2269	13°00'	.2250 9.3521	.9744 9.9887 .9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875 .9710 .9872	.2309 9.3634	4.3315 0.6366	77°00'	1.3439
0.2298	10	.2278 .3575		.2339 .3691	4.2747 .6309	50	1.3410
0.2327	20	.2306 .3629		.2370 .3748	4.2193 .6252	40	1.3381
0.2356	30	.2334 .3682		.2401 .3804	4.1653 .6196	30	1.3352
0.2385	40	.2363 .3734		.2432 .3859	4.1126 .6141	20	1.3323
0.2414	50	.2391 .3786		.2462 .3914	4.0611 .6086	10	1.3294
0.2443	14°00'	.2419 9.3837	.9703 9.9869	.2493 9.3968	4.0108 0.6032	76°00'	1.3265
0.2473	10	.2447 .3887	.9696 .9866	.2524 .4021	3.9617 .5979	50	1.3235
0.2502	20	.2476 .3937	.9689 .9863	.2555 .4074	3.9136 .5926	40	1.3206
0.2531	30	.2504 .3986	.9681 .9859	.2586 .4127	3.8667 .5873	30	1.3177
0.2560	40	.2532 .4035	.9674 .9856	.2617 .4178	3.8208 .5822	20	1.3148
0.2589	50	.2560 .4083	.9667 .9853	.2648 .4230	3.7760 .5770	10	1.3119
0.2618	15°00'	.2588 9.4130	.9659 9.9849	.2679 9.4281	3.7321 0.5719	75°00'	1.3090
0.2647	10	.2616 .4177	.9652 .9846	.2711 .4331	3.6891 .5669	50	1.3061
0.2676	20	.2644 .4223	.9644 .9843	.2742 .4381	3.6470 .5619	40	1.3032
0.2705	30	.2672 .4269	.9636 .9839	.2773 .4430	3.6059 .5570	30	1.3003
0.2734	40	.2700 .4314	.9628 .9836	.2805 .4479	3.5656 .5521	20	1.2974
0.2763	50	.2728 .4359	.9621 .9832	.2836 .4527	3.5261 .5473	10	1.2945
0.2793	16°00′	.2756 9.4403	.9613 9.9828	.2867 9.4575	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	74 ^{°00′}	1.2915
0.2822	10	.2784 .4447	.9605 .9825	.2899 .4622		50	1.2886
0.2851	20	.2812 .4491	.9596 .9821	.2931 .4669		40	1.2857
0.2880	30	.2840 .4533	.9588 .9817	.2962 .4716		30	1.2828
0.2909	40	.2868 .4576	.9580 .9814	.2994 .4762		20	1.2799
0.2938	50	.2896 .4618	.9572 .9810	.3026 .4808		10	1.2770
0.2967	17°00'	.2924 9.4659	.9563 9.9806	.3057 9.4853	3.2709 0.5147	73°00/	1.2741
0.2996	10	.2952 .4700	.9555 .9802	.3089 .4898	3.2371 .5102	50	1.271 2
0.3025	20	.2979 .474I	.9546 .9798	.3121 .4943	3.2041 .5057	40	1.2683
0.3054	30	.3007 .478I	.9537 .9794	.3153 .4987	3.1716 .5013	30	1.2654
0.3083	40	.3035 .482I	.9528 .9790	.3185 .5031	3.1397 .4969	20	1.2625
0.3113	50	.3062 .486I	.9520 .9786	.3217 .5075	3.1084 .4925	10	1.2595
0.3142	18°00′	.3090 9.4900 Nat. Log.	.9511 9.9782 Nat. Log.	.3249 9.5118 Nat. Log.	3.0777 0.4882 Nat. Log.	72°00' vi	1.2566
		Nat. Log.	SINES.	COT'AN- GENTS.	TANGENTS	DE- GREES	RADI- ANS.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

-10 S	SES.	SI	NES.	cos	SINES.	TAN	GENTS.	COTAN	IGENTS		
RADI- ANS.	DE- GREES.	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	10 20 30 40	.3090 .3118 .3145 .3173 .3201 .3228	.4939 .4977 .5015 .5052	.9511 .9502 .9492 .9483 .9474 .9465	9.9782 .9778 .9774 .9770 .9765 .9761	.3249 .3281 .3314 .3346 .3378 .3411	9.5118 .5161 .5203 .5245 .5287 .5329	3.0777 3.0475 3.0178 2.9887 2.9600 2.9319	0.4882 .4839 .4797 .4755 .4713 .4671	72°00′ 50 40 30 20 10	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
0.3316 0.3345 0.3374 0.3403 0.3403 0.3432 0.3462	10 20 30 40 50	.3256 .3283 .3311 .3338 .3365 .3393	.5163 .5199 .5235	·9455 .9446 .9436 .9426 .9417 .9407	9·9757 .9752 .9748 .9743 .9739 .9734	·3443 ·3476 ·3508 ·3541 ·3574 ·3574	9.5370 .5411 .5451 .5491 .5531 .5571	2.9042 2.8770 2.8502 2.8239 2.7980 2.7725	0.4630 .4589 .4549 .4509 .4469 .4429	71°00′ 50 40 30 20 10	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00' 10 20 30 40 50	·3420 ·3448 ·3475 ·3502 ·3529 ·3557	9.5341 •5375 •5409 •5443 •5477 •5510	.9397 .9387 .9377 .9367 .9356 .9346	9.9730 .9725 .9721 .9716 .9711 .9706	.3673 .3706 .3739 .3772 .3805	9.5611 .5650 .5689 .5727 .5766 .5804	2.7475 2.7228 2.6985 2.6746 2.6511 2.6279	0.4389 .4350 .4311 .4273 .4234 .4196	70°00′ 50 40 30 20 10	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3781	21°00' 10 20 30 40 50	.3584 .3611 .3638 .3665 .3692 .3719	9·5543 ·5576 .5609 .5641 .5673 .5704	.9336 .9325 .9315 .9304 .9293 .9283	9.9702 .9697 .9692 .9687 .9682 .9677	.3839 .3872 .3906 .3939 .3973 .4006	9.5842 •5879 •5917 •5954 •5991 •6028	2.6051 2.5826 2.5605 2.5386 2.5172 2.4960	0.4158 .4121 .4083 .4046 .4009 .3972	69°00' 50 40 30 20 10	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.3746 .3773 .3800 .3827 .3854 .3881	9.5736 .5767 .5798 .5828 .5859 .5889	.9272 .9261 .9250 .9239 .9228 .9216	9.9672 .9667 .9661 .9656 .9651 .9646	.4040 .4074 .4108 .4142 .4176 .4210	9.6064 .6100 .6136 .6172 .6208 .6243	2.4751 2.4545 2.4342 2.4142 2.3945 2.3750	o.3936 .3900 .3864 .3828 .3792 .3757	68°00' 50 40 30 20 10	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00' 10 20 30 40 50	.3907 .3934 .3961 .3987 .4014 .4041	9.5919 .5948 .5978 .6007 .6036 .6065	.92 05 .9194 .9182 .9171 .9159 .9147	9.9640 .9635 .9629 .9624 .9618 .9613	.4245 .4279 .4314 .4348 .4383 .4417	9.6279 .6314 .6348 .6383 .6417 .6452	2.3559 2.3369 2.3183 2.2998 2.2817 2.2637	0.3721 .3686 .3652 .3617 .3583 .3548	67°00' 50 40 30 20 10	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 .4094 .4120 .4147 .4173 .4200	9.6093 .6121 .6149 .6177 .6205 .6232	.9135 .9124 .9112 .9100 .9088 .9075	9.9607 .9602 .9596 .9590 .9584 .9579	.4452 .4487 .4522 .4557 .4592 .4628	9.6486 .6520 .6553 .6587 .6620 .6654	2.2460 2.2286 2.2113 2.1943 2.1775 2.1609		66°00' 50 40 30 20 10	I.I519 I.I490 I.I461 I.I432 I.I403 I.I374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00' 10 20 30 40 50	.4226 .4253 .4279 :4305 .4331 .4358	.6286 .6313 .6340 .6366 .6392	.9063 .9051 .9038 .9026 .9013 .9001	9·9573 .9567 .9561 ·9555 ·9549 ·9543	.4663 .4699 .4734 .4770 .4806 .4841	9.6687 .6720 .6752 .6785 .6817 .6850	2.1445 2.1283 2.1123 2.0965 2.0809 2.0655	0.3313 .3280 .3248 .3215 .3183 .3150	65°00' 50 40 30 20 10	1.1345 1.1316 1.1286 1.1257 1.1228 1.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00' 10 20 30 40 50	.4384 .4410 .4436 .4462 .4488 .4514	9.6418 .6444 .6470 .6495 .6521 .6546	.8988 .8975 .8962 .8949 .8936 .8923	9.9537 .9530 .9524 .9518 .9512 .9505	.4877 .4913 .4950 .4986 .5022 .5059	9.6882 .6914 .6946 .6977 .7009 .7040	2.0503 2.0353 2.0204 2.0057 1.9912 1.9768	0.3118 .3086 .3054 .3023 .2991 .2960	64°00' 50 40 30 20 10	I.1170 I.1141 I.1112 I.1083 I.1054 I.1025
0.4712	27°00′	•4540 Nat.	9.6570 Log.	.8910 Nat.	9.9499 Log.	.5095 Nat.		1.9626		63°00′	1.0996
	ς		INES.		IES.	COI	Log. TAN- NTS.	Nat. TANG	Log. ENTS.	DE- GREES.	RADI- ANS.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RA Al	GR.	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	27°00' 10 20 30 40 50	.4540 9.6570 .4566 .6595 .4592 .6620 .4617 .6644 .4643 .6668 .4669 .6692	.8910 9.9499 .8897 .9492 .8884 .9486 .8870 .9479 .8857 .9473 .8843 .9466	.5095 9.7072 .5132 .7103 .5169 .7134 .5206 .7165 .5243 .7196 .5280 .7226	1.9626 0.2928 1.9486 .2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 .2774	63°00′ 1.099 50 1.096 40 1.093 30 1.090 20 1.087 10 1.085	56 37 58 79
0.4887 0.4916 0.4945 0.4974 0.5003 0.5032	28°00' 10 20 30 40 50	.4695 9.6716 .4720 .6740 .4746 .6763 .4772 .6787 .4797 .6810 .4823 .6833	.8829 9.9459 .8816 .9453 .8802 .9446 .8788 .9439 .8774 .9432 .8760 .9425	.5317 9.7257 .5354 .7287 .5392 .7317 .5430 .7348 .5467 .7378 .5505 .7408	1.8807 0.2743 1.8676 .2713 1.8546 .2683 1.8418 .2652 1.8291 .2622 1.8165 .2592	62°00' 1.082 50 1.079 40 1.076 30 1.073 20 1.070 10 1.067	2 3 4 5
0.5061 0.5091 0.5120 0.5149 0.5178 0.5207	29°00' 10 20 30 40 50	.4848 9.6856 .4874 .6878 .4899 .6901 .4924 .6923 .4950 .6946 .4975 .6968	.8746 9.9418 .8732 .9411 .8718 .9404 .8704 .9397 .8689 .9390 .8675 .9383	.5543 9.7438 .5581 .7467 .5619 .7497 .5658 .7526 .5696 .7556 .5735 .7585	1.8040 0.2562 1.7917 .2533 1.7796 .2503 1.7675 .2474 1.7556 .2444 1.7437 .2415	61°00′ 1.064 50 1.061 40 1.058 30 1.055 20 1.053 10 1.050	7 8 9
0.5236 0.5265 0.5294 0.5323 0.5352 0.5381	30°00' 10 20 30 40 50	.5000 9.6990 .5025 .7012 .5050 .7033 .5075 .7055 .5100 .7076 .5125 .7097	.8660 9.9375 .8646 .9368 .8631 .9361 .8616 .9353 .8601 .9346 .8587 .9338	.5774 9.7614 .5812 .7644 .5851 .7673 .5890 .7701 .5930 .7730 .5969 .7759	1.7321 0.2386 1.7205 .2356 1.7090 .2327 1.6977 .2299 1.6864 .2270 1.6753 .2241	60°00′ 1.047: 50 1.044 40 1.041 30 1.038 20 1.035 10 1.032	34567
0.5411 0.5440 0.5469 0.5498 0.5527 0.5556	31°00' 10 20 30 40 50	.5150 9.7118 .5175 .7139 .5200 .7160 .5225 .7181 .5250 .7201 .5275 .7222	.8572 9.9331 .8557 .9323 .8542 .9315 .8526 .9308 .8511 .9300 .8496 .9292	.6009 9.7788 .6048 .7816 .6088 .7845 .6128 .7873 .6168 .7902 .6208 .7930	1.6643 0.2212 1.6534 .2184 1.6426 .2155 1.6319 .2127 1.6212 .2098 1.6107 .2070	59°00' 1.020' 50 1.020' 40 1.023' 30 1.021' 20 1.018 10 1.015'	8 9 0 1 2
0.5585 0.5614 0.5643 0.5672 0.5701 0.5730	32°00' 10 20 30 40 50	.5299 9.7242 .5324 .7262 .5348 .7282 .5373 .7302 .5398 .7322 .5422 .7342	.8480 9.9284 .8465 .9276 .8450 .9268 .8434 .9260 .8418 .9252 .8403 .9244	.6249 9.7958 .6289 .7986 .6330 .8014 .6371 .8042 .6412 .8070 .6453 .8097	1.6003 0.2042 1.5900 .2014 1.5798 .1986 1.5697 .1958 1.5597 .1930 1.5497 .1903	58°00' 1.012 50 1.009 40 1.006 30 1.003 20 1.000 10 0.997	94 15 16 17
0.5760 0.5789 0.5818 0.5847 0.5876 0.5905	33°00' 10 20 30 40 50	.5446 9.7361 .5471 .7380 .5495 .7400 .5519 .7419 .5544 .7438 .5568 .7457	.8387 9.9236 .8371 .9228 .8355 .9219 .8339 .9211 .8323 .9203 .8307 .9194	.6494 9.8125 .6536 .8153 .6577 .8180 .6619 .8208 .6661 .8235 .6703 .8263	1.5399 0.1875 1.5301 .1847 1.5204 .1820 1.5108 .1792 1.5013 .1765 1.4919 .1737	57°00′ 0.994 50 0.991 40 0.989 30 0.986 20 0.983 10 0.980	19 51 32 53
0.5934 0.5963 0.5992 0.6021 0.6050 0.6080	34°00' 10 20 30 40 50	.5592 9.7476 .5616 .7494 .5640 .7513 .5664 .7531 .5688 .7550 .5712 .7568	.8290 9.9186 .8274 .9177 .8258 .9169 .8241 .9160 .8225 .9151 .8208 .9142	.6745 9.8290 .6787 .8317 .6830 .8344 .6873 .8371 .6916 .8398 .6959 .8425	1.4826 0.1710 1.4733 .1683 1.4641 .1656 1.4550 .1629 1.4460 .1602 1.4370 .1575	56°00' 0.977 50 0.974 40 0.971 30 0.968 20 0.962 10 0.962	45 16 37 57 28
0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	35°00' 10 20 30 40 50	.5736 9.7586 .5760 .7604 .5783 .7622 .5807 .7640 .5831 .7657 .5854 .7675	.8192 9.9134 .8175 .9125 .8158 .9116 .8141 .9107 .8124 .9098 .8107 .9089	.7002 9.8452 .7046 .8479 .7089 .8506 .7133 .8533 .7177 .8559 .7221 .8586	1.4281 0.1548 1.4193 .1521 1.4106 .1494 1.4019 .1467 1.3934 .1441 1.3848 .1414	55°00' 0.959 50 0.957 40 0.954 30 0.954 20 0.948 10 0.945 54°00' 0.942	70 41 12 83 54
0.6283	36°00′	.5878 9.7692	.8090 9.9080	.7265 9.8613	1.3764 0.1387 Nat. Log.	·	
		Nat. Log. COSINES.	Nat. Log. SINES.	Nat. Log. COTAN- GENTS.	TANGENTS.	DE- DE- GREES. RADI- ANS.	

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

RADI- ANS.	DE- GREES.	SII	VES.	COS	INES.	TANC	GENTS.	COTAN	GENTS.		
RA Al	GRI	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	36°00' 10 20 30 40 50	.5878 .5901 .5925 .5948 .5972 .5995	9.7692 .7710 .7727 .7744 .7761 .7778	.8090 .8073 .8056 .8039 .8021 .8004	9.9080 .9070 .9061 .9052 .9042 .9033	.7265 .7310 .7355 .7400 .7445 .7490	9.8613 .8639 .8666 .8692 .8718 .8745	1.3680 1.3597 1.3514	0.1387 .1361 .1334 .1308 .1282 .1255	54°00′ 50 40 30 20 10	0.9425 0.9396 0.9367 0.9338 0.9308 0.9279
0.6458 0.6487 0.6516 0.6545 0.6574 0.6603	37°00′ 10 20 30 40 50	.6018 .6041 .6065 .6088 .6111 .6134	9.7795 .7811 .7828 .7844 .7861 .7877	.7986 .7969 .7951 .7934 .7916 .7898	9.9023 .9014 .9004 .8995 .8985 .8975	.7536 .7581 .7627 .7673 .7720 .7766	9.8771 .8797 .8824 .8850 .8876 .8902	1.3270 1.3190 1.3111 1.3032 1.2954 1.2876	0.1229 .1203 .1176 .1150 .1124 .1098	53°00' 50 40 30 20 10	0.9250 0.9221 0.9192 0.9163 0.9134 0.9105
0.6632 0.6661 0.6690 0.6720 0.6749 0.6778	38°00' 10 20 30 40 50	.61 57 .6180 .6202 .622 5 .6248 .627 1	9.7893 .7910 .7926 .7941 .7957 .7973	.7880 .7862 .7844 .7826 .7808 .7790	9.8965 .8955 .8945 .8935 .8935 .8925 .8915	.7813 .7860 .7907 .7954 .8002 .8050	9.8928 .8954 .8980 .9006 .9032 .9058	1.2799 1.2723 1.2647 1.2572 1.2497 1.2423	0.1072 .1046 .1020 .0994 .0968 .0942	52°00′ 50 40 30 20 10	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930
0.6807 0.6836 0.6865 0.6894 0.6923 0.6952	39°00' 10 20 30 40 50	.6293 .6316 .6338 .6361 .6383 .6406	9.7989 .8004 .8020 .8035 .8050 .8066	.7771 .7753 .7735 .7716 .7698 .7679	9.8905 .8895 .8884 .8874 .8864 .8853	.8098 .8146 .8195 .8243 .8292 .8342	9.9084 .9110 .9135 .9161 .9187 .9212	1.2349 1.2276 1.2203 1.2131 1.2059 1.1988	0.0916 .0890 .0865 .0839 .0813 .0788	51°00′ 50 40 30 20 10	0.8901 0.8872 0.8843 0.8814 0.8785 0.8756
0.6981 0.7010 0.7039 0.7069 0.7098 0.7127	40°00′ 10 20 30 40 50	.6428 .6450 .6472 .6494 .6517 .6539	9.8081 .8096 .8111 .8125 .8140 .8155	.7660 .7642 .7623 .7604 .7585 .7566	9.8843 .8832 .8821 .8810 .8800 .8789	.8391 .8441 .8491 .8541 .8591 .8642	9.9238 .9264 .9289 .9315 .9341 .9366	1.1918 1.1847 1.1778 1.1708 1.1640 1.1571	0.0762 .0736 .0711 .0685 .0659 .0634	50°00′ 50 40 30 20 10	0.8727 0.8698 0.8668 0.8639 0.8610 0.8581
0.7156 0.7185 0.7214 0.7243 0.7272 0.7301	41°00' 10 20 30 40 50	.6561 .6583 .6604 .6626 .6648 .6670	9.8169 .8184 .8198 .8213 .8227 .8241	-7547 -7528 -7509 -7490 -7470 -7451	9.8778 .8767 .8756 .8745 .8733 .8722	.8693 .8744 .8796 .8847 .8899 .8952	9.9392 .9417 .9443 .9468 .9494 .9519	1.1504 1.1436 1.1369 1.1303 1.1237 1.1171	0.0608 .0583 .0557 .0532 .0506 .0481	49°00′ 50 40 30 20 10	0.8552 0.8523 0.8494 0.8465 0.8436 0.8436
0.7330 0.7359 0.7389 0.7418 0.7447 0.7476	42°00' 10 20 30 40 50	.6691 .6713 .6734 .6756 .6777 .6799	9.8255 .8269 .8283 .8297 .8311 .8324	.7431 .7412 .7392 .7373 .7353 .7353	9.8711 .8699 .8688 .8676 .8665 .8653	.9004 .9057 .9110 .9163 .9217 .9271	9.9544 .9570 .9595 .9621 .9646 .9671	1.1106 1.1041 1.0977 1.0913 1.0850 1.0786	0.0456 .0430 .0405 .0379 .0354 .0329	48°00′ 50 40 30 20 10	0.8378 0.8348 0.8319 0.8290 0.8261 0.8232
0.7505 0.7534 0.7563 0.7592 0.7621 0.7650	43°00′ 10 20 30 40 50	.6820 .6841 .6862 .6884 .6905 .6926	9.8338 .8351 .8365 .8378 .8391 .8405	.7314 .7294 .7274 .7254 .7234 .7214	9.8641 .8629 .8618 .8606 .8594 .8582	.9325 .9380 .9435 .9490 .9545 .9601	9.9697 .9722 .9747 .9772 .9798 .9823	1.0724 1.0661 1.0599 1.0538 1.0477 1.0416	0.0303 .0278 .0253 .0228 .0202 .0177	47°00′ 50 40 30 20 10	0.8203 0.8174 0.8145 0.8116 0.8087 0.8058
0.7679 0.7709 0.7738 0.7767 0.7796 0.7825	44°00′ 10 20 30 40 50	.6947 .6967 .6988 .7009 .7030 .7050	9.8418 .8431 .8444 .8457 .8469 .8482	.7193 .7173 .7153 .7133 .7112 .7092	9.8569 .8557 .8545 .8532 .8520 .8507	.9884 .9942	9.9848 .9874 .9899 .9924 .9949 .9975	1.0117 1.0058	0.01 52 .01 26 .0101 .0076 .0051 .0025	46°00' 50 40 30 20 10	0.8029 0.7999 0.7970 0.7941 0.7912 0.7883
0.7854	45°00′	.707 I 	9.8495 Log.	.7071 Nat	9.8495 Log.	1.0000 Nat.	0.0000 Log.	1.0000 Nat.	0.0000 Log.	45°00′	0.7854
			INES.		VES.	COT	TAN- NTS.		ENTS.	DE- GREES.	RADI- ANS.

TABLE 14.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

ANS.	SIN	ES.	COSI	NES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
0.00	0.00000	∞	1.00000	0.00000	∞	00	∞	∞	00°00′
.01	.01000	7.99999	0.99995	9.99998	0.01000	8.00001	99.997	1.999999	00 34
.02	.02000	8.30100	.99980	.99991	.02000	.30109	49.993	.69891	01 09
.03	.03000	.47706	.99955	.99980	.03001	.47725	33.323	.52275	01 43
.04	.03999	.60194	.99920	.99965	.04002	.60229	24.987	.39771	02 18
0.05	0.04998	8.69879	0.99875	9.99946	0.05004	8.69933	19.983	1.30067	02°52′
.06	.05996	.77789	.99820	.99922	.06007	.77867	16.647	.22133	03 26
.07	.06994	.84474	.99755	.99894	.07011	.84581	14.262	.15419	04 01
.08	.07991	.90263	.99680	.99861	.08017	.90402	12.473	.09598	04 35
.09	.08988	.95366	.99595	.99824	.09024	.95542	11.081	.04458	05 09
0.10	0.09983	8.99928	0.99500	9.99782	0.10033	9.00145	9.9666	0.99855	05°44′
.11	.10978	9.04052	.99396	.99737	.11045	.04315	9.0542	.95685	06 18
.12	.11971	.07814	.99281	.99687	.12058	.08127	8.2933	.91873	06 53
.13	.12963	.11272	.99156	.99632	.13074	.11640	7.6489	.88360	07 27
.14	.13954	.14471	.9902 2	.99573	.14092	.14898	7.0961	.85102	08 01
0.15	0.14944	9.17446	0.98877	9.99510	0.15114	9.17937	6.6166	0.82063	08°36′
.16	.15932	.20227	.98723	.99442	.16138	.20785	6.1966	.79215	09 10
.17	.16918	.22836	.98558	.99369	.17166	.23466	5.8256	.76534	09 44
.18	.17903	.25292	.98384	.99293	.18197	.26000	5.4954	.74000	10 19
.19	.18886	.27614	.98200	.99211	.19232	.28402	5.1997	.71598	10 53
0.20	0.19867	9.29813	0.98007	9.99126	0.20271	9.30688	4.9332	0.69312	11°28'
.21	.20846	.31902	.97803	.99035	.21314	.32867	4.6917	.67133	12 02
.22	.21823	.33891	.97590	.98940	.22362	.34951	4.4719	.65049	12 36
.23	.22798	.35789	.97367	.98841	.23414	.36948	4.2709	.63052	13 11
.24	.23770	.37603	.97134	.98737	.2447 2	.38866	4.0864	.61134	13 45
0.25	0.24740	9-39341	0.96891	9.98628	0.25534	9.40712	3.9163	0.59288	14°19'
.26	.25708	.41007	.96639	.98515	.26602	.42491	3.7592	.57509	1454
.27	.26673	.42607	.96377	.98397	.27676	.44210	3.6133	.55790	1528
.28	.27636	.44147	.96106	.98275	.28755	.45872	3.4776	.54128	1603
.29	.28595	.45629	.95824	.98148	.29841	.47482	3.3511	.52518	1637
0.30	0.29552	9.47059	0.95534	9.98016	0.30934	9-49043	3.2327	0.50957	17°11'
.31	.30506	.48438	.95233	.97879	.32033	.50559	3.1218	.49441	17 46
.3 ²	.31457	.49771	.94924	.97737	.33139	.52034	3.0176	.47966	18 20
.33	.32404	.51060	.94604	.97591	.34252	.53469	2.9195	.46531	18 54
.34	.33349	.52308	.94275	.97440	.35374	.54868	2.8270	.45132	19 29
0.35	0.34290	9.53516	0.93937	9.97284	0.36503	9.56233	2.7 395	0.43767	20°03′
.36	.35227	.54688	.93590	.97123	.37640	.57565	2.6567	.42435	20 38
.37	.36162	.55825	.93233	.96957	.38786	.58868	2.5782	.41132	21 12
.38	.37092	.56928	.92866	.96786	.39941	.60142	2.5037	.39858	21 46
.39	.38019	.58000	.92491	.96610	.41105	.61390	2.4328	.38610	22 21
0.40	0.38942	9.59042	0.92106	9.96429	0.42279	9.62613	2.3652	0.37387	22°55'
.41	.39861	.60055	.91712	.96243	.43463	.63812	2.3008	.36188	23 29
.42	.40776	.61041	.91309	.96051	.44657	.64989	2.2393	.35011	24 04
.43	.41687	.62000	.90897	.95855	.45862	.66145	2.1804	.33855	24 38
.44	.42594	.62935	.90475	.95653	.47078	.67282	2.1241	.32718	25 13
0.45	0.43497	9.63845	0.90045	9.95446	0.48306	9.68400	2.0702	0.31600	25°47'
.46	.44395	.64733	.89605	.95233	.49545	.69500	2.0184	.30500	26 21
.47	.45289	.65599	.89157	.95015	.50797	.70583	1.9686	.29417	26 56
.48	.46178	.66443	.88699	.94792	.52061	.71651	1.9208	.28349	27 30
.49	.47063	.67268	.88233	.94563	.53339	.72704	1.8748	.27296	28 04
0 50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	28°39′

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

			1						
RADIANS	SI	NES.	cos	INES.	TANC	GENTS.	COTAI	NGENTS.	DEGREES
RAD	Nat.	Log.	Nat.	Log.	Nat.	Log. •	Nat.	Log.	DEG
0.50 .51 .52	0.47943 .48818 .49688	9.68072 .68858 .69625	0.877 58 .87274 .86782	9.94329 .94089 .93843	0.54630 .55936 .57256	9 ·73743 •74769 •75782	1.8305 .7878 .7465	0.26257 .25231 .24218	28°39' 29 13 29 48
•53 •54	.50553 .51414	.70375	.86281 .85771	.93591 .93334	.58592 •59943	.76784 77774	.7067 .6683	.23216 .22 22 6	30 22 30 5 6
0.55 .56 .57 .58	0.52269 .53119 .53963	9.71824 .72525 .73210	0.85252 .84726 .84190	9.93071 .92801 .92526	0.61311 .62695 .64097	9.78754 .79723 .80684	1.6310 .5950 .5601	0.21246 .20277 .19316	31°31′ 32 05 32 40
.58 .59	.54802 .55636	.73880 .74536	.83646 .83094	.92245 .91957	.65517 .66956	.81635 .82579	.5263 -4935	.18365 .17421	33 14 33 48
0.60 .61 .62	0.56464 .57287 .58104	9.75177 .75805 .76420	0.82534 .81965 .81388	9.91663 .91363 .91056	0.68414 .69892 .71391	9.83514 .84443 .85364	1.4617 .4308 .4007	0.16486 .15557 .14636	34°23' 34 57
.63 .64	.58914 .59720	.77022 .77612	.80803 .80210	.90743 .90423	.72911 .74454	.86280 .87189	.3715 .3431	.13720	35 31 36 66 36 40
0.65 .66 .67	0.60519 .61312 .62099	9.78189 .78754 .79308	0.79608 .78999 .78382	9.90096 .89762 .89422	0.76020 .77610 .79225	9.88093 .88992 .89886	1.3154 .2885 .2622	0.11907 .11008 .10114	37°15' 3749 3823
.68 .69	.62879 .63654	.79851 .80382	·77757 ·77125	.89074 .88719	.80866 .82534	.90777 .91663	.2366 .2116	.09223 .08337	38 58 39 32
0.70 .71 .72	0.64422 .65183 .65938	9.80903 .81414 .81914	0.76484 .75836 .75181	9.88357 .87988	0.84229 .85953 .87707	9.92546 .93426	1.1872 .1634	0.07454 .06574	40°06' 40 41
•73 •74	.66687 .67429	.82404 .82885	.74517 .73847	.87611 .87226 .86833	.89492 .91309	.94303 .95178 .96051	.1402 .1174 .0952	.05697 .04822 .03949	41 15 41 50 42 24
0.75 .76	0.68164 .68892 .69614	9.83355 .83817	0.73169 •72484	9.86433 .86024	0.93160 .95045	9.96923 •97793	1.0734° .0521	0.03077 .02207	42°58' 43 33
•77 .78 •79	.70328 .71035	.84269 .84713 .85147	.71791 .71091 .70385	.85607 .85182 .84748	.96967 .98926 1.0092	.98662 9.99531 0.00400	.0313 1.0109 0.99084	.01338 .00469 9.99600	44 07 44 41 45 16
0.80 .81 .82	0.71736 .72429 .73115	9.85573 .85991 .86400	0.69671 .68950 .68222	9.84305 .83853 .83393	1.0296 .0505 .0717	0.01268 .02138 .03008	0.97121	9.98732 .97862	45°50' 46 25
.83 .84	•73793 •74464	.86802 .87195	.67488 .66746	.82922 .82443	.0934 .1156	.03879 .04752	.93309 .91455 .89635	.96992 .96121 .95248	46 59 47 33 48 08
0.85 .86 .87	0.75128 .75784	9.87580 .87958 .88328	0.65998 .65244	9.81953 .81454	1.1383 .1616 .1853	0.05627 .06504	0.87848 .86091	9.94373 .93496	48°42' 49 16
.88 .89	.76433 .77074 .77707	.88691 .89046	.64483 .63715 .62941	.80944 .80424 .79894	.2097 .2346	.07384 .08266 .09153	.84365 .82668 .80998	.92616 .91734 .90847	49 51 50 25 51 00
0.90 .91	0.78333 .78950	9.89394 .89735	0.62161 .61375	9.79352 .78799	1.2602 .2864	0.10043	0.79355 .77738	9.89957 .89063	51°34′ 52 08
.92 .93 .94	.79560 .80162 .80756	.90070 .90397 .90717	.60582 .59783 .58979	.78234 .77658 .77070	.3133 .3409 .3692	.11835 .12739 .13648	.76146 •74578 •73034	.88165 .87261 .86352	52 43 53 17 53 51
0.95 .96	0.81342 .81919	9.91031 .91339	0.58168 •57352	9.76469 •75855	1.3984 .4284	0.14563 .15484	0.71511	9.85437 .84516	54°26' 55 00
.97 .98 .99	.82489 .83050 .83603	91639 .91934 .92222	.56530 .55702 .54869	•75228 •74587 •73933	•4592 •4910 •5237	.16412 .17347 .18289	.68531 .67071 .65631	.83588 .82653 .81711	55 35 56 09 56 43
1.00	0.84147	9. 9250 4	0.54030	9.73264	1.5574	0.19240	0.64209	9.8076 0	57°18′
	NIAN TABL								

6

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

ANS.	SIN	ES.	COSI	NES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.00	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	57°18'
.01	.84683	.92780	.53186	.72580	.5922	.20200	.62806	.79800	57 52
.02	.85211	.93049	.52337	.71881	.6281	.21169	.61420	.78831	58 27
.03	.85730	.93313	.51482	.71165	.6652	.22148	.60051	.77852	59 01
.04	.86240	.93571	.50622	.70434	.7036	.23137	.58699	.76863	59 35
1.05	0.86742	9.93823	0.49757	9.69686	1.7433	0.24138	0.57362	9.75862	60°10′
.06	.87236	.94069	.48887	.68920	.7844	.25150	.56040	.74850	60 44
.07	.87720	.94310	.48012	.68135	.8270	.26175	•54734	.73825	61 18
.08	.88196	.94545	.47133	.67332	.8712	.27212	•53441	.72788	61 53
.09	.88663	.94774	.46249	.66510	.9171	.28264	.52162	.71736	62 27
1.10	0.89121	9.94998	0.45360	9.65667	1.9648	0.29331	0.50897	9.70669	63°02′
.11	.89570	.95216	.44466	.64803	2.0143	.30413	.49644	.69587	63 36
.12	.90010	.95429	.43568	.63917	.0660	.31512	.48404	.68488	64 10
.13	.90441	.95637	.42666	.63008	.1198	.32628	.47175	.67372	64 45
.14	.90863	.95 ⁸ 39	.41759	.62075	.1759	.33763	.45959	.66237	65 19
1.15	0.91276	9.96036	0.40849	9.61118	2.2345	0.34918	0.447 53	9.65082	65°53′
.16	.91680	.96228	.39934	.60134	.2958	.36093	-435 58	.63907	66 28
.17	.92075	.96414	.39015	.59123	.3600	.37291	-42373	.62709	67 02
.18	.92461	.96596	.38092	.58084	.4273	.38512	-41 199	.61488	67 37
.19	.92837	.96772	.37166	.57015	.4979	.39757	-40034	.60243	68 11
1.20	0.93204	9.96943	0.36236	9.55914	2.5722	0.41030	0.38878	9.58970	68°45'
.21	.93562	.97110	.35302	.54780	.6503	.42330	.37731	.57670	69 20
.22	.93910	.97271	.34365	.53611	.7328	.43660	.36593	.56340	69 54
.23	.94249	.97428	.33424	.52406	.8198	.45022	.35463	.54978	70 28
.24	.94578	.97579	.32480	.51161	.9119	.46418	.34341	.53582	71 03
1.25	0.94898	9.97726	0.31532	9.49875	3.0096	0.47850	0.33227	9.52150	71°37'
.26	.95209	.97868	.30582	.48546	.1133	.49322	.32121	.50678	72 12
.27	.95510	.98005	.29628	.47170	.2236	.50835	.31021	.49165	72 46
.28	.95802	.98137	.28672	.45745	.3413	.52392	.29928	.47608	73 20
.29	.96084	.98265	.27712	.44267	.4672	.53998	.28842	.46002	73 55
1.30	0.96356	9.98388	0.267 50	9.42732	3.6021	0.55656	0.27762	9.44344	74°29'
.31	.96618	.98506	.25785	.41137	.7471	.57369	.26687	.42631	75 03
.32	.96872	.98620	.24818	.39476	.9033	.59144	.25619	.40856	75 38
.33	.97115	.98729	.23848	.37744	4.0723	.60984	.24556	.39016	76 12
.34	.97348	.98833	.22875	.35937	.2556	.62896	.23498	.37104	76 47
1.35	0.97572	9.98933	0.21901	9.34046	4.4552	0.64887	0.22446	9.35113	77°21′
.36	.97786	.99028	.20924	.32064	.6734	.66964	.21398	.33036	77 55
.37	.97991	.99119	.19945	.29983	.9131	.69135	.20354	.30865	78 30
.38	.98185	.99205	.18964	.27793	5.1774	.71411	.19315	.28589	79 04
.39	.98370	.99286	.17981	.25482	.4707	.73804	.18279	.26196	79 38
1.40	0.98545	9.99363	0.16997	9.23036	5.7979	0.76327	0.17248	9.23673	80°13'
.41	.98710	.99436	.16010	.20440	6.1654	.78996	.16220	.21004	80 47
.42	.98865	.99504	.15023	.17674	6.5811	.81830	.15195	.18170	81 22
.43	.99010	.99568	.14033	.14716	7.0555	.84853	.14173	.15147	81 56
.44	.99146	.99627	.13042	.11536	7.6018	.88092	.13155	.11908	82 30
1.45	0.99271	9.99682	0.12050	9.08100	8.2381	0.91583	0.12139	9.08417	83°05'
•46	.99387	.99733	.11057	.04364	8.9886	.95369	.11125	.04631	83 39
•47	.99492	.99779	.10063	.00271	9.8874	.99508	.10114	.00492	84 13
•48	.99588	.99821	.09067	8.95747	10.983	1.04074	.09105	8.95926	84 48
•49	.99674	.99858	.08071	.90692	12.350	.09166	.08097	.90834	85 22
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	85°57′

CIRCULAR FUNCTIONS AND FACTORIALS.

RADIANS.	SIN	IES.	COSI	NES.	TANGI	ENTS.	COTAN	GENTS.	RES.
RADI	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	DEGREES
1.50 .51 .52 .53 .54	0.99749 .99815 .99871 .99917 .99953	9.99891 •99920 •99944 •99964 •99979	0.07074 .06076 .05077 .04079 .03079	8.84965 .78361 .70565 .61050 .48843	14.101 16.428 19.670 24.498 32.461	1.14926 .21559 .29379 .38914 .51136	0.07091 .06087 .05084 .04082 .03081	8.85074 .78441 .70621 .61086 .48864	85°57′ 86 31 87 05 87 40 88 14
1.55 .56 .57 .58 .59	0.99978 0.99994 1.00000 0.99996 0.99982	9.99991 9.99997 0.00000 9.99998 9.99992	0.02079 .01080 .00080 –.00920 –.01920	8.31796 8.03327 6.90109 7.96396n 8.28336n	48.078 92.621 1255.8 108.65 52.067	1.68195 1.96671 3.09891 2.03603 1.71656	0.02080 .01080 .00080 00920 01921	8.31805 8.03329 6.90109 7.96397n 8.28344n	88°49' 89 23 89 57 90 32 91 06
1.60	0.99957	9.99981	-0.02920	8.46538n	34.233	1.53444	-0.02921	8.46556n	91°40′

TABLE 14 (continued). - Circular (Trigonometric) Functions.

90⁰=1.570 7963 radians.

TABLE 15.-Logarithmic Factorials.

Logarithms of the products 1.2.3....n, *n* from I to 100. See Table 17 for Factorials I to 20.

See Table 31 for log. Γ (n + 1), values of n between 1 and 2.

n.	log (n!)	n.	log (n!)	72.	log (n!)	n.	log (n!)
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735 ⁸ 74	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

SMITHSONIAN TABLES.

TABLE 16.HYPERBOLIC FUNCTIONS.

	sinł	1, ս	cosh	l. u	tanl	h. u	cotl	1. ц	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
0.00	0.00000	- ∞	1.00000	0.00000	0.00000	<u>- ∞</u>	00	8	00°00'
.01	.01000	8.00001	.00005	,00002	.01000	7.99999 9	100.003	2.00001	034
.02	.02000	.30106	.00020	.00009	.02000	8.30097	50.007	1.69903	109
.03	.03000	·477 I 9	.00045	.00020	.029999	.47699	33·34 3	1.52301	I 43
.04	.04001	.60218	.00080	.00035	.03998	.60183	25.013	1.39817	2 17
0.05 .06	0.05002 .06004	8.69915 .77841	1,00125 .00180	0.00054 .00078	0.04996 .05993	8.69861 •77763	20.017 16.687	1.30139 .22237	2 52 3 26
.00	.07006	.84545	.00245	.00106	.06989	.84439	14.309	.15561	4 00
.08	.08009	.90355	.00320	.001 39	.07983	.90216	12.527	.09784	4 35
.09	.09012	.95483	.00405	.00176	.08976	.95307	11.141	.04693	5 09
0.10	0.10017	9.00072	1.00 500	0.00217	0.09967	8.99856	10.0333	1.00144	5 43 6 17
.11	.11022	.04227	.00606	.00262	.10956	9.03965	9.1275	0.96035	6 17
.12	.12029	.08022	.00721	.00312	.11943	.07710	8.3733	.92290	6 52
.13	.13037	.11517	.00846	.00366	.12927	.11151	7.7356	.88849	7 26 8 00
.14	.14046	.14755	.00982	.00424	.13909	.14330	7.1895	.8 5670	
0.15	0.1 50 56	9.17772	1.01127	0.00487	0.14889	9.17285	6.7166	0.82715	834 908
.16	.16068	.20597	.01 28 3	.00554	.1 5865	.20044	6.3032	.79956	
.17	.17082	.23254	.01448	.00625	.16838	.22629	5.9389	·77371	9 42
.18	.18097	.2 5762	.01624	.00700	.17808	.25062	5.61 54	.74938	10 15
.19	.19115	.28136	.01810	.00779	.18775	.27357	5.3263	.72643	10 49
0.20	0.201 34	9.30392	1.02007	0.00863	0.19738	9.29529	5.0665	0.70471	11 23
.21	.21155	.3254I	.02213	.00951	.20697	.31 590	4.8317	.68410	11 57
.22	.22178	·34592	.02430	.01043	.21652	·33549	4.6186	.66451	12 30
.23	.23203	.36555	.02657	.01139	.22603	.35416	4.4242		13 04
.24	.24231	.38437	.02894	.01239	.23550	.37198	4.2464	.62802	13 37
0.25	0.25261	9.40245	1.03141	0.01343	0.24492	9.38902	4.0830	0.61098	14 11
.26	.26294	.41986	.03399	.01452	.25430	.40534	3.9324	.59466	14 44
.27	.27 329	.43663	.03667	.01 564	.26362	.42099	3.7933	.5790 i	15 17
.28	.28367	.45282	.03946	.01681	.27291	.43601	3.6643	.56399	15 50
.29	.29408	.46847	.04235	.01801	.28213	.45046	3.5444	·54954	16 23
0.30	0.30452	9.48362	1.04534	0.01926	0.29131		3.4327	0.53564	16 56
.31	.31499	.49830	.04844	.02054	.30044	·47775	.3285	.52225	17 29
.32	·32549	.51254	.05164	.02187	.30951	.49067	.2309	.50933	18 02
.33	.33602	.52637	.05495	.02323	.31852	.50314	.1395	.49686	18 34
•34	.34659	.53981	.05836	.02463	.32748	.51518	.0536	.48482	19 07
0.35	0.35719	9.55290	1.06188	0.02607	0.33638	9.52682	2.9729	0.47318	19 39
.36	.36783	.56564	.06550	.02755	.34521	.53809	.8968	.46191	20 12
	.37850	.57807	.06923	.02907	·35399	.54899	.8249	.45101	20 44 21 16
·37 .38	.38921	.59019	.07307	.03063	.36271	.55956	.7 570		
•39	•39996	.60202	.07702	.03222	.37136	.56980	.6928		21 48
0.4 0	0.41075	9.61358	1.08107	0.03385	0.37995	9.57973	2.6319 .5742		22 20 22 52
.4 I	.421 58	.62488	.08523	.03552	.38847	.58936 .59871	.5193	.40129	
.42	.43246	.63594	.08950 .09388	.03723 .03897	.39693 .40532	.60780	.4672	.39220	
•43	•44337	.64677	.09388	.03897	.40532	.61663	.4072	.38337	24 26
•44	•45434	.65738			-				
0.45	0.46534	9.66777	1.102970		0.42190	9.62521	2.3702	0.374 7 9 .36645	24 57 25 28
.46	.47640	.67797	.10768	.04441	.43008	.63355 .64167	.2821	.35833	25 59
•47	.48750	.68797	.11250	.04630 .04822	.43820	.64957	.2409	.35043	26 30
.48	.49865	.69779	.11743	.04822	.45422	.65726	.2016	.34274	27 01
•49	. 50984	•70744	.12247	-			2.1640		27 31
0.50	0.52110	9 .7 1692	1.12763	0.05217	0.46212	9.66475	2.1040	0.33525	2/ 3·
L									

TABLE 16 (continued). HYBERBOLIC FUNCTIONS.

	sinl	D. u	cos	h. u	tan	h. u	cot	ih. u	gd u
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	ga u
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27 ⁰ 31
.51	.53240	.72624	.13289	.05419	.46995	.67205	.1279	.32795	28 02
.52	.54375	.73540	.13827	.05625	.47770	.67916	.0934	.32084	28 32
.53	.55516	.74442	.14377	.05834	.48538	.68608	.0602	.31392	29 02
.54	.56663	.75330	.14938	.06046	.49299	.69284	.0284	.30716	29 32
0.55	0.57815	9.76204	1.15510	0.06262	0.50052	9.69942	1.9979	0.30058	30 02
.56	.58973	.77065	.16094	.06481	.50798	.70584	.9686	.29416	30 32
.57	.60137	.77914	.16690	.06703	.51536	.71211	.9404	.28789	31 01
.58	.61307	.78751	.17297	.06929	.52267	.71822	.9133	.28178	31 31
.59	.62483	.79576	.17916	.07157	.52990	.72419	.8872	.27581	32 00
0.60	0.63665	9.80390	1.18547	0.07389	0.53705	9.73001	1.8620	0.26999	32 29
.61	.64854	.81194	.19189	.07624	.54413	.73570	.8378	.26430	32 58
.62	.66049	.81987	.19844	.07861	.55113	.74125	.8145	.25875	33 27
.63	.67251	.82770	.20510	.08102	.55805	.74667	.7919	.25333	33 55
.64	.68459	.83543	.21189	.08346	.56490	.75197	.7702	.24803	34 24
0.65	0.69675	9.84308	1.21879	0.08593	0.57167	9.75715	1.7493	0.24285	34 52
.66	.70897	.85063	.22582	.08843	.57836	.76220	.7290	.23780	35 20
.67	.72126	.85809	.23297	.09095	.58498	.76714	.7095	.23286	35 48
.68	.73363	.86548	.24025	.09351	.59152	.77197	.6906	.22803	36 16
.69	.74607	.87278	.24765	.09609	.59798	.77669	.6723	.22331	36 44
0.70	0.75858	9.88000	1.25517	0.09870	0.60437	9.78130	1.6546	0.21870	37 11
.71	.77117	.88715	.26282	.10134	.61068	.78581	.6375	.21419	37 38
.72	.78384	.89423	.27059	.10401	.61691	.79022	.6210	.20978	38 05
.73	.79659	.90123	.27849	.10670	.62307	.79453	.6050	.20547	38 32
.74	.80941	.90817	.28652	.10942	.62915	.79 ⁸ 75	.5895	.20125	38 59
0.75	0.82232	9.91 504	1.29468	0.11216	0.63515	9.80288	1.5744	0.19712	39 26
.76	.83530	.9218 5	.30297	.11493	.64108	.80691	.5599	.19309	39 52
.77	.84838	.92859	.31139	.11773	.64693	.81086	.5458	.18914	40 19
.78	.86153	.93527	.31994	.12055	.65271	.81472	.5321	.18528	40 45
.79	.87478	.94190	.32862	.12340	.65841	.81850	.5188	.18150	41 11
0.80	0.88811	9.94846	1.33743	0.12627	0.66404	9.82219	1.5059	0.17781	41 37
.81	.90152	.95498	.34638	.12917	.66959	.82581	.4935	.17419	42 02
.82	.91503	.96144	.35547	.13209	.67507	.82935	.4813	.17065	42 28
.83	.92863	.96784	.36468	.13503	.68048	.83281	.4696	.16719	42 53
.84	.94233	.97420	.37404	.13800	.68581	.83620	.4581	.16380	43 18
0.85	0.95612	9.98051	1.38353	0.14099	0.69107	9.83952	1.4470	0.16048	43 43
.86	.97000	.98677	.39316	.14400	.69626	.84277	.4362	.15723	44 08
.87	.98398	.99299	.40293	.14704	.70137	.84595	.4258	.15405	44 32
.88	.99806	.99916	.41284	.15009	.70642	.84906	.4156	.15094	44 57
.89	1.01224	0.00528	.42289	.15317	.71139	.85211	.4057	.14789	45 21
0.90 .91 .92 .93 .94	1.02652 .04090 .05539 .06998 .08468	0.01137 .01741 .02341 .02937 .03530	1.43309 .44342 .45390 .46453 .47530	0.1 5627 .1 5939 .162 54 .16570 .16888	0.71630 .72113 .72590 .73059 .73522	9.85509 .85801 .86088 .86368 .86368 .86642	1.3961 .3867 .3776 .3687 .3601	0.14491 .14199 .13912 .13632 .13358	45 45 46 09 46 33 46 56 47 20
0.95	1.09948	0.04119	1.48623	0.17208	0.73978	9.86910	1.3517	0.13090	47 43
.96	.11440	.04704	.49729	.17531	.74428	.87173	.3436	.12827	48 06
.97	.12943	.05286	.50851	.17855	.74870	.87431	.3356	.12569	48 29
.98	.14457	.05864	.51988	.18181	.75307	.87683	.3279	.12317	48 51
.99	.15983	.06439	.53141	.18509	.75736	.87930	.3204	.12070	49 14
1.00	1.17520	0.07011	1.54308	0.18839	0.76159	9.88172	1.3130	0.11828	49 36

TABLE 16 (continued).HYPERBOLIC FUNCTIONS.

	sinl	1. u	cosl). u	tan	h, u	col	:h u	
11	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
1.00 .01	.19069	0.07011	1.54308 .55491	0.18839 .19171	0.761 59 .76576	9.88172 .88409	1.3130 .3059	0.11828	49°36′ 49 58
.02	.20630	.08146	•56689	.19504	.76987	.88642	.2989	.11358	50 21
.03	.22203	.08708	•57904	.19839	.77391	.88869	.2921	.11131	50 42
.04	.23788	.09268	•59134	.20176	.77789	.89092	.2855	.10908	51 04
1.05	1.25386	0.09825	1.60379	0.20515	0.78181	9.89310	1.2791	0.10690	51 26
.06	.26996	.10379	.61641	.20855	.78566	.89524	.2728	.10476	51 47
.07	.28619	.10930	.62919	.21197	.78946	.89733	.2667	.10267	52 08
.08	.30254	.11479	.64214	.21541	.79320	.89938	.2607	.10062	52 29
.09	.31903	.12025	.65525	.21886	.79688	.90139	.2549	.09861	52 50
I.10	1.33565	0.12569	1.66952	0.22233	0.80050	9.90336	1.2492	0.09664	53 11
.II	.35240	.13111	.68196	.22582	.80406	.90529	.2437	.09471	53 31
.12	.36929	.13649	.69557	.22931	.80757	.90718	.2383	.09282	53 52
.13	.38631	.14186	.70934	.23283	.81102	.90903	.2330	.09097	54 12
.I4	.40347	.14720	. 7 2329	.23636	.8144 1	.91085	.2279	.08915	54 32
1.15	1.42078	0.15253	1.73741	0.23990	0.81775	9.91262	1.2229	0.08738	54 52
.16	.43822	.15783	.75171	.24346	.82104	.91436	.2180	.08564	55 11
.17	.45581	.16311	.76618	.24703	.82427	.91607	.2132	.08393	55 31
.18	.47355	.16836	.78083	.25062	.82745	.91774	.2085	.08226	55 50
.19	.49143	.17360	.79565	.25422	.83058	.91938	.2040	.08062	56 09
I.20	1.50946	0.17882	1.81066	0.25784	0.83365	9.92099	1.1995	0.07901	56 29
.21	.52764	.18402	.82584	.26146	.83668	.92256	.1952	.07744	56 47
.22	.54598	.18920	.84121	.26510	.83965	.92410	.1910	.07590	57 06
.23	.56447	.19437	.85676	.26876	.84258	.92561	.1868	.07439	57 25
.24	.58311	.19951	.87250	.27242	.84546	.92709	.1828	.07291	57 43
I.25	1.60192	0.20464	1.88842	0.27610	0.84828	9.92854	1.1789	0.07146	58 02
.26	.62088	.20975	.90454	.27979	.85106	.92996	.1750	.07004	58 20
.27	.64001	.21485	.92084	.28349	.85380	.93135	.1712	.06865	58 38
.28	.65930	.21993	.93734	.28721	.85648	.93272	.1676	.06728	58 55
.29	.67876	.22499	.95403	.29093	.85913	.93406	.1640	.06594	59 13
1.30	1.69838	0.23004	1.97091	0.29467	0.86172	9.93537	1.1605	0.06463	59 31
.31	.71818	.23507	.98800	.29842	.86428	.93665	.1570	.06335	59 48
.32	.73814	.24009	2.00528	.30217	.86678	.93791	.1537	.06209	60 05
.33	.75828	.24509	.02276	.30594	.86925	.93914	.1504	.06086	60 22
.34	.77860	.25008	.04044	.30972	.87167	.94035	.1472	.05965	60 39
1.35	1.79909	0.25505	2.05833	0.31352	0.87405	9.941 54	1.1441	0.05846	60 56
.36	.81977	.26002	.07643	.31732	.87639	.94270	.1410	.05730	61 13
.37	.84062	.26496	.09473	.32113	.87869	.94384	.1381	.05616	61 29
.38	.86166	.26990	.11324	.32495	.88095	.94495	.1351	.05505	61 45
.39	.88289	.27482	.13196	.32878	.88317	.94604	.1323	.05396	62 02
I.40	1.90430	0.27974	2.15090	0.33262	0.88535	9.94712	1.1295	0.05288	62 18
.41	.92591	.28464	.17005	.33647	.88749	.94817	.1268	.05183	62 34
.42	.94770	.28952	.18942	.34033	.88960	.94919	.1241	.05081	62 49
.43	.96970	.29440	.20900	.34420	.89167	.95020	.1215	.04980	63 05
.44	.99188	.29926	.22881	.34807	.89370	.95119	.1189	.04881	63 20
1.45	2.01427	0.30412	2.24884	0.35196	0.89569	9.95216	1.1165	0.04784	63 36
.46	.03686	.30896	.26910	.35585	.89765	.95311	.1140	.04689	63 51
.47	.05965	.31379	.28958	.35976	.89958	.95404	.1116	.04596	64 06
.48	.08265	.31862	.31029	.36367	.90147	.95495	.1093	.04505	64 21
.49	.10586	.32343	.33123	.36759	.90332	.95584	.1070	.04416	64 36
1.50	2,12928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	64 51

TABLE 16 (continuea).HYPERBOLIC FUNCTIONS.

u	sin	h. u	cos	h. u	tan	b. u	co	th. u	gd.	u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gu.	u
1.50 .51 .52 .53 .54	2.12928 .15291 .17676 .20082 .22510	0.32823 .33303 .33781 .34258 .34735	2.35241 .37382 .39547 .41736 .43949	0.37151 ·37545 ·37939 ·38334 ·38730	0.90515 .90694 .90870 .91042 .91212	9.95672 .95758 .95842 .95924 .96005	1.1048 .1026 .1005 .0984 .0963	0.04328 .04242 .04158 .04076 .03995	64° 65 65 65 65	51' 05 20 34 48
1.55 .56 .57 .58 .59	2.24961 .27434 .29930 .32449 .34991	0.35211 .35686 .36160 .36633 .37105	2.46186 .48448 .50735 .53047 .55384	0.39126 .39524 .39921 .40320 .40719	0.91379 .91542 .91703 .91860 .92015	9 96084 .96162 .96238 .96313 .96386	1.0943 .0924 .0905 .0886 .0868	0.03916 .03838 .03762 .03687 .03614	66 66 66 66 66	02 16 30 43 57
1.60 .61 .62 .63 .64	2.37557 40146 .42760 .45397 .48059	0.37577 .38048 .38518 .38987 .39456	2.57746 .60135 .62549 .64990 .67457	0.41119 .41520 .41921 .42323 .42725	0.92167 .92316 .92462 .92606 .92747	9.96457 .96528 .96597 .96664 .96730	1.0850 .0832 .0815 .0798 .0782	0.03543 .03472 .03403 .03336 .03270	67 67 67 67 68	10 24 37 50 03
1.65 .66 .67 .68 .69	2.50746 .53459 .56196 .58959 .61748	0.39923 .40391 .40857 .41323 .41788	2.69951 .72472 .75021 .77596 .80200	0.43129 •43532 •43937 •44341 •44747	0.92886 .93022 .93155 .93286 .93415	9.96795 .96858 .96921 .96982 .97042	1.0766 .0750 .0735 .0720 .0705	0.03205 .03142 .03079 .03018 .02958	68 68 68 68 69	15 28 41 53 05
1.70 .71 .72 .73 .74	2.64563 .67405 .70273 .73168 .76091	0.42253 .42717 .43180 .43643 .44105	2.82832 .85491 .88180 .90897 .93643	0.45153 -45559 .45966 .46374 .46782	0.93541 .93665 .93786 .93906 .94023	9.97100 .97158 .97214 .97269 .97323	1.0691 .0676 .0663 .0649 .0636	0.02900 .02842 .02786 .02731 .02677	69 69 69 69 70	18 30 42 54 05
1.75 .76 .77 .78 .79	2.79041 .82020 .85026 .88061 .91125	0.44567 .45028 .45488 .45948 .46408	2.96419 .99224 3.02059 .04925 .07821	0.47191 .47600 .48009 .48419 .48830	0.94138 .94250 .94361 .94470 .94576	9.97376 .97428 .97479 .97529 .97578	1.0623 .0610 .0598 .0585 .0574	0.02624 .02572 .02521 .02471 .02422	70 70 70 70 71	17 29 40 51 03
1.80 .81 .82 .83 .84	2.94217 .97340 3.0049 2 .03674 .06886	0.46867 .47325 .47783 .48241 .48698	3.10747 .13705 .16694 .19715 .22768	0.49241 .49652 .50064 .50476 .50889	0.94681 .94783 .94884 .94983 .95080	9.97626 .97673 .97719 .97764 .97809	1.0562 .0550 .0539 .0528 .0518	0.02374 .02327 .02281 .02236 .02191	71 71 71 71 71 71	14 25 36 46 57
1.85 .86 .87 .88 .89	3.10129 .13403 .16709 .20046 .23415	0.49154 .49610 .50066 .50521 .50976	3.25853 .28970 .32121 .35305 .38522	0.51302 .51716 .52130 .52544 .52959	0.95175 .95268 .95359 .95449 .95537	9.97852 .97895 .97936 .97977 .98017	1.0507 .0497 .0487 .0477 .0467	0.02148 .02105 .02064 .02023 .01983	72 72 72 72 72 72	08 18 29 39 49
1.90 .91 .92 .93 .94	3.26816 .30250 .33718 .37218 .40752	0.51430 .51884 .52338 .52791 .53244	3.41773 .45058 .48378 .51733 .55123	0.53374 •53789 •54205 •54621 •55038	0.95624 .95709 .95792 .95873 .95953	9.98057 .98095 .98133 .98170 .98206	1.0458 .0448 .0439 .0430 .0422	0.01943 .01905 .01867 .01830 .01794	72 73 73 73 73 73	59 09 19 29 39
1.95 .96 .97 .98 .99	3.44321 .47923 .51561 .55234 .58942	0.53696 .54148 .54600 .55051 .55502	3.58548 .62009 .65507 .69041 .72611	0.55455 .55872 .56290 .56707 .57126	0.96032 .96109 .96185 .96259 .96331	9.98242 .98276 .98311 .98344 .98377	1.0413 .0405 .0397 .0389 .0381	0.01758 .01724 .01689 .01656 .01623	73 73 74 74 74 74	48 58 07 17 26
2.00	3.62686	o.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01 591	74	35

TABLE 16 (continued).HYPERBOLIC FUNCTIONS.

u		h. u	COSI	1, ա	tan	h. u	cot	h. u.	
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
2.00	3.62686	0.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01 591	74°35'
.01	.66466	.56403	.79865	.57963	.96473	.98440	.0366	.01 560	74 44
.02	.70283	.56853	.83549	.58382	.96541	.98471	.0358	.01 529	74 53
.03	.74138	.57303	.87271	.58802	.96609	.98502	.0351	.01 498	75 02
.04	.78029	.57753	.91032	.59221	.96675	.98531	.0344	.01 469	75 11
2.05	3.81958	0.58202	3.94832	0.59641	0.96740	9.98560	1.0337	0.01440	75 20
.06	.85926	.58650	.98671	.60061	.96803	.98589	.0330	.01411	75 28
.07	.89932	.59099	4.02550	.60482	.96865	.98617	.0324	.01383	75 37
.08	.93977	.59547	.06470	.60903	.96926	.98644	.0317	.01356	75 45
.09	.98061	.59995	.10430	.61324	.96986	.98671	.0311	.01329	75 54
2.10	4.02186	0.60443	4.14431	0.61745	0.97045	9.98697	1.0304	0.01303	76 02
.11	.06350	.60890	.18474	.62167	.97103	.98723	.0298	.01277	76 10
.12	.10555	.61337	.22558	.62589	.97159	.98748	.0292	.01252	76 19
.13	.14801	.61784	.26685	.63011	.97215	.98773	.0286	.01227	76 27
.14	.19089	.62231	.30855	.63433	.97269	.98798	.0281	.01202	76 35
2.15 .16 .18 .19	4.23419 .27791 .32205 .36663 .41165	0.62677 .63123 .63569 .64015 .64460	4.35067 .39323 .43623 .47967 .52356	0.63856 .64278 .64701 .65125 .65548	0.97323 .97375 .97426 .97477 .97526	9.98821 .98845 .98868 .98890 .98912	1.0275 .0270 .0264 .0259 .0254	0.01179 .01155 .01132 .01110 .01088	76 43 76 51 76 58 77 06 77 14
2.20	4.45711	0.6490 5	4.56791	0.65972	0.97574	9.98934	1.0249	0.01066	77 21
.21	.503 01	.65350	.61271	.66396	.97622	.98955	.0244	.01045	77 29
.22	.54936	.65795	.65797	.66820	.97668	.98975	.0239	.01025	77 36
.23	.59617	.66240	.70370	.67244	.97714	.98996	.0234	.01004	77 44
.24	.64344	.66684	.74989	.67668	.97 7 59	.99016	.0229	.00984	77 51
2.25	4.69117	0.67128	4.79657	0.68093	0.97803	9.99035	1.0225	0.00965	77 58
.26	•73937	.67572	.84372	.68518	.97846	.99054	.0220	.00946	78 05
.27	.78804	.68016	.89136	.68943	.97888	.99073	.0216	.00927	78 12
.28	.83720	.68459	.93948	.69368	.97929	.99091	.0211	.00909	78 19
.29	.88684	.68903	.98810	.69794	.97970	.99109	.0207	.00891	78 26
2.30	4.93696	0.69346	5.03722	0.70219	0.98010	9.99127	1.0203	0.00873	78 33
.31	.98758	.69789	.08684	.70645	.98049	.99144	.0199	.00856	78 40
.32	5.03870	.70232	.13697	.71071	.98087	.99161	.0195	.00839	78 46
.33	.09032	.70675	.18762	.71497	.98124	.99178	.0191	.00822	78 53
.34	.14245	.71117	.23878	.71923	.98161	.99194	.0187	.00806	79 00
2.35	5.19510	0.71559	5.29047	0.72349	0.98197	9•99210	1.0184	0.00790	79 06
.36	.24827	.72002	•34269	.72776	.98233	.99226	.0180	.00774	79 13
.37	.30196	.72444	•39544	.73203	.98267	.99241	.0176	.00759	79 19
.38	.35618	.72885	•44873	.73630	.98301	.99256	.0173	.00744	79 25
.39	.41093	.73327	•50256	.74056	.98335	.99271	.0169	.00729	79 3 ²
2.40	5.46623	0.73769	5.55695	0.74484	0.98367	9.99285	1.0166	0.00715	79 38
.41	.52207	.74210	.61189	.74911	.98400	.99299	.0163	.00701	79 44
.42	.57847	.74652	.66739	.75338	.98431	.99313	.0159	.00687	79 50
.43	.63542	.75093	.72346	.75766	.98462	.99327	.0156	.00673	79 56
.44	.69294	.75534	.78010	.76194	.98492	.99340	.0153	.00660	80 02
2.45	5.7 5103	0.75975	5.83732	0.76621	0.98522	9-99353	1.0150	0.00647	80 08
.46	.80969	.76415	.89512	.77049	.98551	.99366	.0147	.00634	80 14
.47	.86893	.76856	.95352	.77477	.98579	.99379	.0144	.00621	80 20
.48	.92876	.77296	6.01250	.77906	.98607	.99391	.0141	.00609	80 26
.49	.98918	.77737	.07209	.78334	.98635	.99403	.0138	.00597	80 31
2.50	6.05020	0.7 8177	6.1 3229	0.78762	0.98661	9.99415	1.0136	0.00585	80 37

	sir	ıh. u	CO	sh. u	ta	nh. u	co	th. u	Ī	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	g	d. u
2.50 .51 .52 .53 .54	6.05020 .11183 .17407 .23692 .30040	0.78177 .78617 .79057 .79497 .79937	6.13229 .19310 .25453 .31658 .37927	0.78762 .79191 .79619 .80048 .80477	0.98661 .98688 .98714 .98739 .98764	9.9941 5 .99426 .99438 .99449 .99460	1.0136 .0133 .0130 .0128 .0125	0.00585 .00574 .00562 .00551 .00540	80 ⁶ 80 80 80 80	37' 42 48 53 59
2.55 .56 .57 .58 .59	6.36451 .42926 .49464 .56068 .62738	0.80377 .80816 .81256 .81695 .82134	6.44259 .50656 .57118 .63646 .70240	0.80906 .81335 .81764 .82194 .82623	0.98788 .98812 .98835 .98858 .98881	9.99470 .99481 .99491 .99501 .99511	1.0123 .0120 .0118 .0115 .0113	0.00530 .00519 .00509 .00499 .00489	81 81 81 81 81 81	04 10 15 20 25
2.60 .61 .62 .63 .64	6.69473 .76276 .83146 .90085 .97092	0.82573 .83012 .83451 .83890 .84329	6.76901 .83629 .90426 .97292 7.04228	0.83052 .83482 .83912 .84341 .84771	0.98903 .98924 .98946 .98966 .98987	9.99521 .99530 .99540 .99549 .99558	1.0111 .0109 .0107 .0104 .0102	0.00479 .00470 .00460 .00451 .00442	81 81 81 81 81 81	30 35 40 45 50
2.65 .66 .67 .68 .69	7.04169 .11317 .18536 .25827 .33190	0.84768 .85206 .85645 .86083 .86522	7.11234 .18312 .25461 .32683 .39978	0.85201 .85631 .86061 .86492 .86922	0.99007 .99026 .99045 .99064 .99083	9.99566 .99575 .99583 .99592 .99600	1.0100 .0098 .0096 .0094 .0093	0.00434 .00425 .00417 .00408 .00400	81 82 82 82 82 82	55 00 05 09 14
2.70 .71 .72 .73 .74	7.40626 .48137 .55722 .63383 .71121	0.86960 .87398 .87836 .88274 .88712	7-47347 .54791 .62310 .69905 .77578	0.87352 •87783 .88213 .88644 .89074	0.99101 .99118 .99136 .99153 .99170	9.99608 .99615 .99623 .99631 .99638	1.0091 .0089 .0087 .0085 .0084	0.00392 .00385 .00377 .00369 .00362	82 82 82 82 82 82	19 23 28 32 37
2.75 .76 .77 .78 .79	7.78935 .86828 .94799 8.02849 .10980	0.89150 .89588 .90026 .90463 .90901	7.85328 .93157 8.01065 .09053 .17122	0.89505 .89936 .90367 .90798 .91229	0.99186 .99202 .99218 .99233 .99248	9-99645 .99652 .99659 .99666 .99672	1.0082 .0080 .0079 .0077 .0076	0.00355 .00348 .00341 .00334 .00328	82 82 82 82 82 82	41 45 50 54 58
2.80 .81 .82 .83 .84	8.19192 .27486 .35862 .44322 .52867	0.91339 .91776 .92213 .92651 .93088	8.25273 •33506 .41823 •50224 •58710	0.91660 .92091 .92522 .92953 .933 ⁸ 5	0.99263 .99278 .99292 .99306 .99320	9.99679 .99685 .99691 .99698 .99704	1.0074 .0073 .0071 .0070 .0069	0.00321 .00315 .00309 .00302 .00296	83 83 83 83 83	02 07 11 15 19
2.85 .86 .87 .88 .89	8.61497 .70213 .79016 .87907 .96887	0.93525 .93963 .94400 .94837 .95274	8.67281 .75940 .84686 .93520 9.02444	0.93816 .94247 .94679 .95110 .95542	0.99333 .99346 .99359 .99372 .99384	9.99709 .99715 .99721 .99726 .99732	1.0067 .0066 .0065 .0063 .0062	0.00291 .00285 .00279 .00274 .00268	83 83 83 83 83 83	23 27 31 34 38
2.90 .91 .92 .93 .94	9.05956 .15116 .24368 .33712 .43149	0.95711 .96148 .96584 .97021 .97458	9.11458 .20564 .29761 .39051 .48436	0.95974 .96405 .96837 .97269 .97701	0.99396 .99408 .99420 .99531 .99443	9.99737 .99742 .99747 .99752 .99757	1.0061 .0060 .0058 .0057 .0056	0.00263 .00258 .00253 .00248 .00243	83 83 83 83 83	42 46 50 53 57
2.95 .96 .97 .98 .99	9.52681 .62308 .72031 .81851 .91770	0.97895 .98331 .98768 .99205 .99641	9.57915 .67490 .77161 .86930 .96798	0.98133 .98565 .98997 .99429 .99861	0.99454 .99464 .99475 .99485 .99496	9.99762 .99767 .99771 .99776 .99780	1.0055 .0054 .0053 .0052 .0051	0.00238 .00233 .00229 .00224 .00220	84 84 84 84 84	00 04 08 11 15
3.00	1 0.01 787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	84	18

HYPERBOLIC FUNCTIONS.

	sin	h. u	cos	h. u	tan	h. u	cot	h. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log,	Nat.	Log.	gd. u
3.0	10.0179	1.00078	10.0677	1.00293	0.99505	9.99785	1.0050	0.00215	84°18'
.1	11.0765	.04440	11.1215	.04616	.99595	.99824	.0041	.00176	84 50
.2	12.2459	.08799	12.2866	.08943	.99668	.99856	.0033	.00144	85 20
.3	13.5379	.13155	13.5748	.13273	.99728	.99882	.0027	.00118	85 47
.4	14.9654	.17509	14.9987	.17605	.99777	.99903	.0022	.00097	86 11
3.5	16.5426	1.21860	16.5728	1.21940	0.99818	9.99921	1.0018	0.00079	86 32
.6	18.2855	.26211	18.3128	.26275	.99851	•99935	.0015	.00065	86 52
.7	20.2113	.30559	20.2360	.30612	.99878	•99947	.0012	.00053	87 10
.8	22.3394	.34907	22.3618	.34951	.99900	•99957	.0010	.00043	87 26
.9	24.6911	.39254	24.7113	.39290	.99918	•99964	.0008	.00036	87 41
4.0	27.2899	1.43600	27.3082	1.43629	0.99933	9.99971	1.0007	0.00029	87 54
.1	30.1619	.47946	30.1784	.47970	•99945	.99976	.0005	.00024	88 06
.2	33.3357	.52291	33.3507	.52310	•99955	.99980	.0004	.00020	88 17
.3	36.8431	.56636	36.8567	.56652	.99963	.99984	.0004	.00016	88 27
.4	40.7193	.60980	40.7316	.60993	•99970	.99987	.0003	.00013	88 36
4.5 .6 .7 .8 .9 5.0	45.0030 49.7371 54.9690 60.7511 67.1412 74.2032	1.65324 .69668 .74012 .78355 .82699 1.87042	45.0141 49.7472 54.9781 60.7593 67.1486 74.2099	1.65335 .69677 .74019 .78361 .82704 1.87046	0.99975 .99980 .99983 .99986 .99989 0.99991	9.99989 .99991 .99993 .99994 .99995 9.99996	1.0002 .0002 .0002 .0001 .0001	0.00011 .00009 .00007 .00006 .00005	88 44 88 51 88 57 89 03 89 09 89 14

Table 17. Factorials.

See table 15 for logarithms of the products $1.2.3. \ldots n$ from 1 to 100. See table 31 for log. (n+1) for values of n between 1.000 and 2.000.

n	$\frac{I}{n:}$	$n:=1.2.3.4\ldots n$	7
1 2 3 4 5	I. o.5 .16666 66666 66666 66666 66667 .04166 66666 66666 66666 66667 .00833 33333 33333 33333 33333	2 2	1 2 3 4 5
6 7 8 9 10	0.00138 88888 88888 88888 88888 88889 .00019 84126 98412 69841 26984 .00002 48015 87301 58730 15873 .00000 27557 31922 39858 90653 .00000 02755 73192 23985 89065		
11 12 13 14 15	0.00000 00250 52108 38544 17188 .00000 00200 87675 69878 68099 .00000 00001 60590 43836 82161 .00000 00000 11470 74559 77297 .00000 00000 00764 71637 31820	399 16800 11 4790 01600 12 62270 20800 13 8 71782 91200 14 130 76743 68000 15	2 3 4
16 17 18 19 20	0.00000 00000 00047 79477 33239 .00000 00000 00002 81145 72543 .00000 00000 00000 15619 20697 .00000 00000 00000 00822 06352 .00000 00000 00000 00241 10318	2092 27898 88000 16 35568 74280 96000 17 6 40237 37057 28000 18 121 64510 04088 32000 19 2432 90200 81766 40000 20	7 8 9

TABLE 18. EXPONENTIAL FUNCTION.

EXPONENTIAL FUNCTION.											
x	$\log_{10}(ex)$	et	e-x	<i>x</i>	$\log_{10}(ex)$	ex	e				
0.00 .01 .02	0.00000 .00434 .00869	1.0000 .0101 .0202	1.000000 0.990050	0.50 .51	0.21715 .22149 .22583	1.6487 .6653 .6820	0.606531 .600496				
1			.980199	.52	.22503	.6989	.594521 .588605				
.03 .04	.01303 .0173 7	.0305 .0408	.970446 .960789	•53	.23018	.7160	.582748				
				•54							
0.05 .06	0.02171	1.0513 .0618	0.951229 .941765	0.55 .56	0.23886	1.7333	0.576950 .571209				
.00	.02000	.0725		.50	.24320	•7507 •7683	-5/1209				
.07	.03474	.0833	.932394 .923116	•57 •58	.24755 .25189	.7860	.565525 .559898				
.00	.03909	.0033	.913931	.59	.25623	.8040	•554327				
					5 0						
0.10	0.04343	1.1052	0. 904837	0.60	0.26058	1.8221	0.548812				
.11	.04777	.1163	.895834	.61	.26492	.8404	.543351				
.12	.05212	.1275 .1388	.886920	.62	26926	.8589	·537944				
.13	.05646		.878095 .869358	.63	.27361	.8776	.532592				
.14	.08080	.1 503	.809358	.64	.27795	.8965	.527292				
0.15	0.06514	1.1618	0.860708	0.65	0.28229	1.9155 .9348	0. 522046				
.16	.06949	.1735	.852144	.66	.28663	.9348	.516851				
.17	.07383	.1735 .1853	.843665	.67	.29098	·9542	.511709				
.18	.07817	.1972	.835270	.68	.29532	- 97 3 9	.506617				
.19	.08252	.2092	.826959	.69	.29966	•9937	.501 576				
0.20	o .o8686	1.2214	0.818731 .810584	0.70	0.3040 1	2.0138	0.496585				
.21	.09120	·2337	.810584	.71	.30835	.0340	.491644				
.22	.09554	.2461	.802519	.72	.31269	.0544	.486752				
23	.09989	.2586	·794534	•73	.31703	.0751	.481909				
.24	.10423	.2712	.786628	•74	.32138	•0959	•477114				
0.25	0.10857	1.2840	0.778801	0.75	0.32572	2,1170	0.472367				
.26	.11292	.2969	.771052	.76	.33006	.1383 .1598 .1815	.467666				
.27	.11726	.3100	.703379	•77 •78	.33441 .33 ⁸ 75	.1 598	.463013				
	.12160	.3231	.763379 .755784 .748264		-33 ⁸ 75	.1815	·45 ⁸ 406				
.29	.12595	.3364	•740204	•79	•34309	.2034	•453 ⁸ 45				
0.30	0.1 3029	1.3499	0.740818	0.80	0.34744	2.2255	0.449329 .444858				
.31	.13463	.3634	•733447	.81	.35178	·2479					
.32	.13897	.3771	.726149	.82	.35612 .36046	.2705	.440432				
•33	.14332 .14766	.3910 .4049	.718924	.83 .84	.30040	.2933	•436049				
•34	.14/00	.4049	.711770	•04	.36481	.3164	.431711				
0.35	0.1 5200	1.4191	0.704688	0.85 .86	0.36915	2.3396	0.427415				
.36	.15635	•4333	.697676		.37.349	.2622	.423162				
•37 •38	.16069	·4477	.690734 .683861	.87	.37784 .38218	.3869	.418952				
.38	.16503	.4623	.683861	.88	.38218	.4109	.4147Ĕ3				
•39	.16937	·4770	.677057	.89	.38652	.4351	.410656				
0.40	0.17372	1.4918	0.670320	0.90	0. 39087	2.4596	0.406570				
.41	.17806	.5 0 68	.663650	.91	.39521	.4843	.402524				
.42	.18240	.5220	.657047	.92	.39955	.5093	.398519				
•43	.18675	·5373	.650509	•93	.40389						
•44	.19109	.5527	.644036	•94	.40824	•5345 •5600	•394554 •390628				
0.45	0.19543	1.5683	0.637628	0.95	0.41258	2.5857	0.386741				
.46	0.19543 .19978	.5841 .6000	.631284	.96	.41692	2.5857 .6117	.382893				
.47	.20412		62 500 2	.97	.42127	.6370	379083				
.48	.20846	.6161	.618783	.98	.42561	6645	.37 5311				
•49	.21280	.6323	.612626	•99	·42995	.6912	.371577				
0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879				
	l						0.30/0/9				
				the second s							

EXPONENTIAL FUNCTION.

£	$\log_{10}\left(e^{x} ight)$	e X	e—x	x	$\log_{10}\left(e^{x} ight)$	ex	e-x
1.00	0.43429	2.7 18 3	0.367879	1.50	0.65144	4.4817	0.223130
.01	.43864	.74 56	.364219	.51	.65578	.5267	.220910
.02	.44298	.77 32	.360595	.52	.66013	.5722	.218712
.03	.44732	.801 1	.357007	.53	.66447	.6182	.216536
.04	.45167	.8292	.353455	.54	.66881	.6646	.214381
1.05	0.45601	2.8577	0.349938	1.55	0.67316	4.7115	0.212248
.06	.46035	.8864	.346456	.56	.67750	.7588	.210136
.07	.46470	.9154	.343009	.57	.68184	.8066	.208045
.08	.46904	.9447	.339596	.58	.68619	.8550	.205975
.09	.47338	.9743	.336216	.59	.69053	.9037	.203926
1.10	0.47772	3.0042	0.332871	1.60	0.69487	4.9530	0.201897
.11	.48207	.0344	.329559	.61	.69921	5.0028	.199888
.12	.48641	.0649	.326280	.62	.70356	.0531	.197899
.13	.49075	.0957	.323033	.63	.70790	.1039	.195930
.14	.49510	.1268	.319819	.64	.71224	.1552	.193980
1.15	0.49944	3.1582	0.316637	1.65	0.71659	5.2070	0.192050
.16	.50378	.1899	.313486	.66	.72093	.2593	.190139
.17	.50812	.2220	.310367	.67	.72527	.3122	.188247
.18	.51247	.2544	.307279	.68	.72961	.3656	.186374
.19	.51681	.2871	.304221	.69	.73396	.4195	.184520
1.20	0.52115	3.3201	0.301194	1.70	0.73830	5.4739	0.182684
.21	.52550	•3535	.298197	.71	.74264	.5290	.180866
.22	.52984	•3872	.295230	.72	.74699	.5845	.179066
.23	.53418	•4212	.292293	.73	.75133	.6407	.177284
.24	.53853	•4556	.289384	.74	.75567	.6973	.175520
1.25	0.54287	3.4903	0.286505	1.75	0.76002	5.7 546	0.173774
.26	.54721	•5254	.283654	.76	.76436	.81 24	.172045
.27	.55155	•5609	.280832	.77	.76870	.8709	.170333
.28	.55590	•5966	.278037	.78	.77304	.9299	.168638
.29	.56024	•6328	.275271	.79	.77739	.9895	.166960
1.30	0.56458	3.6693	0.272532	1.80	0.78173	6.0496	0.165299
.31	.56893	.7062	.269820	.81	.78607	.1104	.163654
.32	.57327	.7434	.267135	.82	.79042	.1719	.162026
.33	.57761	.7810	.264477	.83	.79476	.2339	.160414
.34	.58195	.8190	.261846	.84	.79910	.2965	.158817
1.35	0.58630	3.8574	0.259240	1.85	0.80344	6.3598	0.157237
.36	.59064	.8962	.256661	.86	.80779	.4237	.155673
.37	.59498	.9354	.254107	.87	.81213	.4883	.154124
.38	.59933	.9749	.251579	.88	.81647	.5535	.152590
.39	.60367	4.0149	.249075	.89	.82082	.6194	.151072
1.40	0.60801	4.0552	0.246597	1.90	0.82516	6.6859	0.149569
.41	.61236	.0960	.244143	.91	.82950	.7531	.148080
.42	.61670	.1371	.241714	.92	.83385	.8210	.146607
.43	.62104	.1787	.239309	.93	.83819	.8895	.145148
.44	.62538	.2207	.236928	.94	.84253	.9588	.143704
1.45	0.62973	4.2631	0.234570	1.95	0.84687	7.0287	0.142274
.46	.63407	.3060	.232236	.96	.85122	.0993	.140858
.47	.63841	.3492	.229925	.97	.85556	.1707	.139457
.48	.64276	.3929	.227638	.98	.85990	.2427	.138069
.49	.64710	.4371	.225373	.99	.86425	.3155	.136695
1.50	0.65144	4.4817	0.223130	2.00	0.86859	7.3891	0.135335

EXPONENTIAL FUNCTION.

x	$\log_{10}(e^x)$	ex	x	•**	$\log_{10}(e^x)$	e ^x	e-x
2.00	0.86859	7.3891	0.135335 .133989	2.50	1.08574	12.182	0.082085
.01	.87293	.4633	.1 33989	• .51	.09008	.305	.081268
.02 .03	.87727 .88162	.538 3	.132655	.52	.09442 .09877	.429	.080460
.03	.88596	.6141 .69 0 6	.131336 .130029	•53 •54	.10311	•554 •680	.079659 .078866
		-		-		12.807	0.078082
2.05	0.89030 .89465	7.7679 .8460	0.128735	2.55 •56	1.10745 .11179	.936	.077305
	.89899	.9248	.127454 .126186	1 .57	.11614	13.066	.076536
.07 .08		8.0045	.124930	.58	.12048	.197	.075774
.09	.90333 .90768	.0849	.123687	•59	.12482	.330	.075020
2.10	0.91 202	8.1662	0.122456	2.60	1.12917	13.464	0.074274
.11	.91636	.2482	.121238	.61	.13351	.599	.073535 .072803
.12	.92070	.3311	.1 20032	.62	.13785	.736 .874	.0 72803
.13	.92505	.4149	.118837	.63	.14219	.874	.072078
.14	. 92939	•4994	.117655	.64	.14654	14.013	.071361
2.15	0.93373 .93808	8.5849	0.1 16484	2.65	1.15088	14.154	0.070651
.16	.93808	.6711	.11 5325	.66	.15522	.296	.069948
.17	.94242	.7583	.114178	.67 .68	.1 5957	.440	.069252
	.94676	.8463	.113042		.16391 .16825	.585	.068563 .067881
.19	.95110	·9352	.111917	.69	.10025	•732	.007881
2.20	0.95545	9.0250	0.110803	2.70	1.17260	14.880	0.067206
.21	·95979	.1157	.109701	.71	.17694	15.029	.066537
.22	.96413	.2073	.108609	.72	.18128	.180	.005875
.23	.96848	.2999	.107528	.73	.18562	•333	.065219
.24	.97282	•3933	.106459	•74	.18997	.487	.064570
2.25	0. 97716	9.4877	0.105399	2.75	1.19431	15.643	0.063928
.26	.98151	.5831	.104350	.76	.19865	.800	.063292
.27 .28	.98585 .99019	.6794	.103312 .102284	•77 •78	.20300	.959 16.119	.062662 .062039
.20	·99453	.7767 .8749	.101266	.70	.20734 .21168	.281	.061421
			-				
2.30	0.99888	9.9742	0.100259	2.80 .81	1.21602	16.445	0.060810
.31	1.00322	10.074 .176	.099261 .098274	.82	.22037	.610	.060205
.32	.00756 .01191	.278	.097296	.83	.2247 I .22905	•777 •945	.059606
·33 ·34	.01625	.381	.096328	.84	.23340	17.116	.059013 .058426
	Ĵ	-		. 0.			
2.35	1.02059	10.486	0.095369	2.85 .86	1.23774 .24208	17.288	0.057844
.36	.02493 .02928	.591 .697	.094420 .093481	.80	.24203	.462 .637	.057269 .056699
•37 •38	.03362	.805	.092551	.88	.24043	.814	.056135
.30	.03796	.913	.091630	.89	.25511	.993	.055576
2.40	1.04231 .04665	11.023	0.090718 .089815	2.90	1.25945 .26380	18.174	0.055023
.41	.05099	.134 .246	.089915	.91 .92	.20380	•357 •541	.054476
.42	.05534	·359	.088037	.92	.27248	.728	.053934
•43	.05968	.473	.087161	·93 ·94	.27683	.916	.053397 .052866
2.45	1.06402	11.588	0.0 8629 4	2.95	1.28117	1 9.1 0 6	0.052340
.46	.06836	.705	.085435	.96	.28551	.298	.051819
.47	.07271	.705	.084585	.97	.28551 .28985	.492	.051303
.48	.07705	.941	.083743	.98	.29420	.688	.050793
•49	.08139	12.061	.082910	•99	.29854	.886	.050287
2.50	1.08574	12.182	0.082085	3.00	1.30288	20.086	0.049787

EXPONENTIAL FUNCTION.

ж	log ₁₀ (ex)	ex	e—x	x	$\log_{10}(ex)$	ex	e-x
3.00	1.30288	20.086	0.049787	3.50	1.52003	33.115	0.030197
.01	.30723	.287	.049292	.51	.52437	.448	.029897
.02	.31157	.491	.048801	.52	.52872	.784	.029599
.03	.31591	.697	.048316	.53	.53306	34.124	.029305
.04	.32026	.905	.047835	.54	.53740	.467	.029303
3.05	1.32460	21.115	0.047359	3·55	1.54175	34.813	0.028725
.06	.32894	328	.046888	.56	.54609	35.163	.028439
.07	.33328	542	.046421	.57	.55043	.517	.028156
.08	.33763	758	.045959	.58	.55477	.874	.027876
.09	.34197	977	.045502	.59	.55912	36.234	.027598
3.10	1.34631	22.198	0.045049	3.60	1.56346	36.598	0.027324
.11	.35066	.421	.044601	.61	.56780	.966	.027052
.12	.35500	.646	.044157	.62	.57215	37.338	.026783
.13	.35934	.874	.043718	.63	.57649	.713	.026516
.14	.36368	23.104	.043283	.64	.58083	38.092	.026252
3.15	1.36803	23.336	0.042852	3.65	1.58517	38.475	0.025991
.16	.37237	.571	.042426	.66	.58952	.861	.025733
.17	.37671	.807	.042004	.67	.59386	39.252	.025476
.18	.38106	24.047	.041586	.68	.59820	.646	.025223
.19	.38540	.288	.041172	.69	.60255	40.045	.024972
3.20	1.38974	24.533	0.040762	3.70	1.60689	40.447	0.024724
.21	.39409	.779	.040357	.71	.61123	.854	.024478
.22	.39843	25.028	.039955	.72	.61558	41.264	.024234
.23	.40277	.280	.039557	.73	.61992	.679	.023993
.24	.40711	.534	.039164	.74	.62426	42.098	.023754
3.25	1.41146	25.790	0.038774	3.75	1.62860	42.521	0.023518
.26	.41580	26.050	.038388	.76	.63295	.948	.023284
.27	.42014	.311	.038006	.77	.63729	43.380	.023052
.28	.42449	.576	.037628	.78	.64163	.816	.022823
.29	.42883	.843	.037254	.79	.64598	44.256	.022596
3.30	1.43317	27.113	0.036883	3.80	1.65032	44.701	0.022371
.31	.43751	.385	.036516	.81	.65466	45.150	.022148
.32	.44186	.660	.036153	.82	.65900	.604	.021928
.33	.44620	.938	.035793	.83	.66335	46.063	.021710
.34	.45054	28.219	.035437	.84	.66769	.525	.021494
3·35	1.45489	28.503	0.035084	3.85	1.67203	46.993	0.021280
•36	.45923	.789	.034735	.86	.67638	47.465	.021068
•37	.46357	29.079	.034390	.87	.68072	.942	.020858
•38	.46792	.371	.034047	.88	.68506	48.424	.020651
•39	.47226	.666	.033709	.89	.68941	.911	.020445
3.40	1.47660	29.964	0.033373	3.90	1.69375	49.402	0.020242
.41	.48094	30.265	.033041	.91	.69809	.899	.020041
.42	.48529	.569	.032712	.92	.70243	50.400	.019841
.43	.48963	.877	.032387	.93	.70678	.907	.019644
.44	.49397	31.187	.032065	.94	.71112	51.419	.019448
3:45	1.49832	31.500	0.031746	3.95	1.71546	51.935	0.019255
.46	.50266	.817	.031430	.96	.71981	52.457	.019063
.47	.50700	32.137	.031117	.97	.72415	.985	.018873
.48	.51134	.460	.030807	.98	.72849	53.517	.018686
.49	.51569	.786	.030501	.99	.73283	54.055	.018500
3.50	1.52003	33.115	0.030197	4.00	1.73718	54-59 ⁸	0.018316

EXPONENTIAL FUNCTION.

	_		PONENTIA				
x	$\log_{10}(e^x)$	ex	e-x	x	$\log_{10}(e^{x})$	EZ	e-x
4.00 .01	1.73718	54.598 55.147	0.018316 .018133	4.50 .51	1.95433 .95867	90.017 .922	0.011109 .010998
.02	.74152 .74586	.701	.017953	.52	.96301	91.836	.010880
.03	.7 5021	56.261	.017774	•53	.96735	92.759	.010781
.04	•7 54 55	.826	.017597	•54	.97170	93.691	.010673
4.05 .00	1.7 5889 .76324	57·397 ·974	0.017422 .017249	4.55 .56	1.97604 .98038	94.632 95.583	0.010567 .010462
.07	.76758	58.557	.017077	.57	.98473	96.544	.010358
.08	.77192	59.145	.016907	.58	.98907	97.514	.010255
.09	.77626	.740	016739	•59	.99341	98.494	.010153
4.10	1.78061	60.340	0.016573 .016408	4.60	I.99775	99.484	0.010052
.11	.78495	.947	.010400	.61	2.00210	100.48	.009952
.12	.78929	61.559	.016245 .016083	.62	.00644	101.49	.009853
.13	.79364	62.178		.63	.01078		.009755 .009658
.14	.79798	.803	.015923	.64	.01513	103.54	
4.15	1.80232	63.434	0.01 5764	4.65 .66	2.01947	104.58	0.009562
.16	.80667	64.072	.01 5608	.66	.02381	105.64	.009466
.17	.81101	.715	.01 54 52	.67 .68	.02816	106.70	.009372
.18	.81 535	65.366	.01 5299		.03250 .03684	107.77 108.85	.009279
-19	.81969	66.023	.015146	.69	.03084	100.05	.009187
4.20	1.82404	66.686	0.014996	4.70	2.04118	109.95	0.009095
.21	.82838	67.357	.014846	.71	.04553 .04987	111.05	.009005
.22	.83272	68.033	.014699	.72		112.17	.008915
.23	.83707	·717	.014552	•73	.05421	I 1 3.30	.008826
.24	.84141	69.408	.014408	•74	.0 58 5 6	114.43	.008739
4.25	1.84575	70.105	0.014264	4.75	2,06290	115.58	0.008652
.26	.85009	.810	.014122	.76	.06724	116.75	.008566
.27 .28	.85444	71.522	.013982	•77 •78	.07 1 58	117.92	.008480
	.85878	72.240	.013843		.07593 .08027	119.10	.008396
.29	.86312	.966	.013705	•79		120.30	.008312
4.30	1.86747	73.700	0.01 3569	4.80	2.08461	121.51	0.008230
.31	.87181	74.440	.01 34 34	.81	.0 8896	122.73	.008148
.32	.87615	75.189	:013300	.82	.09330	1 23.97	.008067
•33	.88050	.944	.013168	.83	.09764	125.21	.007987
•34	.88484	76.708	.01 3037	.84	.10199	1 26.47	.007907
4.35	1.88918	77.478	0.012907	4.85 .86	2.10633	I 27.74	0.007828
.30	.89352	78.257	.012778	.86	.11067	129.02	.007750
·37 ·38	.89787	79.044	.012651	.87	.11501	130.32	.007673
	.90221	79.838	.012525	.88	.11936	131.63	.007 597
•39	.90655	80.640	.0 1 2401	.89	.12370	1 32.95	.007 521
4.40	1.91090	81.451	0.012277	4.90	2.12804	134.29	0.007447
.41	.91 524	82.269	.012155	.91	.13239	135.64	.007372
.42	.91958	83.096	.012034	.92	.13673	137.00	.007299
•43	.92392	.931	.011914	•93	.14107	1 38.38	.007227
•44	.92827	84.775	.011796	•94	.14541	1 39.77	.007155
4·45 .46	1.93261	85.627	0.011679	4.95	2.14976	141.17	0.007083
.46	.93695	86.488	.011562	.96	.15410	142.59	.007013
.47	.94130	87.357	.011447	•97	.15844	144.03	.006943
.48	·94564	88.235	.011333	.98	.16279	145.47	.006874
•49	.94998	89.121	.011221	.99	.16713	146.94	.006806
4.50	1.95433	90.017	0.011109	5.00	2.17147	148.41	0.006738
L	1				l		
the second s							

TABLE 18 (continued).EXPONENTIAL FUNCTION.

x	$\log_{10}(e^{x})$	ex	e-x	x	log ₁₀ (ex)	62	e-x
5.00	2.17147	148.41	0.006738	5.0	2.17147	148.41	0.006738
.01	.17582	149.90	.006671	.1	.21490	164.02	.006097
.02	.18016	151.41	.006605	.2	.25833	181.27	.005517
.03	.18450	152.93	.006539	.3	.30176	200.34	.004992
.04	.18884	154.47	.006474	.4	.34519	221.41	.004517
5.05	2.19319	1 56.02	0.006409	5.5	2.38862	244.69	0.004087
.06	.19753	1 57.59	.006346	.0	.43205	270.43	.003698
.07	.20187	1 59.17	.006282	.7	.47548	298.87	.003346
.08	.20622	160.77	.006220	.8	.51891	330.30	.003028
.09	.21056	162.39	.006158	.9	.56234	365.04	.002739
5.10	2.21490	164.02	0.006097	6.0	2.60577	403.43	0.002479
.11	.21924	165.67	.006036	.1	.64920	445.86	.002243
.12	.22359	167.34	.005976	.2	.69263	492.75	.002029
.13	.22793	169.02	.005917	.3	.73606	544.57	.001836
.14	.23227	170.72	.005858	.4	.77948	601.85	.001662
5.15	2.23662	17 2. 43	0.005799	6.5	2.82291	665.14	0.001 503
.16	.24096	174.16	.005742	.6	.86634	735.10	.001 360
.17	.24530	175. 9 1	.005685	.7	.90977	812.41	.001 231
.18	.24965	177.68	.005628	.8	.95320	897.85	.001 1 14
.19	.25399	179.47	.005572	.9	.99663	992.27	.001 008
5.20	2.25833	181.27	0.005517	7.0	3.04006	1096.6	0.000912
.21	.26267	183.09	.005462	.1	.08349	1212.0	.000825
.22	.26702	184.93	.005407	.2	.12692	1339.4	.000747
.23	.27136	186.79	.005354	.3	.17035	1480.3	.000676
.24	.27570	188.67	.005300	.4	.21378	1636.0	.000611
5.25	2.28005	190.57	0.005248	7.5	3.25721	1808.0	0.000553
.26	.28439	192.48	.005195	.6	.30064	1998.2	.000500
.27	.28873	194.42	.005144	.7	.34407	2208.3	.000453
.28	.29307	196.37	.005092	.8	.38750	2440.6	.000410
.29	.29742	198.34	.005042	.9	.43093	2697.3	.000371
5.30 .31 .32 .33 .33 .34	2.30176 .30610 .31045 .31479 .31913	200.34 202.35 204.38 206.44 208.51	0.004992 .004942 .004893 .004844 .004796	8.0 .1 .2 .3 .4	3.47436 .51779 .56121 .60464 .64807	2981.0 3294.5 3641.0 4023.9 4447.1	0.000335 .000304 .000275 .000249 .000225
5.35	2.32348	210.61	0.004748	8.5	3.691 50	4914.8	0.000203
.36	.32782	212.72	.004701	.6	.73493	5431.7	.000184
.37	.33216	214.86	.004654	.7	.77836	6002.9	.000167
.38	.33650	217.02	.004608	.8	.82179	6634.2	.000151
.39	.34085	219.20	.004562	.9	.86522	7332.0	.000136
5.40	2.34519	221.41	0.004517	9.0	3.90865	8103.1	0.000123
.41	.34953	223.63	.004472	.1	.95208	8955.3	.000112
.42	.35388	225.88	.004427	.2	.99551	9897.1	.000101
.43	.35822	228.15	.004383	.3	4.03894	10938.	.000091
.44	.36256	230.44	.004339	.4	.08237	12088.	.000083
5·45	2,36690	232.76	0.004296	9.5	4.12580	1 3360.	0.000075
.46	.37125	235.10	.004254	.6	.16923	14765.	.000068
.47	.37559	237.46	.004211	.7	.21266	16318.	.000061
.48	.37993	239.85	.004169	.8	.25609	18034.	.000055
.49	.38428	242.26	.004128	.9	.29952	19930.	.000050
5.50	2 .38862	2 44.69	0.004087	10.0	4.34294	22026.	0.000045

TABLE 19.

EXPONENTIAL FUNCTIONS.

Value of e^{x^2} and e^{-x^2} and their logarithms.

x	e ²²	$\log e^{x^2}$	e-x2	$\log e^{-x^2}$
0.1	1.0101	0.00434	c.99005	ī.99566
2	1.0408	01737	96079	98263
3	1.0942	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89143
0.6	1.4333	0.15635	0.69768	ī.84365
7	1.6323	21280	61263	78720
8	1.8965	27795	52729	72205
9	2.2479	35178	44486	64822
1.0	2.7183	43429	36788	56571
1.1	3·3535	0.52550	0.29820	T.47450
2	4·2207	62538	23693	37462
3	5·4195	73396	18452	26604
4	7·0993	85122	14086	14878
5	9·4 ⁸ 77	97716	10540	02284
1.6	1.2936 × 10	1.11179	0.77305 × 10 ^{–-1}	2.88821
7	1.7993 "	25511	55576 "	74489
8	2.5534 "	40711	39164 "	59289
9	3.6966 "	56780	27052 "	43220
2.0	5.4598 "	73718	18316 "	26282
2.1	8.2269 "	1.91524	0.12155 "	2.08476
2	1.2647 × 10 ²	2.10199	79071 × 10−2	3.89801
3	1.9834 "	29742	50418 "	70258
4	3.1735 "	50154	31511 "	49846
5	5.1801 "	71434	19305 "	28566
2.6	8.6264 "	2.93583	$\begin{array}{c} 0.11592 & ``\\ \bullet & 68233 \times 10^{-8}\\ 39367 & ``\\ 22263 & ``\\ 12341 & ``\end{array}$	3.06417
7	1.4656 × 10 ⁸	3.16601		4.83399
8	2.5402 "	40487		59513
9	4.4918 "	65242		34758
3.0	8.1031 "	90865		09135
3.1	1.4913 × 10 ⁴	4.17357	$\begin{array}{c} 0.67055 \times 10^{-4} \\ 357^{13} & `` \\ 18644 & `` \\ 95402 \times 10^{-5} \\ 47851 & `` \end{array}$	5 .82643
2	2.8001 "	44718		55282
3	5.3637 "	72947		27053
4	1.0482 × 10 ⁵	5.02044		6 .97956
5	2.0898 "	32011		67989
3.6 7 8 9 4.0	4.2507 " 8.8205 " 1.8673 × 10 ⁶ 4.0329 " 8.8861 "	5.62846 94549 6.27121 60562 94871	0.23526 " 11337 " 53553 × 10 ⁻⁶ 24796 " 11254 "	δ.37154
4.1	1.997 5 × 10 ⁷	7.30049	$\begin{array}{c} 0.50062 \times 10^{-7} \\ 218_{30} & `` \\ 93303 \times 10^{-8} \\ 39089 & `` \\ 16052 & `` \end{array}$	8.69951
2	4.5 ⁸ 09 "	66095		33905
3	1.0718 × 10 ⁸	8.03010		9.96990
4	2.55 ⁸ 2 "	40794		59206
5	6.2296 "	79446		20554
4.6	$\begin{array}{c} 1.5476 \times 10^9 \\ 3.9225 & `` \\ 1.0142 \times 10^{10} \\ 2.6755 & `` \\ 7.2005 & `` \end{array}$	9.18967	0.64614×10^{-9}	10.81033
7		59357	25494 "	40643
8		10.00614	98595×10^{-10}	11.99386
9		42741	37376 "	57259
5.0		85736	13888 "	14264

TABLE 20.

EXPONENTIAL FUNCTIONS.

ar	$e^{\frac{\pi}{4}x}$	$\log \theta^{\frac{\pi}{4}}$	$e^{-\frac{\pi}{4}z}$	$\log e^{-\frac{\pi}{4}z}$
1	2.1933	0.34109	0.45594	ī.65891
2	4.8105	.68219	.20788	-31781
3	1.0551 × 10	1.02328	.94780 × 10 ⁻¹	2.97672
4	2.3141 "	.36438	.43214 "	.63562
5	5.0754 "	.70547	.19703 "	.29453
6	$\begin{array}{c} 1.1132 \times 10^{2} \\ 2.4415 & `` \\ 5.3549 & `` \\ 1.1745 \times 10^{8} \\ 2.5760 & `` \end{array}$	2.04656	0.89833 × 10 ⁻²	3.95344
7		.38766	.40958 "	.61234
8		.72875	.18674 "	.27125
9		3.06985	.85144 × 10 ⁻⁸	4.93015
10		.41094	.38820 "	.58906
11	5.6498 "	3.7 5203	0.17700 "	4.24797
12	1.2392 X 10 ⁴	4.09313	.80700 X 10 ⁻⁴	5.90687
13	2.7178 "	•43422	.36794 "	.56578
14	5.9610 "	•77 532	.16776 "	.22468
15	1.3074 X 10 ⁵	5.11641	.76487 X 10 ⁻⁵	6.88359
16	2.8675 "	5.45751	0.34873 "	6.54249
17	6.2893 "	.79860	.15900 "	.20140
18	1.3794 × 10 ⁸	6.13969	.72495 × 10 ^{−6}	7.86031
19	3.0254 "	.48079	.33053 "	.51921
20	6.6356 "	.82188	.15070 "	.17812

Values of $e^{\frac{\pi}{4}x}$ and $e^{-\frac{\pi}{4}x}$ and their logarithms,

TABLE 21.

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\sqrt{\pi}}{4}z}$ and $e^{-\frac{\sqrt{\pi}}{4}z}$ and their logarithms.

æ	$e^{\frac{\sqrt{\pi}}{4}x}$	$\log e^{\frac{\sqrt{\pi}}{4}x}$	$e^{-\frac{\sqrt{\pi}}{4}x}$	$\log e^{-\frac{\sqrt{\pi}}{x}z}$
1	1.5576	0.19244	0.64203	1.807 56
2	2.4260	.38488	.41221	.61 51 2
3	3.7786	.57733	.26465	.42267
4	5.8853	.76977	.16992	.23023
5	9.1666	.96221	.10909	.03779
6	14.277	1.15465	0.070041	2.84535
7	22.238	.34709	.044968	.65291
8	34.636	.53953	.028871	.46047
9	53.948	.73198	.018536	.26802
10	84.027	.9244 2	.011901	.07558
11	1 30.88	2.11686	0.0076408	3.88314
12	203.85	.30930	.0049057	.69070
13	317.50	.50174	.0031496	.49826
14	494.52	.69418	.0020222	.30582
15	770.24	.88663	.0012983	.11337
16	1199.7	3.07907	0.00083355	4.92093
17	1868.6	.27151	.00053517	.72849
18	2910.4	.46395	.00034360	.53605
19	4533.1	.65639	.00022060	.34361
20	7060.5	.84883	.00014163	.15117

TABLE 22. - Exponential Functions.

x	ea	log e*	e-*	x	ez	log e=	<i>c</i> ~
1/64	1.0157	0.00679	0.98450	1/3	1.3956	0.14476	0.71653
1/32	.0317	.01357	.96923	1/2	.6487	.21715	.60653
1/16	.0645	.02714	.93941	3/4	2.1170	.32572	.47237
1/10	.1052	.04343	.90484	1	.7183	.43429	.36788
1/9	.1175	.04825	.89484	5/4	3.4903	.54287	.28650
1/8	1.1331	0.05429	0.88250	3/2	4.4817	0.65144	0.22313
1/7	.1536	.06204	.86688	7/4	5.7546	.76002	.17377
1/6	.1814	.07238	.84648	2	7.3891	.86859	.13534
1/5	.2214	.08686	.81873	9/4	9.4877	.97716	.10540
1/4	.2840	.10857	.77880	5/2	12.1825	1.08574	.08208

Value of e^x and e^{-x} and their logarithms.

TABLE 23. - Least Squares.

Values of $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^{2}} d(hx).$

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when k is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx)$. For values of the inverse function see the table on Diffusion.

hx	0	1	2	3	4	5	6	7	8	9
0.0 .1 .2 .3	.11246 .22270 .32863	.01128 .12362 .23352 .33891	.02256 .13476 .24430 .34913	.03384 .14587 .25502 .35928	.04511 .15695 .26570 .36936	.05637 .16800 .27633 .37938	.06762 .17901 .28690 .38933	.07886 .18999 .29742 .39921	.09008 .20094 .30788 .40901	.10128 .21184 .31828 .41874
·4 0.5 .6 .7 .8	.42839 .52050 .60386 .67780 .74210	-43797 -52924 .61168 .68467 .74800	-44747 -53790 .61941 .69143 -75381	.45689 .54646 .62705 .69810 .75952	.46623 .55494 .63459 .70468 .76514	.47 548 .56332 .64203 .71116 .77067	.48466 .57162 .64938 .71754 .77610	.49375 .57982 .65663 .72382 .78144	.50275 .58792 .66378 .73001 .78669	.51167 .59594 .67084 .73610 .79184
.9 1.0 .1 .2	.79691 .84270 .88021 .91031	.80188 .84681 .88353 .91296	.80677 .85084 .88679 .91553	.81156 .85478 .88997 .91805	.81627 .85865 .89308 .92051	.82089 .86244 .89612 .92290	.82542 .86614 .89910 .92524	.82987 .86977 .90200 .92751	.83423 .87333 .90484 .92973	.83851 .87680 .90761 .93190
·3 ·4 1.5 .6 ·7	.93401 .95229 .96611 .97635 .98379	.93606 .95385 .96728 .97721 .98441	.93807 .95538 .96841 .97804 .98500	.94002 .95686 .96952 .97884 .98558	.94191 .95830 .97059 .97962 .98613	•94376 .95970 .97162 .98038 .98667	.94556 .96105 .97263 .98110 .98719	.94731 .96237 .97360 .98181 .98769	.94902 .96365 .97455 .98249 .98817	.95067 .96490 .97546 .98315 .98864
.7 .8 .9 2.0 .1	.98909 .99279 .99532 .99702	.98952 .99309 .99552 .99715	.98994 .99338 .99572 .99728	.99035 .99366 .99591 .99741	.99074 .99392 .99609 .99753	.99111 .99418 .99 6 26 .99764	.99147 .99443 .99642 .99775	.99182 .99466 .99658 .99785	.99216 .99489 .99673 .99795	.99248 .99511 .99688 .99805
.2 .3 .4 2.5 .6	.99814 .99886 .99931 .99959 .99976	.99822 .99891 .99935 .99961 .99978	.99831 .99897 .99938 .99963 .99979	.99839 .99902 .99941 .99965 .99980	.99846 .99906 .99944 .99967 .99981	.99854 .99911 .99947 .99969 .99982	.99861 .99915 .99950 .99971 .99983	.99867 .99920 .99952 .99972 .99984	.99874 .99924 .99955 .99974 .99985	.99880 .99928 .99957 .99975 .99986
.7 .8 .9 3.0	.999987 .999992 .999996 .999998	.999987 .999993 .999996 .999999	.99988 .99993 .99996 .99999	.99989 .99994 .99997 1.00000	.99989 .99994 .99997	.999990 •99994 •99997	.999991 .99999 5 .999997	.999991 .999995 .999997	.99992 .99995 .999997	.99996 .999992 .999996 .9999 9 8

Taken from a paper by Dr. James Burgess 'on the Definite Integral $\frac{2}{\sqrt{\pi}} \int_{o}^{t} e^{-t^{2}} dt$, with Ex. tended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257. SMITHSONIAN TABLES.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to $0.47694/\lambda$.

·	1	T	1	<u> </u>	1	1			_	
$\frac{x}{r}$	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	.00000 .05378 .10731 .16035 .21268 .26407 .31430 .36317 .41052 .45618 .50000	.00538 .05914 .11264 .16562 .21787 .26915 .31925 .36798 .41517 .46064 .50428	.01076 .06451 .11796 .17088 .22304 .27421 .32419 .37277 .41979 .46509 .50853	.01614 .06987 .12328 .17614 .22821 .27927 .32911 .37755 .42440 .46952 .51277	.02152 .07523 .12860 .18138 .23336 .28431 .33402 .38231 .42899 .47393 .51699	.02690 .08059 13391 .18662 .23851 .28934 .33892 .38705 .43357 .47832 .52119	.03228 .08594 .13921 .19185 .24364 .29436 .34380 .39178 .43813 .48270 .52537	.03766 .09129 .14451 .19707 .24876 .29936 .34866 .39649 .44267 .48705 .52952	.04303 .09663 .14980 .20229 .25388 .30435 .35352 .40118 .44719 .49139 .53366	.04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570 .53778
I.I I.2 I.3 I.4 1.5	.54188 .58171 .61942 .65498 .68833	-54595 -58558 -62308 -65841 -69155	.55001 .58942 .62671 .66182 .69474	.55404 .59325 .63032 .66521	•55806 •59705 •63391 •66858 •70106	.56205 .60083 .63747 .67193 .70419	.56602 .60460 .64102 .67526 .70729	.56998 .60833 .64454 .67856 .71038	.57391 .61205 .64804 .68184	.57782 .61575 .65152 .68510
1.6 1.7 1.8 1.9 2.0	.71949 .74847 .77528 .79999 .82266	.72249 .75124 .77785 .80235 .82481	.72546 .75400 .78039 .80469 .82695	.72841 .75674 .78291 .80700	.73134 .75945 .78542 .80930	.73425 .76214 .78790 .81158	.73714 .76481 .79036 .81383	.74000 .76746 .79280 .81607	.71344 .74285 .77009 .79522 .81828	.71648 .74567 .77270 .79761 .82048
2.I 2.2 2.3 2.4	.84335 .86216 .87918 .89450	.84531 .86394 .88078 .89595	.84726 .86570 .88237 .89738	.82907 .84919 .86745 .88395 .89879	.83117 .85109 .86917 .88550 .90019	.83324 .85298 .87088 .88705 .90157	.83530 .85486 .87258 .88857 .90293	.83734 .85671 .87425 .89008 .90428	.83936 .85854 .87591 .89157 .90562	.841 37 .86036 .877 55 .89304 .90694
2.5 2.6 2.7 2.8 2.9	.90825 .92051 .93141 .94105 .94954	.90954 .92166 .93243 .94195 .95033	.91082 .92280 .93344 .94284 .95111	.91208 .92392 .93443 .94371 .95187	.91332 .92503 .93541 .94458 .95263	.91456 .92613 .93638 .94543 .95338	.91578 .92721 .93734 .94627 .95412	.91698 .92828 .93828 .94711 .95484	.91817 .92934 .93922 .94793 .95557	.91935 .93038 .94014 .94874 .95628
	0	1	2	3	4	5	6	7	8	.9
3 4 5	.95698 .9930 2 .99926	.96346 .99431 .99943	.96910 .99539 .99956	.97397 99627 .99966	.9781 7 .99700 .99974	.98176 .99760 .99980	.98482 .99808 .99985	.98743 .99848 .99988	.98962 .99879 .99991	.99147 .99905 .99993

TABLE 25. LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{2k-1}}$.

This factor occurs in the equation $r_6 = 0.6745 \sqrt{\frac{\sum 2}{n-1}}$ for the probable error of a single observation, and other similar equations.

n		1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.2248 .1547 .1252 .1080	0.2133 .1508 .1231 .1066	0.6745 .20 34 .1472 .1211 .1053	0.4769 .1947 .1438 .1192 .1041	0.3894 .1871 .1406 .1174 .1029	0.3372 .1803 .1377 .1157 .1017	0.3016 .1742 .1349 .1140 .1005	0.2754 .1686 .1323 .1124 .0994	0.2549 .1636 .1298 .1109 .0984	0.2385 .1590 .1275 .1094 .0974
50 60 70 80 90	0.0964 .0878 .0812 .0759 .0715	0.0954 .0871 .0806 .0754 .0711	0.0944 .0864 .0800 .0749 .0707	0.0935 .0857 .0795 .0745 .0703	0.0926 .0850 .0789 .0740 .0699	0.0918 .0843 .0784 .0736 .0696	0.0909 .0837 .0779 .0777 .0692	0.0901 .0830 .0774 .0727 .0688	0.0893 .0824 .0769 .0723 .0685	0.0886 .0818 .0764 .0719 .0681

TABLE 26. - LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $r_0 = 0.6745 \sqrt{\frac{2v^2}{n(n-r)}}$ for the probable error of the arithmetic mean.

n	=	1	2	3	4	5	6	7	8	9
00			0.4769	0.27 54	0.1947	0.1508	0.1231	0.1041	0.0901	0.0795
10	0.0711	0.0643	.0587	.0540	.0500	.0465	.0435	.0409	.0386	.0365
20	.0346	.0329	.0314	.0300	.0287	.0275	.0265	.0255	.0245	.0237
30	.0229	.0221	.0214	.0208	.0201	.0196	.0190	.0185	.0180	.0175
40	.0171	.0 167	.0163	.01 59	.01 55	.01 52	.0148	.0145	.0142	.01 39
50	0.0136	0.0134	0.0131	0.0128	0.0126	0.0124	0.0122	0.0119	0.0117	0.0115
бо	.0113	.0111	.0110	.0108	.0106	.0105	.0103	.0101	.0100	.0098
70	.0097	.0096	.0094	.0093	.0092	.009Ī	.0089	.0088	.0087	.0086
80	.0085	.0084	.0083	.0082	.0081	.0080	.0079	.0078	.0077	.0076
90	.0075	.0075	.0074	.0073	.0072	.0071	.0071	0070	.0069	.0068

TABLE 27. - LEAST SQUARES.

Values of the factor 0.8453
$$\sqrt{\frac{1}{n(n-1)}}$$
.

This factor occurs in the approximate equation $r = 0.8453 \sqrt{\frac{\Sigma v}{\pi (n-r)}}$ for the probable error of a single observation.

n		1	2	3	4	5	8	7	8	9
00 10 20 30 40	0.0891 .0434 .0287 .0214	0.0806 .0412 .0277 .0209	0.5978 .0736 .0393 .0268 .0204	0.3451 .0677 .0376 .0260 .0199	0.2440 .0627 .0360 .0252 .0194	0,1890 .0583 .0345 .0245 .0190	0.1 543 .0546 .0332 .0238 .0186	0.1304 .0513 .0319 .0232 .0182	0.1130 .0483 .0307 .0225 .0178	0.0996 .0457 .0297 .0220 .0174
50 60 70 80 90	0.0171 .0142 .0122 .0106 .0094	0.0167 .0140 .0120 .0105 .0093	0.0164 .0137 .0118 .0104 .0092	0.0161 .0135 .0117 .0102 .0091	0.01 58 .01 33 .01 15 .0101 .0090	0.0155 .0131 .0113 .0100 .0089	0.01 52 .01 29 .01 12 .0099 .0089	0.01 50 .01 27 .01 11 .0098 .0088	0.0147 .0125 .0109 .0097 .0087	0.0145 .0123 .0108 .0096 .0086

TABLE 28. - LEAST SQUARES.

Values of 0.8453
$$\frac{1}{n\sqrt{n-1}}$$

This factor occurs in the approximate equation $r_0 = 0.8453 \frac{1}{n\sqrt{n-x}}$ for the probable error of the arithmetical mean.

n	. =	1	2	3	4	5	8	7	8	9
00 10 20 30 40	0.0282 .0097 .0052 .0034	0.0243 .0090 .0050 .0033	0.4227 .0212 .0084 .0047 .0031	0.1993 .0188 .0078 .0045 .0030	0.1220 .0167 .0073 .0043 .0029	0.0845 .0151 .0069 .0041 .0028	0.0630 .0136 .0065 .0040 .0027	0.0493 .0124 .0061 .0038 .0027	0.0399 .0114 .0058 .0037 .0026	0.0332 .0105 .0055 .0035 .0025
50 60 70 80 90	0.0024 .0018 .0015 .0012 .0010	0.0023 .0018 .0014 .0012 .0010	0.0023 .0017 .0014 .0011 .0010	0.0022 .0017 .0014 .0011 .0009	0.0022 .0017 .0013 .0011 .0009	0.0021 .0016 .0013 .0011 .0009	0.0020 .0016 .0013 .0011 .0009	0.0020 .0016 .0013 .0010 .0009	0.0019 .0015 .0012 .0010 .0009	0.0019 .0015 .0012 .0010 .0009

Observation equations :
$a_1z_1 + b_1z_2 + \dots \ l_1z_q = M_1$, weight p_1 $a_2z_1 + b_2z_2 + \dots \ l_2z_q = M_2$. weight p_2
$a_nz_1 + b_nz_2 + \ldots + l_nz_q = M_n$, weight p_n .
Auxiliary equations:
$egin{array}{llllllllllllllllllllllllllllllllllll$
$[paM] = p_1a_1M_1 + p_2a_2M_2 + \dots p_na_nM_n.$ Normal equations:
$[paa]z_1 + [pab]z_2 + \dots [pal]z_q = [paM]$ $[pab]z_1 + [pbb]z_2 + \dots [pbl]z_q = [pbM]$
$[\operatorname{pla}]z_1 + [\operatorname{plb}]z_2 + \dots [\operatorname{pll}]z_q = [\operatorname{plM}].$
Solution of normal equations in the form,
$ \begin{array}{l} z_1 = A_1[\mathrm{paM}] + B_1[\mathrm{pbM}] + \dots + L_1[\mathrm{plM}] \\ z_2 = A_2[\mathrm{paM}] + B_2[\mathrm{pbM}] + \dots + L_2[\mathrm{plM}] \end{array} $
$z_q = A_n[paM] + B_n[pbM] + \dots L_n[plM],$
gives :
weight of $z_1 = p_{z_1} = (A_1)^{-1}$; probable error of $z_1 = \frac{r}{\sqrt{p_{z_1}}}$
weight of $z_2 = pz_2 = (B_2)^{-1}$; probable error of $z_2 = \frac{r}{\sqrt{pz_2}}$
$\sqrt{\mathtt{Pz}_2}$
$\mathbf{r} = \mathbf{r} \mathbf{r}$
weight of $z_q = p_{z_q} = (L_n)^{-1}$; probable error of $z_q = \frac{r}{\sqrt{p_{z_q}}}$
wherein
r = probable error of observation of weight unity
$= 0.6745 \sqrt{\frac{\Sigma pv^2}{n-q}}$. (q unknowns.)
Arithmetical mean, n observations:
$\overline{\Sigma v^2}$ 0.8453 Σv (constant) is probable error of the
$r = 0.6745 \sqrt{\frac{\Sigma v^2}{n-1}} = \frac{0.8453 \Sigma v}{\sqrt{n(n-1)}}.$ (approx.) =probable error of observation of weight unity.
$\mathbf{r_0} = 0.6745 \sqrt{\frac{\Sigma \ v^2}{n \ (n-1)}} = \frac{0.8453 \ \Sigma \ v}{n \sqrt{n-1}} \cdot (approx.) = \text{probable error}$ of mean.
Weighted mean, n observations:
$r = 0.6745 \sqrt{\frac{\Sigma p v^2}{n-1}}; r_0 = \frac{r}{\sqrt{\Sigma p}} = 0.6745 \sqrt{\frac{\Sigma p v^2}{(n-1) \Sigma p}}$
Probable error (R) of a function (Z) of several observed quantities z_1, z_2, \ldots whose probable errors are respectively, r_1, r_2, \ldots . $Z = f(z_1, z_2, \ldots)$
$\mathbf{R}^2 = \left(\frac{\partial Z}{\partial z_1}\right)^2 \mathbf{r}_1^2 + \left(\frac{\partial Z}{\partial z_2}\right)^2 \mathbf{r}_2^2 + \ldots$
Examples : $Z = z_1 \pm z_2 + \dots$ $R^2 = r_1^2 + r_2^2 + \dots$
$Z = Az_1 \pm Az_2 \pm \ldots$ $R^2 = A^2 r_1^2 + B^2 r_2^2 + \ldots$
$Z = z_1 z_2$. $R^2 = z_1 r_2^2 + z_2 r_1^2$.

TABLE 30. DIFFUSION.

Inverse * values of
$$v/c = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{q} e^{-q^{2}} dq$$
.

 $\log x = \log (2q) + \log \sqrt{kt}, \quad t \text{ expressed in seconds.}$ $= \log \delta + \log \sqrt{kt}, \quad t \text{ expressed in days.}$ $= \log \gamma + \log \sqrt{kt}, \qquad \text{" " years.}$

- $k = \text{coefficient of diffusion.}^{\dagger}$
 - c = initial concentration.
 - v =concentration at distance x, time t.

v/c	log 29	29	log δ	δ	logγ	γ
0.00	+ ∞	+ ∞	+∞	+∞		
.01	0.56143	3.6428	3.02970	1070.78	4.31098	20463.
.02	.51719	3.2900	2.98 54 5	967.04	.26674	18481.
.03	.48699	3.0690	.95525	902.90	.23654	17240.
.04	.46306	2.9044	.93132	853.73	.21261	16316.
0.05	0.44276	2.7718	2.91102	814.74	4.19231	15571.
.06 .07	.42486 .40865	2.6598 2.5624	.89311 .87691	781.83 753.20	.17440 .15820	14942.
.08	.39372	2.47 58	.86198	727.75	.14327	14395. 13908.
.09	·37979	2.3977	.84804	704.76	.12933	13469.
0.10	0.36664	2.3262	2.83490		4.11619	1 3067.
.11	.35414	2.2602	.82240	683.75 664.36	.10369	12697.
.12	.34218	2.1988	.81044	646.31	.09173	12352.
.13	.33067	2.1413	.79893	629.40	.08022	12029.
.14	·31954	2.0871	.78780	613.47	.0 6909	11724.
0.15	0.30874	2.0358	2.77699	598.40	4.05828	11436.
.16	.29821	1.9871	.76647	584.08	.04776	11162.
.17 .18	.28793 .27786	1.9406 1.8961	.75619 .74612	570.41	.03748 .02741	10901. 10652.
.19	.26798	1.8534	.73624	557·34 544.80	.01753	10052.
0.20	0.25825	1.8124	2.72651	532.73	4.00780	10181.
.21	.24866	1.7728	.71692	521.10	3.99821	9958.9
.22	.23919	1.7346		509.86	.98874	9744.1
.23	.22983	1.0970	.70745 .69808	498.98	97937	9536.2
•24	.22055	1.6617	.68880	488.43	.97010	9334.6 [
0.25	0.21134	1.6268	2.67960	478.19	3.96089	9138.9
.26	.20220	1.5930	.67046	468.23	.95175	8948.5
.27 .28	.1931 <i>2</i> .18407	1.5600 1.5278	.661 37 .652 32	458.53 449.08	.94266 .93361	8763.2 8582.5
.20	.17 505	1.4964	.64331	439.85	.93301	8406.2
0.30	0.16606	1.4657	2.63431	430.84	3.91 560	8233.9
.31	.15708	1.4357	.62533	422.02	.90662	8065.4
.32	.14810	1.4064	.61636	413.39	.89765	7900.4
•33	.13912	1.3776	.60738	404.93	.88867	7738.8 7580.3
•34	.13014	1.3494	.59840	396.64	.87969	7580.3
0.35	0.12114	1.3217	2.58939	388.50	3.87068	7424.8
.36	.11211	1.2945	.58037	380.51	.86166	7272.0
·37 .38	.10305 .09396	1.2678 1.2415	.57131 .56222	372.66	.85260 84257	7122.0
.30	.08482	1.2157	.55308	364.93 357•34	.84351 .83437	6974.4 6829.2
0.40	0.07563	1.1902	2.54389	349.86	3.82518	6686.2
.41	.06639	1.1652	-53464	349.80	.81 593	6545.4
.42	.05708	1.1405	·52533	335.22	.80662	6406.6
•43	.04770	1.1161	.51 595	328.06	·79724	6269.7
•44	.03824	1.0920	.50650	320.99	.78779	6134.6
0.45	0.02870	1.0683	2.49696	314.02	3.77825	6001.3
.46	.01907	1.0449	.48733	307.13	.76862	5869.7
•47	.00934	1.0217 0.99886	.47760	300.33	.75889	5739.7
.48 .49	9.99951 .98956	0.99680	.46776 .45782	293.60 286.96	•74905 •73911	561 1.2 5484.1
0.50	9.97949	0.95387		-		
0.00	9.9/949	0.95307	2.44775	280.38	3.72904	5358.4

*Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280. † For direct values see table 23. SMITHSONIAN TABLES.

бо

DIFFUSION.

v/c	log 29	29	log S	δ	log γ	Ŷ
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4
.51	.96929	.93174	-43755	273.87	.71884	5234.1
.52	.95896	.90983	.42722	267.43	.70851	5111.0
.53	.94848	.88813	.41674	261.06	.69803	4989.1
.54	.93784	.86665	.40610	254.74	.68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
.56	.91607	.82426	.38432	242.28	.66561	4630.3
.57	.90490	.80335	.37316	236.13	.65445	4512.8
.58	.89354	.78260	.36180	230.04	.64309	4396.3
.59	.88197	.76203	.35023	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	.85815	.72135	.32640	212.03	.60770	4052.2
.62	.84587	.70124	.31412	206.12	.59541	3939.2
.63	.83332	.68126	.30157	200.25	.58286	3827.0
.64	.82048	.66143	.28874	194.42	.57003	3715.6
0.65	9.80734	0.64172	2.27 560	188.63	3.55689	3604.9
.66	.79388	.62213	.26214	182.87	.54343	3494.9
.67	.78008	.60266	.24833	177.15	.52962	3385.4
.68	.76590	.58331	.23416	171.46	.51545	3276.8
.69	.75133	.56407	.21959	165.80	.50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	3061.1
.71	.72089	.52588	.18915	154.58	.47044	2954.2
.72	.70495	.50694	.17321	149.01	.45450	2847.7
.73	.68849	.48808	.15675	143.47	.43804	2741.8
.74	.67146	.46931	.13972	137.95	.42101	2636.4
0.75	9.65381	0.45062	2.12207	132.46	3.40336	2531.4
.76	.63550	.43202	.10376	126.99	.38505	2426.9
.77	.61646	.41348	.08471	121.54	.36600	2322.7
.78	.59662	.39502	.06487	116.11	.34616	2219.0
.79	.57590	.37662	.04416	110.70	.32545	2115.7
0.80	9.55423	0.35829	2.02249	105.31	3.30378	2012.7
.81	.53150	.34001	1.99975	99.943	.28104	1910.0
.82	.50758	.32180	.97584	94.589	.25713	1807.7
.83	.48235	.30363	.95061	89.250	.23190	170 5 .7
.84	.45564	.28552	.92389	83.926	.20518	1603.9
0.85	9.42725	0.26745	1.89551	78.61 5	3.17680	1 502.4
.86	.39695	.24943	.86521	73.317	.14650	1401.2
.87	.36445	.23145	.83271	68.032	.11400	1 300.2
.88	.32940	.21350	.79766	62.7 57	.07895	1 199.4
.89	.29135	.19559	.75961	57.492	3.04090	1 098.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	.20374	.15986	.67200	46.989	.95329	898.03
.92	.15239	.14203	.62065	41.750	.90194	797.89
.93	.09423	.12423	.56249	36.516	.84378	697.88
.94	9.02714	.10645	.49539	31.289	.77668	597.98
0.95	8.94783	0.08868	1.41609	26.067	2.69738	498.17
.96	.85082	.07093	.31907	20.848	.60036	398.44
.97	.72580	.05319	.19406	15.633	.47535	298.78
.98	.54965	.03545	.01791	10.421	.29920	199.16
.9 9	.24859	.01773	9.71684	5.21007	1.99813	99.571
1.00	-∞	0.00000	-∞	0.00000	-∞	0.000

TABLE 31.

GAMMA FUNCTION.*

Value of $\log \int_0^\infty e^{-x} x^{n-1} dx + 10$.

Values of the logarithms + to of the "Second Eulerian Integral" (Gamma function) $\int_0^{\infty} e^{-xx^{n-1}dx}$ or log $\Gamma(n)$ + to for values of *n* between 1 and 2. When *n* has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9
1.00	9.99-	97497	95001	92512	90030	87555	85087	82627	80173	77727
1.01	7 5287	72855	70430	68011	65600	63196	60798	58408	56025	53648
1.02	51 279	48916	46561	44212	41870	39535	37207	34886	32572	30265
1.03	27964	25671	23384	21104	<u>18831</u>	16564	14305	12052	09806	<u>07567</u>
1.04	05334	03108	00889	98677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	747 ⁸ 3	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	537 57	51690	49630	47577	45530	43489
1.07	41455	39428	37407	35392	333 ⁸ 4	31382	29387	27398	25415	23439
1.08	21469	19506	<u>17549</u>	<u>15599</u>	13655	<u>11717</u>	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	889 5 6	87100	85250
1.10	9.9783407	81570	7973 ⁸	77914	76095	74283	72476	70676	68882	67095
1.11	65313	63538	61768	60005	58248	56497	54753	53014	51281	49555
1.12	47834	46120	44411	42709	41013	39323	37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14689	13094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9699007	97471	95941	94417	92898	91 386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	46011	44687	43368
1.19	42054	40746	39444	38147	36856	3557 0	34290	33016	3 ¹ 747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	15748	14556	13369	12188	11011	09841	08675	<u>07515</u>	06361
1.22	05212	04068	02930	01796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	802 5 3	79232	78215	77204	76198	75 ¹ 97	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67 377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	4097 5	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32429	31682	30940
1.30	9.9530203	29470	28743	28021	27 303	26590	2 5883	25180	24482	23789
1.31	23100	22417	21739	21065	20 396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	1 397 5	13359	12748	12142	11541	10944
1.33	10353	09766	09184	08606	08 034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02 568	02048	01 532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97 57 3	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	99953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	8 5366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	792 50	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	7524 3	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73 ⁸ 94	73783	73676	73574	73476
1.44	73382	73292	73207	73125	73049	72 9 76	72908	7 ²⁸ 44	72784	72728

* Legendre's "Exercises de Calcul Intégral," tome ii.

n	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9·947 5449	7 5610	75774	7 5943	76116	76292	76473	76658	76847	77040
1.51	77237	774 37	77642	778 51	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	8201 5	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.951 1020	11569	12122	12679	13240	1 3804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	1 9649	20254	20862	21475	22091
1.62	227 10	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	3 2442	33120	33801	34486	35175
1.64	35 ⁸⁶⁷	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	4 7434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64825	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	7 ⁶ 777	77657	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87 563	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	07625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	3 ² 377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43 258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83918	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44 ⁶ 97	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.97 57 1 26	58522	59922	61325	62730	641 39	65551	66966	68384	69805
1.86	7 1 2 30	72657	74087	75521	76957	78 397	79839	81285	82734	84186
1.87	8 5 6 4 0	87098	88559	90023	91490	92960	94433	95909	97389	98871
1.88	8 00 3 5 6	01844	03335	04830	06327	078 27	09331	10837	12346	13859
1.89	1 5 3 7 4	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41595	43 164	447 36
1.91	46311	47890	49471	51055	52642	54232	55825	57421	59020	60621
1.92	62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	<u>85002</u>	86651	<u>88302</u>	89957	<u>91614</u>	9 <u>327 5</u>
1.94	94938	96605	98274	99946	01621	03299	04980	06663	08350	10039
1.95	9.9911732	1 3427	15125	16826	18530	20237		23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	9816 5

TABLE 32. ZONAL SPHERICAL HARMONICS.*

Degrees	P1	P ₂	P ₈	P4	P ₅	P ₆	P7
0	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000
I	.9998	.9995	.9991	.9985	.9977	.9968	.9957
2	.9994	.9982	.9963	.9939	.9909	.9872	.9830
3	.9986	.9959	.9918	.9863	.9795	.9714	.9620
4	.9976	.9927	.9854	.9758	.9638	.9495	.9329
56 78 9	+ 0.9962 .9945 .9925 .9903 .9 ⁸ 77	+ 0.9886 .9836 .9777 .9709 .9633	+ 0.9773 .9674 .9557 .9423 .9273	+ 0.9623 .9459 .9267 .9048 .8803	+ 0.9437 .9194 .8911 .8589 .8232	+ 0.9216 .8881 .8492 .8054 .7570	+ 0.8962 .8522 .8016 .7449 .6830
10	+ 0.9848	+ 0.9548	+ 0.9106	+ 0.8532	+ 0.7840	+ 0.7045	+ 0.6164
11	.9816	.9454	.8923	.8238	.7417	.6483	.5462
12	.9781	.9352	.8724	.7920	.6966	.5891	.4731
13	.9744	.9241	.8511	.7582	.6489	.5273	.3980
14	.9703	.9122	.8283	.7224	.5990	.4635	.3218
15	+ 0.9659	+ 0.8995	+ 0.8042	+ 0.6847	+ 0.5471	+ 0.3983	+ 0.2455
16	.9613	.8860	.7787	.6454	.4937	.3323	+ .1700
17	.9563	.8718	.7519	.6046	.4391	.2661	+ .0961
18	.9511	.8568	.7240	.5624	.3836	.2002	+ .0248
19	.9455	.8410	.6950	.5192	.3276	.1353	0433
20	+ 0.9397	+ 0.8245	+ 0.6649	+ 0.47 50	+ 0.2715	+ 0.0719	
21	.9336	.8074	.6338	.4300	.2156	+ .0106	
22	.9272	.7895	.6019	.3845	.1602	0481	
23	.9205	.7710	.5692	.3386	.1057	1038	
24	.9135	.7518	.5357	.2926	.0525	1558	
25	+ 0.9063	+ 0.7321	+ 0.5016	+ 0.2465	+ 0.0009	- 0.2040	- 0.3441
26	.8988	.7117	.4670	.2007	0489	.2478	-3717
27	.8910	.6908	.4319	.1553	0964	.2869	-3922
28	.8829	.6694	.3964	.1105	1415	.3212	-4053
29	.8746	.6474	.3607	.0665	1839	.3502	-4113
30 31 32 33 34	+ 0.8660 .8572 .8480 .8387 .8290	+ 0.6250 .6021 .5788 .5551 .5310	+ 0.3248 .2887 .2527 .2167 .1809	$\begin{array}{r} + 0.0234 \\ - 0.0185 \\ - 0.0591 \\ - 0.0982 \\ - 0.1357 \end{array}$	- 0.2233 .2595 .2923 .3216 .3473	- 0.3740 .3924 .4053 .4127 .4147	
35 36 37 38 39	+ 0.8192 .8090 .7986 .7880 .7771	+ 0.5065 .4818 .4567 .4314 .4059	+ 0.1454 .1102 .0755 .0413 .0077		- 0.3691 .3871 .4011 .4112 .4174		
40 41 42 43 44	+ 0.7660 .7547 .7431 .7314 .7193	+ 0.3802 .3544 .3284 .3023 .2762				- 0.3236 .2939 .2610 .2255 .1878	
45	+ 0.7071	+ 0.2500	0.1768	- 0.4063	- 0.3757	- 0.1484	+ 0.1271
46	.6947	.2238	.2040	.4158	.3568	1078	.1667
47	.6820	.1977	.2300	.4227	.3350	0665	.2028
48	.6691	.1716	.2547	.4270	.3105	0251	.2350
49	.6561	.1456	.2781	.4286	.2836	+ .0161	.2626
50	+ 0.6428	+ 0.1198	- 0.3002	-0.4275	- 0.2545	+ 0.0564	+ 0.2854

* Calculated by Mr. C. E. Van Orstrand for this publication. SMITHSONIAN TABLES.

б4

ZONAL SPHERICAL HARMONICS.

		1	,				
Degrees	P ₁	P ₂	P ₈	P4	P ₅	P ₅	P ₇
50 51 52 53 54	+ 0.6428 .6293 .6157 .6018 .5878	+ 0.1198 .0941 .0686 .0433 .0182			- 0.2545 .2235 .1910 .1571 .1223	+ 0.0564 .0954 .1326 .1677 .2002	+ 0.2854 .3031 .3154 .3221 .3234
55 56 57 58 59	+ 0.5736 .5592 .5446 .5299 .5150			- 0.3852 .3698 .3524 .3331 .3119	- 0.0868 0509 0150 + .0206 + .0557	+ 0.2297 .2560 .2787 .2976 .3125	+ 0.3191 .3095 .2947 .2752 .2512
60 61 62 63 64	+ 0.5000 .4848 .4695 .4540 .4384	- 0.1250 .1474 .1694 .1908 .2117			+ 0.0898 .1229 .1545 .1844 .2123	+ 0.3232 .3298 .3321 .3302 .3240	+ 0.2231 .1916 .1572 .1203 .0818
65 66 67 68 69	+ 0.4226 .4067 .3907 .3746 .35 ⁸ 4				+ 0.2381 .2615 .2824 .3005 .3158	+ 0.3138 .2997 .2819 .2606 .2362	+ 0.0422 + .0022 0375 0763 1135
70 71 72 73 74	+ 0.3420 .3256 .3090 .2924 .2756			- 0.0038 + .0267 .0568 .0864 .1153	+ 0.3281 -3373 -3434 -3463 -3461	+ 0.2089 .1791 .1472 .1136 .0788	
75 76 77 78 79	+ 0.2588 .2419 .2250 .2079 .1908			+ 0.1434 .1705 .1964 .2211 .2443	+ 0.3427 .3362 .3267 .3143 .2990	+ 0.0431 + .0070 0290 0644 0990	
80 81 82 83 84	+ 0.1736 .1564 .1392 .1219 .1045			+ 0.2659 .2859 .3040 .3203 .3345	+ 0.2810 .2606 .2378 .2129 .1861		
85 86 87 88 89	+ 0.0872 .0698 .0523 .0349 .0175			+ 0.3468 .3569 .3648 .3704 .3739	+ 0.1577 .1278 .0969 .0651 .0327		— 0.1778 .1460 .1117 .0755 .0381
90	+ 0.0000	— 0.5000		+ 0.3750	+ 0.0000	— 0.3125	0.0000

TABLE 33.

ELLIPTIC INTECRALS.

Values of $\int_0^{\frac{\pi}{2}} (1-\sin^2\theta \sin^2\phi)^{\frac{1}{12}} d\phi.$

This table gives the values of the integrals between 0 and $\pi/2$ of the function $(1-\sin^2\theta \sin^2\phi)^{\frac{1}{2}} d\phi$ for different values of the modulus corresponding to each degree of θ between 0 and 90.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	θ	$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\phi}{(1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$		$\int_0^{\frac{\pi}{2}} (1-s)$	in² θ sin²φ) ^½ dφ	θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^{\frac{\pi}{2}}}$	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (z - z - z) dz$	sin² 0 sin² ϕ) ^½ d ϕ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1.8541		1.3506	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			190153	5707			8848		3418	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			196418	5697	195822	8			3238	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5727	196649	5689	195591	9	<u>9</u> 180			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.5678					1.3055	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5751)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	5785	198241	5632		1				109503
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			198806	5611					2681	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.5828		1.5589			2.0347			0.099915
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5054					0571	313247		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						8				093303
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					189646		1300			086569
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.5442		60 °	2.1565	0.333753	1.2111	0.083164
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							1842			079738
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			5282	184210					072834
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	5			-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6252							1.1638	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6307				7	3439			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6365	213921	5090		8	4198			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			215533	5037	177150	9	4610			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.6490			0.175545	70 °	2.5046	0.398730	1.1184	0.048589
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6557			173876		5507		1096	045183
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8						5998	414943		041812
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							7081	423590 432660		038481 035200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 °	1.6858	0.226793	1.4675	0.166567	75°	2.7681	0.442176	1.0764	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	6941	228943		164583					028810
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			231173	4539		7	9026			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			233485						0538	022749
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					5		3.0017		0468	019858
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					153742		²⁵⁵³		0338	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8				148085				0278	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	7748								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								0. 583396		0.005465
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7992	255085					607751		003740
4 8396 264716 3594 133340 9 5.4349 735192 0008 000326	1		250197	3705		7			00 5 3	002278
1.0541 0.20012/ 1.3500 0.130541 90° ∞ ∞ 1.0000								-		000320
		1.0541	0.20012/	1.3500	0.130541	90°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	1.0000	

MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is w.

				a (b)
Body.	Axis.	Weight.	Moment of Inertia Io.	Square of Ra- dius of Gyra- tion ρ_0^2 .
Sphere of radius r	Diameter	<u>4πwr⁸</u> 3	$\frac{8\pi wr^5}{15}$	$\frac{2r^2}{5}$
Spheroid of revolution, po- lar axis 2 <i>a</i> , equatorial di- ameter 2 <i>r</i>	Polar axis	$\frac{4\pi war^2}{3}$	<u>8πwar4</u> 15	$\frac{2r^2}{5}$
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	$\frac{4\pi wabc}{3}$	$\frac{4\pi wabc(b^2+c^2)}{15}$	$\frac{b^2 + c^2}{5}$
Spherical shell, external ra- dius r, internal r'	Diameter	$\frac{4\pi w(r^8-r'^8)}{3}$	$\frac{8\pi w(r^5-r'^5)}{15}$	$\frac{2(r^5-r'^5)}{5(r^8-r'^8)}$
Ditto, insensibly thin, ra- dius r , thickness dr	Diameter	$4\pi wr^2 dr$	$\frac{8\pi wr^4 dr}{3}$	$\frac{2r^2}{3}$ $\frac{r^2}{2}$
Circular cylinder, length $2a$, radius r	Longitudinal axis 2a	2 Twar ²	πιυαγ	$\frac{r^2}{2}$
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	2πwabc	$\frac{\pi wabc(b^2+c^2)}{2}$	$\frac{b^2 + c^2}{4}$
Hollow circular cylinder, length 2a, external ra- dius r, internal r'	Longitudinal axis 2 <i>a</i>	2 # wa(r ² —r' ²)	πwa(r4-r'4)	$\frac{r^2+r'^2}{2}$
Ditto, insensibly thin, thick- ness dr	Longitudinal axis 2a	4 n wardr	4πwar ⁸ dr	r ²
Circular cylinder, length 2a, radius r	Transverse diameter	$2\pi war^2$	$\frac{\pi war^2(3r^2+4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b	Transverse axis 2b	2 n wabc	$\frac{\pi wabc(3c^2+4a^2)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2a, external ra- dius r, internal r'	Transverse diameter	$2\pi w a (r^2 - r'^2)$	$\frac{\pi wa}{6} \left\{ \begin{array}{c} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\}$	$\frac{r^2+r'^2}{4}+\frac{a^2}{3}$
Ditto, insensibly thin, thick- ness dr	Transverse diameter	4πwardr	$\pi wa(2r^3 + \frac{4}{3}a^2r)dr$	$\frac{r^2}{2} + \frac{a^2}{3}$
Rectangular prism, dimen- sions 2a, 2b, 2c	Axis 2a	8wabc	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4wabc	$\frac{2wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{6}$
Ditto	Diagonal 26	4wabc	$\frac{2wabc(c^2+2a^2)}{3}$	$\frac{c^2}{6} + \frac{a^2}{3}$

(Takeo from Rankine.)

TABLE 35.

STRENGTH OF MATERIALS.

The strength of most materials varies so that the following figures serve only as a rough indication of the strength of a particular sample.

TABLE 35 (a). - Metals.

TABLE 35 (b). - Stones.*

Name of Metal.	Tensile strength in pounds per sq. in.	Material.	Size of test	Resistance to crushing in
Aluminum wire Brass wire Bronze wire, phosphor, hard- drawn Bronze wire, silicon, hard- drawn Bronze: Cu, 58.54 parts; Zn, 38.70; Al, 0.21; with 2.55 parts of the alloy, Sn, 29.03, wrought iron, 58.06, ferro- manganese, 12.97 Copper wire, hard-drawn Gold wire Iron, cast "wire, hard-drawn ""annealed Lead, cast or drawn Palladium * Platinum * wire	30000-40000 50000-150000 110000-140000 95000-115000 60000-75000 20000-120000 50000-33000 80000-120000 50000-60000 26000-3300 39000 50000	Marble Tufa Brownstone Sandstone Granite Limestone * Data furnished by	piece. 4 in. cubes 2 " " 4 in. cubes 4 " " 4 " " y the U. S. Geo	pds. per sq. in. 7600-20700 7700-11600 7300-2300 2400-29300 9700-34000 6000-25000
Silver * wire Steel " wire, maximum " Specially treated nickel-	42000 80000-330000 460000			rushing in pds. q. in.
steel, approx. comp. 0.40 C; 3.25 Ni; treatment secret	250000	Kind of Brick.	Tested flatwise.	Tested on edge.
" piano wire, 0.033 in. diam. " piano wire, 0.051 in. diam. Tin, cast or drawn Zinc, cast " drawn	357000-390000 325000-337000 4000-5000 7000-13000 22000-30000	Soft burned Medium burned Hard burned Vitrified Sand-lime	1800-4000 4000-6000 6000-8500 8500-25000 1800-4000	1600-3000 3000-4500 4500-6500 6500-20000
According to Boys, quartz tensile strength of between 116 pounds per square inch.		Brick piers lai cement, 3 of sand cent the crushing	d, have from	20 to 40 per

* Authority of Wertheim.

* Data furnished by the U. S. Geological Survey.

Coarse Aggregate.	Proportions by volume. Cement : sand : aggregate.	Size of test piece.	Resistance to crushing in pds. per sq. in.	
Sandston e	1:5:14 to 1:1:5	12 in. cube	1550-3860	
Cinders	1:3:6 " 1:1:3	12 " "	790-2050	
Limestone	1:4:8 " 1:2:4	12 " "	1200-2840	
Conglomerate	1:6:12 " 1:2:4	12 " "	1080-3830	
Trap	1:2:9 " 1:2:4	12 " "	820-2960	

TABLE 35 (d). - Concretes.*

* Data furnished by the U. S. Geological Survey.

SMITHSONIAN TABLES.

TABLE 36.

STRENGTH OF MATERIALS.

Average Results of Timber Tests.

The test pieces were SMALL and SELECTED. Endwise compression tests of some of the first lot, made when green and containing over 40 per cent moisture, showed a diminishing in-strength of 50 to 75 per cent. See also Table 37. A particular sample may vary greatly from these data, which can indicate only in a general way the relative values of a kind of timber. Note that the data below are from selected samples and therefore probably high. The upper lot are from the U. S. Forestry circular No. 15; the lower from the tests made for the toth U. S. Census.

tests made for the 10th U.S. Census.

	TRAN TE	SVERSE STS.	COMPR	SHEAR- ING.	
NAME OF SPECIES.	Modulus of rupture. lb./sq. in.	Modulus of elasticity. lbs./sq. in.	to grain. lbs./sq. in.	⊥ to graiu. lbs./sq. in.	Along the grain. lbs./sq. in.
Long-leaf pine Cuban pine Short-leaf pine Loblolly pine White pine Bald cypress White cedar Douglass spruce White cak Overcup cak Post cak Cow cak Red cak Texan cak Yellow cak Willow cak Spanish cak Shagbark hickory Mockernut hickory Water hickory Bitternut hickory Nutmeg hickory Pignut hickory Pignut hickory White elm Cedar elm White ash Green ash Sweet gum Poplar Basswood Ironwood Sugar maple White maple Box elder Black walnut Sycamore Hemlock	12,600 13,600 10,100 11,300 7,900 9,100 10,000 7,900 6,300 7,900 13,100 11,300 12,300 11,500 13,100 10,800 12,400 12,400 12,400 12,000 15,200 12,500 12,500 12,500 12,500 13,500 13,500 13,500 13,500 13,500 13,500 13,500 13,500 13,500 14,640 7,580 14,640 7,580 14,640 7,580 14,000 7,500 9,480	2,070,000 2,370,000 1,680,000 1,300,000 1,620,000 1,620,000 1,200,000 1,620,000 2,030,000 1,620,000 2,030,000 1,620,000 1,620,000 2,030,000 1,620,000 1,620,000 1,620,000 1,740,000 1,740,000 2,320,000 2,320,000 2,320,000 2,320,000 2,320,000 1,540,000 1,540,000 1,540,000 1,540,000 1,700,000 1,50,000 1,700,000 1,50,000	8,000 8,700 6,500 7,400 6,700 7,300 6,000 5,700 8,500 7,100 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,300 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 8,500 7,200 7,200 8,500 7,200 7,200 7,200 8,500 7,200 8,500 7,100 8,500 7,100 8,500 7,100 8,500 7,100 8,500 7,100 8,500 7,100 8,000 7,200 8,000 7,200 5,275 8,800 6,850 4,500 8,000 6,400 5,400 6,400 5,400 6,400 8,000 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,400 6,400 8,	1260 1200 1050 1050 1200 800 2200 1900 2300 2300 2300 2300 2300 2300 2300 2	Ibs./sq. in. 835 770 770 800 400 500 400 500 1000 1000 1000 1000 1100 900 1100 1000 1100 1000 1100 1000 1
Red fir Tamarack Red cedar Cottonwood Beech	13,270 13,150 11,800 10,440 16,200	1,870,000 1,917,000 938,000 1,450,000 1,730,000	7,780 7,400 6,300 5,000 6,770	1750 1480 2000 1100 2840	

TABLE 37.

UNIT STRESSES FOR STRUCTURAL TIMBER EXPRESSED IN POUNDS PER SQUARE INCH.

Recommended by the Committee on Wooden Bridges and Trestles, American Railway Engineering Association, 1909.

	BENDING.								SHEA	RIN G .		
KIND OF TIMBER.		reme fibr stress.	re		Modulus of elasticity.		Parallel to grain.			Longit shear in	Longitudinal shear in beams.	
	Averag ultimat			1	Average.		Avera; iltimai		Safe stress.	Average ultimate.	Safe stress.	
Donglass fir Long-leaf pine Short-leaf pine White pine Spruce Norway pine Tamarack Western hemlock Redwood Bald cypress Red cedar White oak	6100 6500 5600 4400 4800 4200 5800 5800 5800 5800 4800 4200 5700	13 110 90 100 80 90 110 90	00 I,ÕI0,00 00 I,480,00 00 I,130,00 00 I,130,00 00 I,190,00 00 I,220,00 00 I,220,00 00 I,220,00 00 I,250,00 00 I,150,00 00 S60,00 00 S60,00		480,000		690 720 710 400 600 590 670 630 300 500 - 840		170 180 170 150 150 130 170 160 80 120 - 210	270 300 330 180 170 250 260 270* - - 270	110 120 130 70 70 100 100 100 - - -	
		j,										
KIND OF TIMBER.		idicular rain.	COMPRES			under 15 diams. Safe stress.			Ratio of length of stringer to depth.			
	Elastic limit.	Safe stress.		rage nate.	Safe stress.	For c	under 1 Safe	c		over 15 eters.†	Ratic strin	
Douglass fir Long-leaf pine Short-leaf pine White pine Spruce Norway pine Tamarack Western hemlock Redwood Bald cypress	630 520 340 290 370 - 440 400 340	310 260 170 150 180 150 220 220 150 170	3600 3800 3400 3000 3200 2600* 3200* 3500 3300 3300 2800		1200 1300 1100 1000 1100 800 1000 1200 900 1100	9 9 7 8 6 7 9 6 8	00 80 30 50 50 50 50 80 80 30	1200(1-L, 1300(1-L, 1000(1-L, 1000(1-L, 1000(1-L, 1000(1-L, 1200(1-L, 900(1-L,		/ 60.D) / 60.D) / 60.D) / 60.D) / 60.D) / 60.D) / 60.D) / 60.D)	IO IO IO - - -	
Red cedar White oak	470 920	230 450	28 35		900 1300		80 80	90 130	00(1-L 00(1-L	/60.D) /60.D)	- 12	

These unit stresses are for a green condition of the timber and are to be used without increasing the live-load stresses for impact.

* Partially air-dry. † L=length in inches. D = least side in inches.

TABLES 38-39.

ELASTIC MODULI.

TABLE 38. - Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity Modulus.	Refer- ence.		lefer- nce.
Aluminum	3350 2580 3550 3715 1240 4060 2450 4780 4213 4450 4664 2850 5210 6706 5210 6706 7975 6940 8108 7505 1710 8108 7505 1710 7820 4359	14 5 5 5 5 5 5 18 19 5 15 10 7 16 14 5 11	""" 2380 Silver 2960 "" 2650 "" 2566 "hard-drawn 2816 Steel 8290 "cast 7458 "cast, coarse gr. 8070 "silver- 7872 Tin, cast 1730 " 1543 Zinc 3880 " 6630 " 6630 " 2350 " 2380 Class 2350 " 1770 Granite 1770 Marble 1190	20 21 5 10 15 11 15 5 19 5 19 5 19 10 22 - - 23 223 23
References 1–16, see Table 48. 17 Grätz, Wied. Ann. 28, 1886. 18 Savart, Pogg. Ann. 16, 1829. 19 Kiewiet, Diss. Göttingen, 1886. 20 Threlfall, Philos. Mag. (5) 30, 1890.			 Boys, Philos. Mag. (5) 30, 1890. Thomson, Lord Kelvin. Gray and Milne. Adams-Coker, Carnegie Publ. No. 46 1906. 	<u>5,</u>

TABLE 39 Variation	a of the Rigidity Modulus with the Temp	erature.
--------------------	---	----------

 $n_t = n_o$ (1 - at - $\beta t^2 - \gamma t^8$), where t = temperature Centigrade.

Substa	ice.	no	a10 ⁶	β10 ⁸	y 10 ¹⁰		Autbori	ty.	
Brass Copper Iron Platinum . Silver Steel	· · · · · · · · · · · · · · · · · · ·		2158 455 2716 572 206 483 111 387 187	48 36 -23 28 19 12 50 38 59	32 - 47 - 11 - 8 - 8 - 9	Kohlrauso Pisati, loc K and L, Pisati, loc K and L, Pisati, loc	loc. cit. . cit. loc. cit. . cit. "		
	$n_t^* = n_1$.5 [I — a (t — 15)]; Ho	rton, P	hilos. Trans	. 204 A, 190	5.	
Copper Copper (com- mercial) Iron Steel	3.80	=.00039 .00038 .00029 .00026	Gold Silve Alun	r	2.45	.00048	Lead	1.50* 0.80 2.31 3.00	a = .00416 .00164 .0058 .00012

* Modulus of rigidity in rol1 dynes per sq. cm.

TABLE 40.

ELASTIC MODULI.

Young's Modulus.

 $Young's Modulus = \frac{Intensity of longitudinal stress (kg. per sq. mm.)}{Elongation per unit length}$

Elongation per unit length							
Substance.	Temp. °C	Young's Modulus,	Refer- ence.	Substance.	Temp. °C.	Young's Modulus.	Refer- ence.
Aluminum "annealed Bronze Bronze Cadmium Delta metal Delta metal "annealed "anwn "anwn	1896. phys. (3 [, 79, 18 1893. 9. ogg. An , 1900.	s) 12, 184 79. n. 141, 18	4.	Nickel-steel, 5½% ni. " " 25%" · Palladinm, annealed Phosphor-bronze · Platinum, drawn · " annealed · " · · · · " annealed · Silver, drawn · · " annealed · Steel wire, drawn · " annealed · Steel, cast, drawn · " annealed · Steel, cast, drawn · " annealed · " annealed · Steel, cast, drawn · " annealed · " annealed · Steel, cast, drawn · " annealed · Steel, cast, drawn · " annealed · Steel, cast, drawn · " annealed · " bassemer · " annealed · Steel, cast, drawn · " balf soft · Tin, drawn · " cast · · · Glass · · · · Marbles · · · Basic intrusives · · Rocks : See Nagaoka, Philos. Mag. 1900. Io Baumeister, Wied. An II Searle, Philos. Mag. (12 Cantone, Wied. Beibi 13 Mercadier, C. R. II3, 14 Katzenelsohn, Diss. I 5 Wertheim, Pogg. Ann 16 Pisati, Nuovo Ciment References 17-19, see Ta	5) 49, 19 1. 14, 189 1891. Berlin, 18 1. 78, 182 0, 5, 34,	00. 0. 387.	$\begin{array}{c} 13\\ 13\\ 3\\ 1\\ 1\\ 3\\ 3\\ 2\\ 1\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$

Compiled partly from Landolt-Börnstein's Physikalisch-Chemische Tabellen.

TABLES 41-44.

COMPRESSIBILITY, HARDNESS, CONTRACTION OF ELEMENTS.

TABLE 41. - Compressibility of the More Important Solid Elements.

Arranged in order of the increasing atomic weights. The numbers give the mean elastic change of volume for one megabar (0.987 atm.) between 100 and 500 megabars, multiplied by 10⁶.

Lithium 8.8 Carbon 0.5 Sodium 15.4 Magnesium 2.7 Aluminum 1.3 Silicon 0.1 Red phosphorus 9.0 Sulphur 12.5 Chlorine 95.	Potassium Calcium Chromium Manganese Iron Nickel Copper Zinc Arsenic	31.5 5.5 0.7 0.7 0.40 0.27 0.54 1.5 4.3	Selenium Bromine Rubidium Molybdium Palladium Silver Cadmium Tin Antimony	11.8 51.8 40. 0.26 0.38 0.84 19 1.6 2.2	Iodine Cæsium Platinům Gold Mercury Thallium Lead Bismuth	13. 61. 0.21 0.47 3.71 2.6 2.2 2.8
--	--	---	---	---	--	---

Stull, Zeitschr. Phys Chem 61, 1907.

TABLE	42. –	Hardness.
-------	-------	-----------

From Landolt-Börnstein-Meyerhoffer Tables : Auerbachs, Winklemann, Handb. der Phys. 1891.

TABLE 43. - Relative Hardness of the Elements.

Rydberg, Zeitschr. Phys Chem 33, 1900

TABLE 44. — Ratio, ρ , of Transverse Contraction to Longitudinal Extension under Tensile Stress. (Poisson's Ratio.)

Metal	РЪ	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
ρ	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.

p for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906. SMITHSONIAN TABLES.

TABLE 45.

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma$, $\alpha_i \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for torsional rigidity. The moduli are io grams per square centimeter.

Barite. $\frac{10^{10}}{E} = 16.13a^4 + 18.51\beta^4 + 10.42\gamma^4 + 2(38.79\beta^2\gamma^2 + 15.21\gamma^2a^2 + 8.88a^2\beta^2)$
$\frac{10^{10}}{T} = 69.52a^4 + 117.66\beta^4 + (116.46\gamma^4 + 2(20.16\beta^2\gamma^2 + 85.29\gamma^2a^2 + 127.35a^2\beta^2)$
Beryl (Emerald). $\frac{{}^{10^{10}}}{E} = 4.325 \sin^4 \phi + 4.619 \cos^4 \phi + 13.328 \sin^2 \phi \cos^2 \phi$ where $\phi \phi_1 \phi_2$ are the angles which the length, breadth, and thickness of the specimen make with the principal axis of the crystal.
Fluorspar. $\frac{10^{10}}{E} = 13.05 - 6.26 (a^4 + \beta^4 + \gamma^4)$
$\frac{10^{10}}{T} = 58.04 - 50.08 \left(\beta^{2}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2}\right)$
Pyrite. $\frac{10^{10}}{E} = 5.08 - 2.24 (a^4 + \beta^4 + \gamma^4)$ rol ⁰
$\frac{10^{10}}{T} = 18.60 - 17.95 \left(\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2\right)$
Rock salt. $\frac{{}^{10^{10}}}{E} = 33.48 - 9.66 (\alpha^4 + \beta^4 + \gamma^4)$ 10 ¹⁰
$\frac{10^{10}}{T} = 154.58 - 77.28 \left(\beta^2 \gamma^2 + \gamma^2 a^2 + a^2 \beta^2\right)$
Sylvine. $\frac{10^{10}}{E} = 75.1 - 48.2 (a^4 + \beta^4 + \gamma^4)$
$\frac{10^{10}}{T} = 306.0 - 192.8 \left(\beta^2 \gamma^2 + \gamma^2 a^2 + a^2 \beta^2\right)$
Topaz. $\frac{10^{10}}{E} = 4.341a^4 + 3.460\beta^4 + 3.771\gamma^4 + 2(3.879\beta^2\gamma^2 + 2.856\gamma^2a^2 + 2.39a^2\beta^2)$
$\frac{10^{10}}{T} = 14.88\alpha^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2\alpha^2 + 43.51\alpha^2\beta^2$
Quartz. Io ¹⁰
$\frac{1}{E} = 12.734 (1 - \gamma^2)^2 + 16.693 (1 - \gamma^2)\gamma^2 + 9.705\gamma^4 - 8.460\beta\gamma (3\alpha^2 - \beta^2)$
$\frac{10^{10}}{T} = 19.665 + 9.060\gamma_2^2 + 22.984\gamma^2\gamma_1^2 - 16.920 \left[(\gamma\beta_1 + \beta\gamma_1) (3\alpha\alpha_1 - \beta\beta_1) - \beta_2\gamma_2 \right]$

* These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35). SMITHSONIAN TABLES.

TABLE 46.

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsioual rigidities round the axes similarly indicated. Moduli in grams per sq. cm.

(a) ISOMETRIC SYSTEM.*											
Subst	ance.	Ea	_	E	Ee		т	a	A	uthority.	
Fluorspar Pyrite . Rock salt " Sylvine . " Sodium ch Potassium Chronium Iron alum	lorate . alum .	1473×10 3530×10 419×10 403×10 401×10 372×10 405×10 181×10 161×10 186×10	2 ⁶ 2 ⁶ 2 ⁶ 2 ⁶ 2 ⁶ 2 ⁶ 2 ⁶ 2 ⁶	1008 × 10 2530 × 10 349 × 10 209 × 10 196 × 10 319 × 10 199 × 10 177 × 10	6 2310 × 6 303 × 6 - 6 - 6 - 6 -	910×10^{6} 2310×10^{6} 303×10^{6} $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$		345 × 10 ⁶ 1075 × 10 ⁶ 129 × 10 ⁶ 655 × 10 ⁶ 		t.† ‡ t. 	
(b) Orthorhombic System.											
Substance. E_1 E_2 E_3 E_4 E_5 E_6 Authority											
Barite . Topaz .	б20 X 10 ⁶ 2304 X 10 ⁶	540 X 10 2890 X 10	0 ⁶ 0 ⁶	959 × 10 ⁸ 2652 × 10 ⁶	376 X 10 ⁶ 2670 X 10 ⁶	70 289	2 × 10 ⁶ 3 × 10 ⁶	740 3180	× 10 ⁶	Voigt.	
5	Substance.		т	$T_{12} = T_{21}$	$T_{13} = T_3$	1	T ₂₈ =	= T _{3 2}	A	uthority.	
Barite . Topaz .	• • • • • • • •	••••	2 13	83 × 10 ⁶ 36 × 10 ⁶	293 × 10 1353 × 10)6)6	121 1104	× 10 ⁶	Vo	igt. '	
In the M	Ionoclinic Gypsu Mica	$\operatorname{Im} \begin{cases} \mathbf{E}_{\max} = \\ \mathbf{E}_{\min} = \\ \mathbf{S} \mathbf{E}_{\max} = \end{cases}$	= 8 = 3 = 2	387 × 106 at 313 × 106 at 2213 × 106 i	eit. für Krys 21.9° to the 75.4° " n the princi at 45° to the	prin pal a	icipal az " "	cis. '			
In the 1 The subscr the crystal	E ₀ = 2165	e inclinati $ imes$ 10 ⁶ , E	on 1 ₄₅ :	in degrees $=$ 1796 \times 10	measurement of the axis of 0^6 , $E_{90} = 2^3$. The sm	of str 2312	ress to t imes 10 ⁶ ,	he pri	ncipal	axis of	
	rimented on	•									
In the RHOMBOHEDRAL SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system. $E_0 = 1030 \times 10^6$, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$, $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$. Baumgarten ¶ gives for calcite											
$E_0 = 501 \times 10^6, E_{-45} = 441 \times 10^6, E_{+46} = 772 \times 10^6, E_{90} = 790 \times 10^6.$											
* Io this system the subscript a indicates that compression or extension takes place along the crystalline axis, and stortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the											

* Io this system the subscript a indicates that compression or extension takes place along the crystallite axis, and distortion round the axis. The subscripts and a correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.
† Voigt, "Wied. Ann." 31, p. 474, p. 701, 1887; 34, p. 981, 1888; 36, p. 642, 1888.
‡ Koch, "Wied. Ann." 33, p. 325, 1882.
§ Beckenkamp, "Zeit, fiir Kryst." vol. 10.
I The subscript 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.
§ Baumgarten, "Pogg. Anu." 152, p. 369, 1879.

TABLES 47-49.

COMPRESSIBILITY OF CASES.

		Oxygea.			Air.			Nitrogen.			Hydrogen.		
Atm.	°°	99 ⁰ •5	199 ⁰ .5	o ⁰	99 ⁰ -4	200 ⁰ .4	°0	99 ⁰ .5	199 ⁰ .6	0 ⁰	99 ⁰ •3	200 ⁰ .5	
100 200 300 400 500 600 700 800 900 1000	9265 4570 3208 2629 2312 2115 1979 1879 1870 1735	7000 4843 3830 3244 2867 2610 2417 2268 2151	- 9095 6283 4900 4100 3570 3202 2929 2718 -	97 30 5050 3658 3036 2680 2450 2288 2168 2070 1992	- 7360 5170 4170 3565 3180 2904 2699 2544 2415	- 9430 6622 5240 4422 3883 3502 3219 3000 2828	9910 5195 3786 3142 2780 2543 2374 2240 2149 2068	7445 5301 4265 3655 3258 2980 2775 2616	- 9532 6715 5331 4515 3973 3589 3300 3085 -	5690 4030 3207 2713 2387 2149 1972 1832 1720	7 567 5286 4147 3462 3006 2680 2444 2244 2093	9420 6520 5075 4210 3627 3212 2900 2657	

TABLE 47. - Relative Volumes at Various Pressures and Temperatures, the volume at 0° 0 and at 1 atmosphere being taken as 1 000 000.

Amagat: C. R. 111, p. 871, 1890; Ano. chim. phys. (6) 29, pp. 68 and 505, 1893.

TABLE 48. - Ethylene,

pv at 0° C and 1 atm. = 1.

Atm.	0 ⁰	100	20 ⁰	300	40 ⁰	60 ⁰	80 ⁰	1000	137 ⁰ .5	198 ⁰ .5
46 48 50 52 54 56 100 150 200 300	- - - - - - - - - - - - - - - - - - -	0.562 0.508 0.420 0.240 0.229 0.227 0.331 0.459 0.585 0.827	0.684 - 0.598 0.561 0.524 0.360 0.485 0.610 0.852	- - - - - - - - - - - - - - - - - - -	- 0.814 - 0.471 0.551 0.669 0.908	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - 1.192 - - 1.005 0.924 0.946 1.133	- - - - 1.374 - - - 1.247 1.178 1.174 1.310	I.652 - - I.580 I.540 I.537 I.628
500 1000	1,256 2,289	1.280 2.321	1.308 2.354	1.337 2.387	1.367 2.422	1.431 2.493	1.500 2.566	1.578 2.643	1.721 2.798	1.985 -

Amagat, C. R. 111, p. 871, 1890; 116, p. 946, 1893.

TABLE 49. - Ethylene.

Pressure in	Relative values of pv at										
meters of mercury.	16 ⁰ .3	20 ⁰ .3	30 ⁰ . 1	40 ⁰ .0	50 ⁰ .0	60 ⁰ .0	70 ⁰ .0	79 ⁰ .9	89 ⁰ .9	100 ⁰ .0	
30 60 90 120 150 210 240 270 300 320	1950 810 1065 1325 1590 1855 2110 2360 2610 2860 3035	2055 900 1115 1370 1625 1890 2145 2395 2640 2890 3065	2220 1190 1195 1440 1690 1945 2200 2450 2450 2710 2960 3125	2410 1535 1325 1540 1785 2035 2285 2540 2790 3040 3200	2580 1875 1510 1660 1880 2130 2375 2625 2875 3125 3285	2715 2100 1710 1780 1990 2225 2470 2720 2965 3215 3375	2865 2310 1930 1950 2125 2340 2565 2810 3060 3300 3470	2970 2500 2160 2115 2250 2450 2680 2910 3150 3380 3545	3090 2680 2375 2305 2390 2565 2790 3015 3240 3470 3625	3225 2860 2565 2470 2540 2700 2910 3125 3345 3560 3710	

Amagat, Aun. chim. phys. (5) 22, p. 353, 1881.

TABLES 50-52.

COMPRESSIBILITY OF GASES.

TABLE 50. - Carbon Dioxide.

Pressure in					Relativ	e values (of pv at -	_]
metres of mercury.	18 ⁰ .2	350	.1 4	0 ⁰ .2	50 ⁰ .0	60 ⁰ .0	700.0	o 80	°.o	90 ⁰ .0	100 ⁰ .0
30 50 80 110 140 170 230 230 290 320	liqui 625 825 1020 1210 1405 1590 1770 1950 2135	17: 7 9; 11: 13: 15: 16: 18: 20:	25 I 50 30 10 I 50 I 10 I 10 10 10 10 10 10 10 10 10 10 10 10 10	460 900 825 980 175 360 550 730 920 100 280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2870 252 197 1550 152 164 1810 2160 2340 252	5 26 5 22 5 12 5 18 5 17 5 17 5 20 5 22 5 27 5 27 5 20 5 20 5 20 5 20 5 20 5 22 5 22 5 22 5 22 5 22 5 22 5 22 5 24	85 25 45 15 80 30 30 65 40	31 20 2845 2440 2105 1950 1975 2075 2210 2375 2550 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830
Atm.			R	elative va	lues of pz	; p v at c	°C. and	, 1 atm. =	1,		
Atm.	00	10 ⁰	20 ⁰	300	400	60 ⁰	. 800	1000	137 ⁰	1980	25 ⁸⁰
50 100 150 300 500 1000	0.105 0.202 0.295 0.559 0.891 1.656	0.114 0.213 0.309 0.578 0.913 1.685	0.680 0.229 0.326 0.599 0.938 1.716	0.775 0.255 0.346 0.623 0.963 1.748	0.750 0.309 0.377 0.649 0.990 1.780	0.984 0.661 0.485 0.710 1.054 1.848	1.096 0.873 0.681 0.790 1.124 1.921	1.206 1.030 0.878 0.890 1.201 1.999	1.380 1.259 1.159 1.108 1.362	1.582 1.530 1.493 1.678	- 1.847 1.818 1.820 - -

Amagat, C. R. 111, p. 871, 1890; Aon. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

Gas.	<u>þ.v. (1</u> atm.) Þovo (1 atm.).	$\frac{\frac{1}{p.v.}}{=} \frac{\frac{d(p.v.)}{dp}}{=} a.$	ŧ	$t \stackrel{a}{=} 0$	Density. $O = 32, o^{\circ}C$ $P = 76^{cm}$	Density. Very small pressure.
$\begin{array}{c} O_2\\ H_2\\ N_2\\ CO\\ CO_2\\ N_2O\\ Air\\ NH_3 \end{array}$	1.00038 0.99974 1.00015 1.0026 1.00279 1.00327 1.00026 1.00632		11.2° 10.7 14.9 13.8 15.0 11.0 11.4	00094 + .00053 00056 00081 00668 00747 -	32. 2.015 (16°) 28.005 28.000 44.268 44.285 - -	32. 2.0173 28.016 28.003 44.014 43.996 –

TABLE 51. — Compressibility of Gases.

Rayleigh, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 52. -- Compressibility of Air and Oxygen between 18° and 22° C.

Pressures in metres of mercury, pv, relative.

Air	р	24.07	34.90	45.24	55.30	64.00	72.16	84.22	101.47	214.54	304.04
	ри	26968	26908	26791	26789	26778	26792	26840	27041	29585	32488
02	р ръ	24.07 26843	34.89 26614	-	55.50 26185	64.07 26050	72.15 25858	84.19 25745	101.06 25639	214.52 26536	303.03 28756

TABLES 53-54.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 53.-Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ire in los.	Correspon	ding Volun ts at Tempe	ne for Ex- trature —	Volume.	Pressure Experime	Pressure in Atmospheres for Experiments at Temperature —			
Pressure i Atmos.	58 ⁰ .0	99 ⁰ .6	183 ⁰ .2	V Grunne.	58°.0	99 ⁰ .6	183 ⁰ .2		
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 120	8560 6360 4040 - - - - - - - - - - - - - - -	9440 7800 5310 4405 4030 3345 2780 2305 1935 1450 - -	- - - - - - - - - - - - - - - - - - -	10000 9000 8000 7000 6000 5000 4000 3500 3500 3000 2 500 2000 1 500 1000	- 9.60 10.40 11.55 12.30 13.15 14.00 14.40 - -	9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60	- - - - 29.10 33.25 40.95 55.20 76.00		
140 160	_		430 325	500	-	-	117.20		

TABLE 54. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

essure in Atmos.	Correspon periment	ding Volun ts at Tempe	ne for Ex- rature —	Volume.	Pressure in Atmospheres for Experiments at Temperature —					
Pressure Atmos.	46°.6	99 ⁰ .6	183 ⁰ .6	volume.	30 ⁰ .2	46°.6	99 ⁰ .6	183°.0		
10 12.5 15 20	9500 7245 5880	- 7635 6305 4645	- - 4 ⁸ 75	10000 9000 8000	8.85 9.60 10.40	9.50 10.45 11.50	12.00	-		
25 30		3560 2875 2440	3835 3185 2680	7000 6000	11.05 11.80	13.00 14.75	13.60 15.55	-		
35 40 45 50		2080 1795 1490	2345 2035 1775	5000 4000 3500	12.00 - -	16.60 18.35 18.30	18.60 22.70 25.40	19.50 24.00 27.20		
55 60		1250 975	1 590 14 50 12 4 5	3000 2500	-	-	29.20 34.25	31.50 37.35		
70 80 90 100	-	-	1125 1035 950	2000 1 500 1 000	-	-	41.45 49.70	45.50 58.00		
			930	1000	<u> </u>		59.65	93.60		

* From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

COMPRESSIBILITY OF LIQUIDS.

If V_1 is the volume under pressure p_1 atmospheres at $t^{\circ}C$, and V_2 is volume at pressure p_2 and the same temperature, then the compressibility coefficient may be defined at that temperature as :

$$\beta_i = \frac{\mathbf{I}}{V_1} \cdot \frac{V_1 - V_2}{p_2 - p_1}$$

In absolute units (referred to megadynes) the coefficient is $\frac{I}{I.0137}\beta_{t}$.

Substance.	t.	Pressures.	β. 10 ⁶	Refer- ence.	Substance.	t.	Pressures.	β. 10 ⁶	Refer- ence.
A	0		8.		Methyl alcohol	9 100.	.8.68-37.3	221	3
Acetone	0.00	1–500 500–1000	82 59	I		18.10	8	120	2
**	0.00	1000-1500	39 47	"	Nitric acid	20.3	1-32	338	II
44	99-5	8.94-36.5	276	3	Oils: Almond	17.	-	55	8
Benzole	5.95	8	83	2	Olive	20.5	-	55 63	"
66	17.9	8	92	"	Paraffin	14.8	-	63	6
68	15.4	I-4	8 ₇	4	Petroleum	16.5	-	70	12 8
	78.8	1-4	120		Rock Rape-seed	19.4	-	75	"
Carbon bisulphide	0.00	I-500	66	4	Turpentin	20.3	_	79	"
66 66	0.00	500-1000 1000-1500	53 43	66	Toluene	10.	_	79	13
	49.2	1000-1500	45 51	56	"	100.	-	150	
Chloroform	0.	-	101	5	Xylene	10.	-	74	15
"	20.	-	128		- "	100.	-	132	
"	40.	-	162	"	Paraffins: C ₆ H ₁₄	23.	0–I "	159	14
"	60.	_	204		C_7H_{16}	"	"	134 121	66
	100.	8-9	211	3	$\begin{array}{c} C_8H_{18} \\ C_9H_{20} \end{array}$	"	66	113	
Collodium	100.	19-34	206	6	$C_{10}H_{22}$	"	"	105	"
Ethyl alcohol	14.8 28.	I 50-200	97 86		$C_{12}H_{28}$	"	"	92	"
	28.	1 50-400	81	7"	C ₁₄ H ₈₀	**	"	83	"
** **	65.	150-200	110	66	C ₁₆ H ₈₄	"	"	75	"
66 66	65.	150-400	100	"	Water	0.	1-25	52.5	I
	100.	150-200	168	"	66 66	10.	"	50.0	
46 66	100.	150-400	132	"		20.		49.1 51.6	44
~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	185.	1 50-200	320		"	0. 10.	25-50	49.2	"
4 4	185.	150-400	245 4200		44	20.	"	47.6	"
"	310. 310.	150-200 150-400	1530		**	0.	1-100	ξΙ.Ι	"
	0.	1-50	96	I	66 C	10.	"	48.3	"
66 66	20.	1-50	112	66	**	20.	"	46.8	46 66
24 66	40.	1-50	125	66		50.	"	44.9	66
66 B6	o.	100-200	85	"		100.		47.8	
"	0.	300-400	73	66 66	6C C 6	0.	100-200	49.2	"
	20.	300-400	73 78 87		"	10. 20.	"	46.1 44.2	"
""	40.	300-400 500-600	64		"	50.	**	42.5	"
	0. 0.	700-800	56	"	"	100.	"	46.8	"
	20.	700-800		"		о.	1-500	47.5	"
66 66	40.	700-800	65	46		20.4	64	43.4	65 66
46 DL	o.	900-1000	52	**	"	48.85	"	41.6	56
Ethyl chloride	11.	8.5-34.2	138	3		0.	500-1000	41.6	
u	15.2	8.7-37.2	153	••		0.	1000-1500	35.8	46
46 46	61.5	12.6-34.4	256			20,4 48.85	1	33.8 32.5	"
""	99.0	12.8-34.5	495	8	4	0.	I 500-2000	32.4	"
Glycerine	20.5	1 -	25 22	6		0.	2000-2500	29.2	••
Mercury	14.8	_	3.92	9	"	о.	2500-3000	26.1	**
Mercury "	0.	-	3.90	10	"	48.85		25.4	"
Methyl alcohol	14.7	8.50-37.1	164	3					ŀ

For references see page 80.

	Compression per unit		Calculated v moduli	alues of bulk us in —
Solid.	volume per atmo. X 10 ⁶ .	Authority.	Grams per sq. cm.	Pounds per sq. in.
Crystals : Barite	1.93 0.747 1.20 1.14 2.67 4.20* 7.45* 0.61 0.113 0.95 0.86 1.02 2.76 0.68 2.2-2.9	Voigt " " " " " " " " " " " " " " " " "	535×10^{6} 1384 " 860 " 906 " 387 " 246 " 138 " 1694 " 9140 " 9140 " 1202 " 1012 " 374 " 1518 " 405 "	7.61×10^{5} 19.68 " 12.24 " 12.89 " 3.50 " 1.97 " 24.11 " 130.10 " 15.48 " 17.10 " 14.41 " 5.32 " 21.61 " 5.76 "

COMPRESSIBILITY AND BULK MODULI OF SOLIDS.

NOTE: Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897; 68, 1899) give the following coefficients (among others) for varinus Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilo-

grams per square millimeter: The following values in cm³ / Kg of 10⁶ × Compressibility are given for the corresponding temperatures by Grüneisen Ann. der Phys. 33, p. 65, 1910.

Al. -191^{D} , 1.32; 17⁰, 1.46; 125⁰, 1.70. Cu. -191^{D} , 1.72; 17^D, 0.77; 165^D, 1.83. Pt. -189^{O} , 0.37; 17^O, 0.39; 164^O, 0.40. Fe. — 190⁰, 0.61; 18⁰, 0.63; 165⁰, 0.67. Ag. — 191⁰, 1.71; 16⁰, 0.76; 166⁰, 0.86. Pb. — 191⁰, (2.5); 14⁰, (3.2)

No.	Glass.	Compres- sibility.	No.	Glass.	Compres- sibility
665	Barytborosilicat	7520	2154	Kalibleisilicat	3660
1299		5800	S 208	Heaviest Bleisilicat	3550
16		4530	500	Very Heavy "	3510
278		3790	S 196	Tonerdborat with sodium, baryte	3470

* Röatgen and Schneider by piezometric experiments obtained 5.0 × 10-6 for rock salt, and 5.6 × 10-5 for sylvine (Wied. Ann., vol. 31).

References to Tables 55 and 56.

Liquids (Table 55):

- I Amagat, Ann. chim. phys. (6) 29, 1893.
- 2 Röntgen, Wied. Ann. 44, p. 1, 1891.
- 3 Amagat, C. R. 68, p. 1170, 1869; Ann. chim. phys. (5) 28, 1883.
- 4 Pagliani-Palazzo, Mem. Acad. Lin. (3) 19, 1883.
- 5 Grimaldi, Zeitschr. Phys. Chem. 1, 1887.
- 6 de Metz, Wied. Ann. 41, p. 663, 1890; 47, p. 706, 1892.
- 7 Barus, Sill. Journ. 39, p. 478, 1890; 41, 1891; Bull. U.S. Geol. Surv. 1892.
- Solids (Table 56):
- Amagat, C. R. 108, p. 228, 1889; J. de Phys. (2) 8, p.197, 1889.

- 8 Quincke, Wied. Ann. 19, p. 401, 1883.
- 9 Amagat, Ann. chim. phys. (6) 22, p. 95, 1891.
- 10 Aimé, Ann. chim. phys. (3) 8, p. 268, 1843.
- 11 Colladon-Sturm, Pogg. Ann. 12, p. 39, 1828.
- 12 Martini.
- 13 de Heen, Bull. Acad. Roy. Belg. (3) 9, 1885.
- 14 Bartoli, Rend Lomb. (2) 28, 29, 1896.
- 15 Protz, Ann. der Phys. (4) 31, p. 127, 1910.
- See also Bridgman, Proc. Ann. Acad. 48, p. 309, 1912 (H₂O) 49, p. 3, 1913 (alcohols, etc.) ; 49, p. 627, 1914 (high pressure technique).

Buchanan, Proc. Roy. Soc. Edinb. 10, 1880.

Voigt, Wied. Ann. 31, 1887; 34, 1888, 36, 1888.

TABLE 57.

SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.

The specific gravities are for 15.56°C (60° F) referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé =
$$\frac{140}{\text{Specific Gravity}} - 130$$

For specific gravities greater than unity from:

Degrees Baumé =
$$I_{45} - \frac{I_{45}}{S_{\text{pecific Gravity}}}$$

			Sp	ecific Gra	avities le	ss than 1	•					
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
Gravity.	Degrees Baumé.											
0.60 .70 .80 .90 1.00	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.7 5 59.19 36.67 18.94	85.38 56.67 34.7 1 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	7 5.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41		
			Spe	cific Gra	vities gr	eater tha	.n 1.			<u></u>		
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
Gravity.					Degrees	Baumé.						
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80	0.00 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44	1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89	2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33	4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76	5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67 66.20	6.91 18.91 29.00 37-59 45.00 51.45 57.12 62.14 66.62	8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61	9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08	10.74 22.12 31.72 39.93 47.03 53.23 58.69 63.54	11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99		

TABLES 58-59.

REDUCTIONS OF WEICHINCS IN AIR TO VACUO. TABLE 58.

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to M δ ($I/d - I/d_1$) where δ = the density (wt. of I ccm in grams = 0.0012) of the air during the weighing, d the density of the body, d₁ that of the weights. δ for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for δ = 0.0012. The corrected weight = M + kM/1000.

Density	Co	rrection factor	, k.	Density	Co	rrection factor	, k.
of body weighed d.	Pt. Ir. weights $d_1 \equiv 21.5$.	Brass weights 8.4.	Quartz or Al. weights 2.65.	of body weighed d.	Pt. Ir. weights $d_1 = 21.5$.	Brass weights 8.4.	Quartz or Al. weights 2.65.
.5 .6 .7 .75 .80 .85 .90 .95 I.00 I.I I.2 I.3 I.4 I.5	$\begin{array}{r} + 2.34 \\ + 1.91 \\ + 1.66 \\ + 1.55 \\ + 1.44 \\ + 1.36 \\ + 1.28 \\ + 1.21 \\ + 1.44 \\ + 1.04 \\ + 0.94 \\ + .87 \\ + .80 \\ + .75 \end{array}$	$\begin{array}{c} + 2.26 \\ + 1.86 \\ + 1.57 \\ + 1.46 \\ + 1.36 \\ + 1.27 \\ + 1.19 \\ + 1.12 \\ + 1.06 \\ + 0.95 \\ + .78 \\ + .71 \\ + .66 \end{array}$	$\begin{array}{c} + 1.95 \\ + 1.55 \\ + 1.26 \\ + 1.15 \\ + 0.96 \\ + .88 \\ + .81 \\ + .75 \\ + .64 \\ + .55 \\ + .47 \\ + .40 \\ + .35 \end{array}$	1.6 1.7 1.8 1.9 2.0 2.5 3.0 4.0 6.0 8.0 8.0 10.0 15.0 20.0 22.0	$\begin{array}{r} + 0.69 \\ + .65 \\ + .58 \\ + .58 \\ + .43 \\ + .34 \\ + .24 \\ + .06 \\ + .03 \\ + .001 \end{array}$	$\begin{array}{c} + 0.61 \\ + 0.56 \\ + 0.52 \\ + 0.49 \\ + 0.49 \\ + 0.40 \\ + 0.40 \\ + 0.40 \\ + 0.40 \\ + 0.40 \\ - 0.4$	$\begin{array}{c} + 0.30 \\ + .25 \\ + .21 \\ + .18 \\ + .15 \\ + .03 \\05 \\25 \\25 \\30 \\30 \\33 \\37 \\39 \\40 \end{array}$

TABLE 59, - Reductions of Densities in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate weighing.)

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 (1 - s/L). Let $W_s =$ uncorrected weight of substance, $W_1 =$ uncorrected weight of the liquid displaced

Let $W_s = uncorrected$ weight of substance, $W_1 = uncorrected$ weight of the liquid displaced by the substance, then by definition, $s = LW_s/W_1$. Assuming D to be the density of the balance of weights, $W_s \{I + 0.0012 (I/S - I/D)\}$ and $W_1 \{I + 0.0012 (I/L - I/D)\}$ are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of I cc. of air is 0.0012 gram).

Then the true density
$$S = \frac{W_s \{I + 0.0012 (I/S - I/D)\}}{I}$$

$$\frac{1}{W_{1} \{1 + 0.0012 (I/L - I/D)\}}$$

But from above $W_s/W_l = s/L$, and since L is always large compared with 0.0012, S = s = 0.0012 (1 - s/L).

The values of 0.0012 (I - s/L) for densities up to 20 and for liquids of density I (water), 0.852 (xylene) and 13.55 (mercury) follow:

(See reference below for discussion of density determinations).

Density of		Corrections.		Density of	Corre	ctions.
substance s.	L = I Water.	L≔0.852 Xylene.	L = 13.55 Mercury.	L=13.55 Mercury. S L W		L=13.55 Mercury.
0.8 0.9 1. 2. 3. 4 5. 6. 7.8. 9. 10.	+ 0.00024 + .00012 0.0000 0012 0024 0036 0048 0072 0072 0084 0096 0108	- 0016 0030 0058 0073 0073 0087 0101 0115 0129		11. 12. 13. 14. 15. 17. 18. 19. 20.	- 0.0120 0132 0144 0156 0168 0180 0192 0204 0216 0228	+ 0.0002 + .0001 0.0000 0001 0002 0003 0004 0005 0006

Johnston and Adams, J. Am. Chem. Soc. 34, p. 563, 1912.

TABLE 60.

DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

N. B. The density of a specimen may depend considerably on its state and previous treatment.

Element.Physical State.Grams per cu. cm.*Temper- ture 1Authority.Aluminumcast2.56-2.584"wrought2.55-2.602.55"auto-clistilled2.55-2.802.55""dito-compressed6.61820"amorphous6.521.384.5-183""1.423.3-189""getter of the second secon					
" " " Pure vacuo-distilled ditto-compressed amorphous " $2.5 - 2.80$ 6.618 20 Mallet, 1882 . Kahlbaum, 1902 . Hérard. Barium Bismuth "Mallet, 1882 . Kahlbaum, 1902 . Hérard. Barium Bismuth "Argon " " "liquid uid " 1.3845 5.73 " -183 5.73 "Hérard. Baly-Donnan. "Barium " " " "crystallized solid " 5.73 7.73 7.89 $9.79-990$ " 1.4233 7.789 $2000000000000000000000000000000000000$	Element.	Physical State.	Grams per cu. cm,*	Tempera- ture.†	Authority.
" " " Pure vacuo-distilled ditto-compressed amorphous 	Aluminum	cost	0.76.0.78		
"pure2.584Mallet, 1852.Antimony "ditto-compressed 6.6916.618204Argon "liquid1.3845			2.50-2.50		
Antimonyvacuo-distilled6.61820Kahlbaum, 1902.""amorphous1.3845- 1.83Hérard."liquid1.4233- 183Baly-Donnan.""1.4233- 183""amorph. br-black3.7014Geuther."amorph. br-black3.78Guutz.Bismuthsolid9.70-9.90Classen, 1890."vacuo-distilled9.78120"uvacuo-distilled2.535""vacuo-distilled3.78"amorph. pure2.45Micsaa."moorph. pure3.12Micsaa."wrought8.67wissaa."wrought8.67wissaa."u1.54Vincentini-Omodei.""1.54Wigand.Calciumgraphite1.52720"diamond3.5220"Gog220Withmann-Weiss.""1.5415CobaltCopper1.5320"ditto-compressed8.37620""8.37620"Kahlbaum, 1902.""Muthmann-Weiss.""graphite2.25""1.54Calcium1.5421"Muthmann-Weiss.""8.376"8.37620""8.376" </td <td>"</td> <td></td> <td>2.03-2.00</td> <td></td> <td>Mallet 1882</td>	"		2.03-2.00		Mallet 1882
"ditto-compressed amorphous 6.62 1.20 20"Argonliquid 1.3845 1.4233 -183 -183 Arseniccrystallized amorph.br.br.black 7.73 3.88 electrolytic 1.4233 3.78 -183 -189 Barumsolid $9.70-9.90$ 9.747 Geuther. Linck. Guntz.Bismuthsolid 9.7747 2.535 Classen, 1890. Wincentini-Omodei."vacuo-distilled ilquid 9.67 2.711 271 Wigand. Moissan.Boroncrystal erystal amorph.pure ilquid 2.535 2.535 Classen, 1890. Wincentini-Omodei."wrought wrought i graphite electrolytic m colduit 8.648 2.535 20 Wincentini-Omodei."wrought i graphite electrolytic mu wrought 8.648 2.525 20 Wincentini-Omodei."graphite electrolytic mu mu i electrolytic mu wrought 3.52 2.536 Muthmann-Weiss."" 7.97 3.78 3.78 20 1.54 Muthmann-Weiss.Cobalt Columbium Gopper "cast drawn drawn 4.371 2.332 20 8.376 2.335 Kahlbaum, 1902.""Noissan. 1.54 Tiden, C. C. 1898. Muthmann-Weiss."graphite electrolytic 4.777 " 20 8.376 2.225 Noissan. 1.629 "graphite electrolytic 4.777 " 8.376 8.3976 2.225 20 1.640 "" 8.3976 8.39376 <b< td=""><td>Antimony</td><td></td><td>6.618</td><td></td><td></td></b<>	Antimony		6.618		
" Argon Iquidamorphons liquid 6.22 I,3845Hérard. Bay-Donan.Arsenic " amorph.br-black " " Bismuthcrystallized s.7314 S.74Baly-Donan. " " " Guttz.Bismuth "<					44
Argonliquid 1.3845 -183 Baly-Doman.Arseniccrystallized 5.73 144 "amorph. brblack 5.73 144 "genther. 3.70 144 Bariumsolid $9.70-9.90$ Genther."ucuo-distilled 9.781 200 "ucuo-distilled 9.781 200 "ucuo-distilled 9.781 200 "solid 9.67 271 ""solid 9.67 "amorph. pure 2.45 "amorph. pure 3.12 "amorph. pure 8.648 "ucuo-distilled 8.648 "solid 8.77 "ucuo-distilled 8.648 "ucuo-distilled 8.71 "ucuo-distilled 8.71 "ucuo-distilled $8.93-8.95$ ""ucuo-distilled" $8.92-6.73$ 20 "Chorine 1000 " 1.507 -33.6 "Utuo-compressed" 1.44 15.37 " 1.44 1.537	"				Hérard.
\tilde{u} 1.4233 -186 u^* u^* Arseniccrystallized amorph. brblack yellow 5.73 14 Geuther. Linck. Guttz. \tilde{u} solid $9.79-9.90$ 7.79 20 Classen, 1890. Kahlbaum, 1902. Vincentini-Omodel. Wigand. Wigand. Wigand. \tilde{u} electrolytic ucation 9.781 2.535 20 Classen, 1890. Kahlbaum, 1902. Vincentini-Omodel. Wigand. Wigand. Wigand. Wigand. Wigand. Wigand. Wigand. Wigand. Wigand. Wincentini-Omodel. \tilde{u}	Argon			- 183	
Arseniccrystallized 5.73 14Geuther."amorph. brblack 3.70 3.88 Gutter.Barumsolid $9.70-9.90$ Classen, 1800."vacuo-distilled 9.747 Classen, 1800."vacuo-distilled 9.67 271 ""solid 9.67 "solid 9.67 271 ""solid 9.67 "amorph. pure 2.535 "" 8.67 "wrought 8.648 20 "wrought 8.648 20 "solid 8.73 318 """ 8.67 20 ""wrought 8.648 20 "wrought 8.67 20 """" 8.67 20 """ 8.67 20 """ 8.67 20 """ 8.67 20 """ 8.67 20 """ 8.67 20 """" 8.67 """ 8.67 20 """"""""" 8.67 """""""""""""""""""""""""	ដ	* •		— 18ğ	" "
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5.73	14	
Barium Bismuth isolid electrolytic (i 3.78 ($9.70-9.00$ (9.747) (9.781) (200)Guntz.iiiiquid ($1000000000000000000000000000000000000$			3.70		
Barium Bismuth isolid electrolytic (i 3.78 ($9.70-9.00$ (9.747) (9.781) (200)Guntz.iiiiquid ($1000000000000000000000000000000000000$		yellow	3.88		
aelectrolytic $9,747$ zoClassen, 1890. Kahlbaum, 1902.aliquid 0.67 271 Vincentin-Omodei.asolid 9.67 271 Wigand.boroncrystal 2.535 Wigand.aamorph. pure 2.45 Noissan.awrought 8.67 20 asolid 8.67 20 awrought 8.67 20 asolid 8.77 20 agraphite 8.67 20 agraphite 8.67 20 agraphite 8.67 20 agraphite 8.67 20 bgraphite 2.25 1.57 apure 7.02 0 aelectrolytic 6.79 20 afawn $8.32-8.95$ 3.37 aelectrolytic 8.376 20 ba 1.577 21 bditto-compressed 8.9376 20 aelectrolytic 8.9376 20 aditto-compressed 8.9376 20 aditto-compressed 8.9376 20 aditto-compressed 19.37 20 afast 19.33 20 aditto-compressed 19.27 <			3.78		Guntz.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					C1
"liquid solid10.00 967271 271Vincentini-Omodei. "Bronn Cast "crystal amorph. pure liquid2.535 2.45 3.12Wincentini-Omodei. "Bromine Cadmiumliquid cast3.12 8.67Wigand. Moissan. Richards-Stull."wrought vacuo-distilled abilitie8.648 8.6720"wrought vacuo-distilled abilitie8.67 8.673Kahlbaum, 1902. Vincentini-Omodei. ""wrought vacuo-distilled abilitie8.67 8.673Kahlbaum, 1902. Vincentini-Omodei. ""wrought abilitie1.54 2.25 abilitieBrink. Brink. Wigand. "Carbon "diamond graphite pure formium "3.52 2.25 abilitieWincentini-Omodei. Wissan. Wincentini-Omodei. """1.54 abilitieDisplay abilitieNuthmann-Weiss. "Chorine "liquid to cast "1.507 abilitie-33.6 abilitieDrugman-Ramsay. "Cobalt Columbium Guidoum Gallium Gold "cast abilitie8.39-8.95 abilitieMoissan. Tilden, Ch. C. 1898. Muthmann-Weiss."wrought abilitied abilitied "8.83-8.95 abilitied abilitied abilitied abilitied abilitied abilitied abilitied abilitied abilitied abilitied abilitied abilitied "Vincentini-Omodei. """pure abilitied abilitied abilitied abilitied abilitied abilitied abilitied "Vincentini-Omodei. " <t< td=""><td></td><td></td><td>9.747</td><td></td><td></td></t<>			9.747		
"solid crystal amorph. pure9.67 2.535 2.45 3.12271 271" a amorph. pure Wigand. Moissan. Richards-Stull.Bromine amorph. pure iquid cast "1.12 8.67 8.67 3.12Wigand. Moissan. Richards-Stull."wrought asolid "8.648 8.57 8.67 3.1220Kahlbaum, 1902. Vincentini-Omodei. " " Wincentini-Omodei. " " ""vacuo-distilled solid "8.648 8.37 318 1.873 3.5220Kahlbaum, 1902. Wincentini-Omodei. " " " " " " " "Carbon "diamond graphite electrolytic " " "1.54 6.79 2.2520Kahlbaum, 1902. Wincentini-Omodei. " <b< td=""><td></td><td></td><td>9.781</td><td></td><td>Kanibaum, 1902.</td></b<>			9.781		Kanibaum, 1902.
BoronSolid $2,535$ $2/7$ Wigand. Moissan."amorph. pure liquid $2,455$ Richards-Stull.Bromine Cadmiumliquid 3.12 Richards-Stull."wrought $8,64-8,57$ Richards-Brink."wrought $8,648$ 20 Kahlbaum, 1902."vacuo-distilled $8,648$ 20 Kahlbaum, 1902."uilquid $7,99$ 318 ""liquid $7,99$ 318 ""graphite $2,25$ Richards-Brink.Carbondiamond $3,52$ ""graphite $2,25$ Muthmann-Weiss."pure $7,02$					vincentini-Oniodei.
"amorph. pure liquid cast 2.45 3.12 Moissan. Richards-Stull.Bromine Cadmium "iquid iquid cast $8.54-8.57$ 8.67 Moissan. Richards-Stull."wrought " 8.67 8.67 20 Moissan. Richards-Stull."vacuo-distilled " 8.67 8.37 1.873 20 Kahlbaum, 1902. """1.873 1.873 20 Kahlbaum, 1902. ""Calcium clatum "1.54 1.54 Wincentini-Omodei. """ 1.573 20 20 Wincentini-Omodei. """ 1.573 20 20 Wincentini-Omodei. """ 1.573 20 20 Wincentini-Omodei. """ 1.573 20 20 Wincentini-Omodei. """ 1.577 202 -33.6 Muthmann-Weiss."" $0.52-6.73$ 8.57 $8.30-8.95$ Muthmann-Weiss."" 8.71 21 $1000000000000000000000000000000000000$	1			2/1	Wigand.
Bromine Cadmiumliquid cast 3.12 $8.54-8.57$ wronghtRichards-Stull."wronght vacuo-distilled $8.64-8.57$ 8.57 wronghtKahlbaum, 1902. Vincentini-Omodel."liquid7.99 1.873 318 1.873 "Caesium Calcium1.873 graphite20 2.25 Kahlbaum, 1902. Wincentini-Omodel."liquid7.99 1.54 318 4 "Calcium "1.54 graphiteNuthmann-Weiss. 2.25 Wigand. ""graphite electrolytic formium 5.92 6.92 20 Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss.Cobalt Columbium "0.92- 95 4 "Nuthmann-Weiss.Cobalt Copper "cast $8.30-8.95$ 4 " $8.39-8.95$ 8.376 8.217 Noissan. Tilden, Ch. C. 1898. Muthmann-Weiss.Kahlbaum, 1902. """"wrought 8.9376 20 8.9376 Kahlbaum, 1902. " ""Iiquid 1.14 1.933 " -200 1.85 Kahlbaum, 1902. " " " "Erbium Gallium Germanium Germanium Goldcast 19.33 " " " " 19.33 19.33 " " " "Kahlbaum, 1902. " " " " " " " " " " "Helium Hupidogenliquid 1.54 0.77 20 0.15 0.79 Comes, 1908. Dewar, Ch. News, 1904.	Boron "	crystal	2.535		
Dominuratic $3.4-3.57$ "wrought 8.67 "vacuo-distilled 8.67 "solid 8.37 "solid 8.37 "liquid 7.99 " 1.573 20Calcium 1.573 20Catium 1.573 20"graphite 2.25 "graphite 2.25 "graphite 2.25 "graphite 2.25 "pure 7.02 Chlorineliquid $6.52-6.73$ "pure 6.92 Cobalt 8.71 21Cobalt 8.4 15Cobalt $8.39-8.95$ "drawn $8.85-8.95$ "wrought $8.85-8.95$ "wrought 8.376 "liquid 4.77 Fluorineliquid 5.93 "liquid 1.933 " 20 Kahlbaum, 1902."" 1.333 " 20 "Kahlbaun, 1902."" 19.33 " 20 " 0.15 - 200 " 19.27 " 200 " 19.27 <	Bromino	liquid	2.43		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.54-8.57		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.67		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	"			20	Kahlbaum, 1902.
"liquid7.99 1.873318 20"""Casium Calcium 				318	Vincentini-Omodei.
Cæsium Calcium Carboni.amod graphite1.873 3.5220Richards-Brink. Brink. Wigand. " Wigand. " Wigand. " " "Cerium " " " " Chorine " " " " "iquid1.573 3.5220Richards-Brink. Brink. Wigand. " " " " Wigand. " " " "Muthmann-Weiss. " " " " " " " "Cerium " " " " " "electrolytic $5.52-6.73$ $6.52-6.73$ $6.52-6.73$ $6.52-6.73$ $6.52-6.73$ $6.52-6.73$ $6.52-6.73$ $6.52-2.73$ 7.1 Cobalt Copper "<	44			318	" "
Carchin Garchindiamond graphite 3.52 2.25 Wigand. Muthmann-Weiss. "Cerium "electrolytic pure 6.79 $6.52-6.73$ Drugman-Ramsay.Chlorine "liquid 1.507 $6.52-6.73$ 33.6 Drugman-Ramsay.Chorine "pure 6.92 6.92 20 1.507 Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss.Cobalt Columbium Cobalt Columbium Coppercast $8.30-8.95$ 4 4 wrought $8.93-8.95$ $8.93-8.95$ Muthmann-Weiss."wrought 4.77 Fluorine Gallium Glucinum <td>Cæsium</td> <td></td> <td>1.873</td> <td>20</td> <td></td>	Cæsium		1.873	20	
	Calcium		1.54		
Cerium " $electrolyticpure6.797.02iquidMuthmann-Weiss."ChlorineChromium"liquid1.5076.52-6.738.7133.6Muthmann-Weiss."CobaltColumbiumCoppera.71drawn218.4Moissan.Tilden, Ch. C. 1898.Muthmann-Weiss.CobaltCopper"a.4drawn158.30-8.95"Muthmann-Weiss."a.4drawn158.39-8.95"Muthmann-Weiss."a.4drawn8.48.93-8.95"15Muthmann-Weiss."a.217dito-compressed8.93768.21720moissan-Dewar."liquid8.2177.77FluorineGalliumGermaniumGlucinumGold19.3319.33"20mikler.Humpidge."a.2171.144-200mikler.Humpidge.a.16520mikler.Humpidge.HeliumHupdrogenHydrogena.217liquid2019.27a.2020"a.217mikler.Humpidge.a.217Moissan-Dewar.de Boisbaudran.Winkler.Humpidge.Gold"a.2171.53a.202019.33$					Wigand.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		graphite			Mutherson Water
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cerium				Muthmann- weiss.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	"			1 226	Drugman-Ramsay
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		liquid	6.52-6.72	- 33.0	Drugmau-ramsuji
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6.02	20	Moissan.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		pure			
$ \begin{array}{c cccc} \hline Corper & cast & 8.30-8.95 & \\ \hline u & wrought & 8.85-8.95 & \\ u & wrought & 8.85-8.95 & \\ u & vacuo-distilled & 8.9376 & 20 & \\ u & vacuo-distilled & 8.9376 & 20 & \\ u & vacuo-distilled & 8.217 & \\ \hline u & liquid & 8.217 & \\ \hline Fluorine & liquid & 1.14 & -200 & \\ \hline Gallium & 5.93 & 23 & \\ \hline Glucinum & 5.93 & 23 & \\ \hline Glucinum & 5.93 & 23 & \\ \hline Glucinum & 5.93 & 20 & \\ \hline u & wrought & 19.33 & \\ u & wrought & 19.33 & \\ \hline u & vacuo-distilled & 18.88 & 20 & \\ \hline u & u & uronght & \\ \hline u & uronght & 19.27 & 20 & \\ \hline u & ditto-compressed & 19.27 & 20 & \\ \hline Helium & liquid & 0.15 & -269 & \\ \hline Helium & liquid & 0.070 & -252 & \\ \hline Hydrogen & liquid & 0.070 & -252 & \\ \hline \end{array} $				1	Muthmann-Weiss.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cast		-5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Copper "		8.93-8.95		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	"		8.85-8.95		
" vacuo-distilled 8.9326 20 " Noissan-Dewar. St. Meyer, Z. Ph. Ch. 37. Moissan-Dewar. Moissan-Dewar. de Boisbaudran. Moissan-Dewar. de Boisbaudran. Moissan-Dewar. Moisan-Dewar. Moissan-Dewar.	u	electrolytic	8.88-8.95		77 1 11
" Introcompressed 5.217 Roberts-Wrightson. " liquid 4.77 St. Meyer, Z. Ph. Ch. 37. Fluorine liquid 1.14 -200 Moissan-Dewar. Gallium 5.93 23 de Boisbaudran. Germanium 5.46 20 Winkler. Gold cast 19.3	"	vacuo-distilled	8.9326		Kahlbaum, 1902.
Erbium Fluorine Gallium Germanium 			8.9376	20	Deborto Wrichtson
Erotum Fluorine Gallium Germanium Glucinumliquid1.14 5.93 5.46 1.85- 200 23 20Moissan-Dewar. de Boisbaudran. Winkler. Humpidge.Gold "cast wrought "19.33 19.33 19.2720 20Winkler. Humpidge."wrought ditto-compressed liquid19.27 0.1520 20Kahlbaum, 1902. " "Helium Hydrogenliquid liquid0.15 0.070- 269 0.252Onnes, 1908. Dewar, Ch. News, 1904. Bichards.	"	liquid			KODERTS- W FIGHTSON.
Fluorine Gallium Germanium Glucinuminquidinquidinquid5.93 Germanium Glucinum Gold5.93 1.8523 20de Boisbaudran. Winkler. Humpidge.Gold " " " " " " " thelium Helium Hydrogencast 19.3 19.33 19.33 19.2719.3 20 20Kahlbaum, 1902. " " " Onnes, 1908. Dewar, Ch. News, 1904. Bichards.					
Gallium3-932-3Germanium5.4620Glucinum1.85Goldcast"wrought19.3"vacuo-distilled18.8820"ditto-compressed19.2720"19.27Heliumliquid0.15-269Dewar, Ch. News, 1904.Bichards		liquid		•	
Germanium Glucinum Gold3.40 I.85Low Humpidge.Goldcast19.3 19.33Humpidge."wrought19.33 19.3320Kahlbaum, 1902."ditto-compressed19.27 0.1520 - 269"Helium Hydrogenliquid0.15 0.070- 252Dewar, Ch. News, 1904.					
Goldcast19.3"wrought19.33"vacuo-distilled18.88"ditto-compressedHeliumliquid0.15 -269 Onnes, 1908.Hydrogenliquid0.070 -252 Dewar, Ch. News, 1904.			5.40	20	
""wrought19.33"vacuo-distilled18.8820Kahlbaum, 1902."ditto-compressed19.2720"Heliumliquid0.15 -269 Onnes, 1908.Hydrogenliquid0.070 -252 Dewar, Ch. News, 1904.		ant			
" ditto-compressed 19.27 20 " Helium liquid 0.15 — 269 Onnes, 1908. Hydrogen liquid 0.070 — 252 Dewar, Ch. News, 1904. Bichards.			10.22	1	
" ditto-compressed 19.27 20 " Helium liquid 0.15 — 269 Onnes, 1908. Hydrogen liquid 0.070 — 252 Dewar, Ch. News, 1904. Bichards.		wrought wacuo-distilled	18.88	20	Kahlbaum, 1902.
Helium liquid 0.15 — 269 Onnes, 1908. Hydrogen liquid 0.070 — 252 Dewar, Ch. News, 1904. Bichards.					
Hydrogen liquid 0.070 – 252 Dewar, Ch. News, 1904.				- 269	Onnes, 1908.
Richards.					Dewar, Ch. News, 1904.
					Richards.
				<u> </u>	

* To reduce to pounds per cu. ft. multiply by 62.4. † Where the temperature is not given, ordinary atmospheric temperature is understood.

Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

84

TABLE 60 (continued).

DENSITY OR MASS IN CRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

Iridium 22.42 17 Deville-Del Iodine 4.940 20 Richards-S Iron pure 7.85-7.88	
" gray cast 7.03-7.13 " white cast 7.58-7.73 " wrought 7.80-7.90	
" white cast 7.58-7.73	
" wrought 7.80–7.90 " liquid 6.88 Roberts-Ar	usten
" steel 7.60-7.80	usten
Krypton liquid 2.16146 Ramsay-Tr	ravers
Lanthanum 6.15 Muthmann	-Weiss
Lead cast 11.37 24 Reich	
" wrought 11.36 24 " " solid y oor 227 Vincentini	<u> </u>
solid 11.005 325 vincentini-	Omodei
10:045 325	1000
" vacuo-distilled 11.342 20 Kahlbaum, " ditto-compressed 11.347 20 "	"
Lithium 0.534 20 Richards-B	rink, '07
Magnesium 1.741 Voigt	, ,
Manganese 7.42 Prelinger	
Mercury liquid 13.596 o Regnault, V	Volkmann
" " 13.546 20 " " 28.8 Vincentini (o
	Omodei
14.193 - 30.0 Manet	
" " " 14.383 —188 Dewar, 190 Molybdenum 9.01 Moissan	12
Neodymium 6.96 Muthmann-	Weiss
Nickel 8.60–8.90	
Nitrogen liquid 0.810 –195 Baly-Donna	an, 1902
" 0.854 -205 " "	
Osmium 22.5 Deville-Del	bray
Oxygen liquid 1.14 —184 Palladium I2.16 Richards-Si	4
Palladium 12.16 Richards-St Phosphorus white 1.83	tun
" red 2.20	
" metallic 2.34 15 Hittorf	
Platinum 21.37 20 Richards-St	tull
Potassium 0.870 20 Richards-Br	rink, '07
" solid 0.851 62.1 Vincentini-	Omodei
nquia 0.830 02.1 "	· · ·
Præsodymium 6475 Muthmann- Rhodium 1244 Holborn H	
Rhodium12.44Holborn HRubidium1.53220Richards-Bi	
Ruthenium 12.06 0 Toby	······
Samarium 7.7-7.8 Muthmann-	Weiss
Selenium 4.3-4.8	
Silicon cryst. 2.42 20 Richards-St	tull-Brink
amorph. 2.35 15 Vigoroux	
Silver Cast 10.42~10.53 " wrought 10.6	
" vacuo-distilled 10.492 20 Kahlbaum,	1002
" ditto-compressed 10.503 20 "	1902 "
" liquid 9.51 Wrightson	
Sodium 0.9712 20 Richards-Br	rink, '07
Solid 0.9519 97.6 Vincentini-	Omodei
inquid 0.9287 97.6 "	"
Strontium 2.50-2.58 Matthiesser	n
" liquid 1.811 113 Vincentini-	Omodei
	omodei

* To reduce to pounds per cubic ft. multiply by 62.4. † Where the temperature is not given, ordinary atmosphere temperature is understood.

TABLES 60 (continued) AND 61. MASS OF VARIOUS SUBSTANCES.

85

Element.	Physical State.	Grams per cu. cm.	Tempera- ture.	Authority.
Tantalum Tellurium " Thallium Thorium Tin " " " Titanium Tungsten Uranium Vanadium Xenon Vanadium Xenon Yttrium Zinc " " "	crystallized amorphous white, cast " wrought " crystallized " solid " liquid gray liquid cast wrought vacuo-distilled ditto-compressed liquid	16.6 6.25 6.02 11.86 12.16 7.29 7.30 6.97-7.18 4.5 18.6-19.1 18.7 5.69 3.52 3.80 7.04-7.16 7.19 6.92 7.13 6.48 6.44	20 17 226 226 18 13 109 20 20	Beljankin. Richards-Stull. Bolton. Matthiessen. Vincentini-Omodei Vincentini-Omodei Mixter. Zimmermann. Ruff-Martin. Ramsay-Travers. St. Meyer. Kablbaum, 1902. "Roberts-Wrightson.

TABLE 60 (continued). — Density or Mass in grams per cubic continueter and pounds per cubic foot of the elements, liquid or solid.

TABLE 61.- Mass in grams per oublo centimeter and in pounds per cubic foot of different kinds of wood.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grams per cubic centimeter.	Pounds per cubic foot.	Wood.	Grams per cubic centimeter.	Pounds per cubic foot.
Alder Apple Ash Bamboo Basswood. See Linden. Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Fir or Pine, American White "Larch "Pitch "Red "Scotch "Spruce "Yellow Greenheart	0.42-0.68 0.66-0.84 0.65-0.85 0.31-0.40 0.70-0.90 1.00 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 0.76 1.11-1.33 0.54-0.60 0.35-0.50 0.50-0.56 0.83-0.85 0.43-0.53 0.48-0.70 0.37-0.60 0.93-1.04	$\begin{array}{c} 26-42\\ 41-52\\ 40-53\\ 19-25\\ 32-48\\ 59-72\\ 24\\ 30-35\\ 43-56\\ 14-16\\ 47\\ 69-83\\ 34-37\\ 22-31\\ 31-35\\ 52-53\\ 30-44\\ 27-33\\ 30-44\\ 23-37\\ 58-65\\ \end{array}$	Hazel Hickory Holly Iron-bark Juniper Laburnum Lancewood Lignum vitæ Linden or Lime-tree Locust Logwood Mahogany, Honduras "Spanish Maple Oak Pear-tree Poplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	0.60-0.80 0.60-0.93 0.76 1.03 0.92 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 .91 0.66 0.85 0.62-0.75 0.62-0.75 0.60-0.90 0.61-0.73 0.66-0.78 0.35-0.50 0.95 0.40-0.60 0.40-0.60	$\begin{array}{c} 37-49\\ 37-58\\ 47\\ 64\\ 35\\ 57\\ 42-62\\ 73-83\\ 20-37\\ 42-44\\ 57\\ 41\\ 53\\ 39-47\\ 37-56\\ 38-45\\ 41-49\\ 22-31\\ 59\\ 22-31\\ 59\\ 24-37\\ 41-55\\ 61\\ 40-43\\ 62\\ 24-37\\ 24-37\\ \end{array}$

* Where the temperature is not given, ordinary atmospheric temperature is understood.

DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material.	Grams per cu, cm.	Pounds per cu. foot.	Material.	Grams per cu. cm.	Pounds per cu. foot.
Agate Alabaster : Carbonate Sulphate Albite Amber Amphiboles Anorthite Anthracite Asbestos Asphalt Basalt Beeswax Beryl Biotite Bone Brick Butter Calamine Caoutchouc Celluloid Cement, set Chalk Charcoal : oak pine Chrome yellow Chromite Cinnabar Clay Coal, soft Cocoa butter Coke Copal Corundum Diamond : Anthracitic Carbonado Diorite Ebonite Emery Epidote Feldspar Filint Fluorite Gamboge Garnet	cu. cm. 2.5-2.7 2.69-2.78 2.26-2.32 2.62-2.65 1.06-1.11 2.9-3.2 2.74-2.76 1.4-1.8 2.0-2.8 1.1-1.5 2.4-3.1 0.96-0.97 2.69-2.7 2.7-3.1 1.7-2.0 1.4-2.2 0.86-0.87 4.1-4.5 0.92-0.99 1.4 2.7-3.0 1.9-2.8 0.57 0.28-0.44 6.00 4.32-4.57 8.12 1.8-2.6 1.2-1.5 0.89-0.91 1.0-1.7 1.04-1.14 3.9-4.0 1.66 3.01-3.25 2.55-2.75 2.63 3.18 1.2 3.15-4.3	cu. foot. 156-168 168-173 141-145 163-165 66-69 180-200 171-172 87-112 125-175 69-94 150-190 106-125 87-137 53-54 255-280 57-62 87-137 170-190 118-175 35 18-28 374 270-285 507 122-162 75-94 50-57 62-71 245-250 104 188-203 157 177 72 250 203-218 150-172 164 198 75-88	Gum arabic Gypsum Hematite Hornblende Ice Ilmenite Ivory Labradorite Lava : basaltic trachytic Leather : dry greased Lime : mortar slaked Limestone Litharge : Artificial Natural Magnetite Marble Meerschaum Mica Mnscovite Ochre Oligoclase Olivine Opal Orthoclase Faper Paraffin Peat Pitch Porcelain Porphyry Pyrite Quartz Quartzite Resin Rock salt Rutile Sandstone Starch	cu. cm. 1.3-1.4 2.31-2.33 4.9-5.3 3.0 0.917 4.5-5. 1.83-1.92 2.7-2.72 2.8-3.0 2.0-2.7 0.86 1.02 1.65-1.78 1.3-1.4 2.68-2.76 9.3-9.4 7.8-8.0 4.9-5.2 3.7-4.1 2.6-2.84 0.9-1.28 2.6-3.2 2.76-3.00 3.5 2.05-2.67 3.27-3.37 2.5 2.58-2.61 0.7-1.15 0.87-0.91 0.84 1.07 2.3-2.5 2.6-2.9 4.95-5.1 2.65-2.65 2.73 1.07 2.18 6.00-6.5 2.7-3.9 2.6-2.8 1.53	
Epidote Feldspar Flint Flnorite Gamboge	3.25-3.5 2.55-2.75 2.63 3.18 1.2	203-218 159-172 164 198 75	Sandstone Serpentine Slag, furnace Slate Soapstone	2.14–2.36 2.50–2.65 2.0–3.9 2.6–3.3 2.6–2.8	134-147 156-165 125-240 162-205 162-175

TABLE 63.

DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS (BRASSES AND BRONZES).

Alloy.	Grams per cubic centimeter.	Pounds per cubic foot.
Brasses : Yellow, 70Cn + 30Zn, cast	8.44	527
" " rolled	8.56	534
" " drawn	8.70	542
"Red, $90Cu + 10Zn$	8.60	536
"White, $50Cu + 50Zn$.	8.20	511
Bronzes: $90Cu + 10Sn$	8.78	548
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.89	555
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$	8.74	535
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$	8.83	545 551
$/300 \pm 2500$	8.30	518
German Silver: Chinese, 26.3Cu + 36.6Zn + 36.8Ni " Berlin (1) 52Cu + 26Zn + 22Ni	8.45	527
	8.34	520
$(2) 390 \pm 302 \pm 1111$	8.00	518
$(3) 0300 \pm 3020 \pm 0101$	8.30	
	8.77	547 661
Lead and Tin: $87.5Pb + 12.5Sn$	10.60	
	10.33	644
	10.05	627 588
" " $6_{3.7}Pb + 36.3Sn$	9.43	
" " 46.7Pb + 53.3Sn	8.73	545
" " $30.5Pb + 69.5Sn$	8.24	514
Bismuth, Lead, and Tin: 53Bi + 40Pb + 7Cd	10.56	659
Wood's Metal: $50Bi + 25Pb + 12.5Cd + 12.5Sn$	9.70	605
Cadmium and Tin: $32Cd + 68Sn$	7.70	480
Gold and Copper: 98Au + 2Cu	18.84	1176
" " $96Au + 4Cu$	18.36	1145
" " " $94Au + 6Cu$	17.95	1120
" " " $g_{2Au} + 8Cu$	17.52	1093
" " " $goAu + IoCu$	17.16	1071
"""" ⁸⁸ Au+12Cu · · · · · · ·	16.81	1049
""""86Au+14Cu	16.47	1027
Aluminum and Copper: 10Al + 90Cu	7.69	480
" " " $(AI + osCu$	8.37	522
"""""3Al+97Cu	8.69	542
Aluminum and Zinc: $9IAI + 9Zn$	2.80	175
Platinum and Iridium: $90Pt + 10Ir$.	21.62	1348
" " $85Pt + 15Ir$	21.62	1348
" " $66.67Pt + 33.33Ir$	21.87	1364
" " " $\varsigma Pt + 9\varsigma Ir$	22.38	1396
Constantin: $60Cu + 40Ni$	8.88	554
M_{a} malium \cdot 70 Al + 30 Mg \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	2.0	125
Maganin: 84 Cu + 12 Mn + 4 Ni	8.5	530
Platinoid: German silver + little Tungsten	9.0	560

TABLES 64-65. TABLE 64.-DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 62.)

		1	ية ا				.e
Name and Formula.	Density grams	Sp. Vol. cc. per	teference.	Name and Formula.	Density grams	Sp. Vol. cc. per	Reference.
	per cc.	gram.	efe		per cc.	gram.	Refe
			R			<u> </u>	—
Pure compounds, all at			e	Feldspars:			
25°C				Albite glass, NaAlSi ₃ O ₈ ,			
Magnesia, MgO	3.603	.2775	Ι	art.	2.375	.4210	6
Lime, CaO Forms of SiO ₂ :	3.306	.3025	2	Albite cryst., NaAlSi ₈ O ₈ , art.	2.597	.3851	"
Quartz, natural	2.646	.3779	"	Anorthite glass,			
" artificial	2.642	·3785	44 44	CaAl ₂ Si ₂ O ₈ , art.	2.692	.3715	"
Cristobalite, artificial	2.319 2.206	.4312	<i>"</i>	Anorthite cryst., CaAl ₂ Si ₂ O ₈ , art.	2.757	.3627	"
Silica glass Forms of Al ₂ SiO ₅ :	2.200	•4533		Soda anorthite, $Carrison 0.08, arc.$	2.131	.30-7	
Sillimanite glass	2.53	.395	3	NaAlSıO4, art.	2.563	.3902	7
Sillimanite cryst.	3.022	.3309	"	Borax, glass, $Na_2B_4O_7$	2.36 2.27	.423 .440	0
Forms of MgŠiO ₃ : ß Monoclinic pyroxene	3.183	.3142	c l	" cryst. " Fluorite, natural, CaF,	2.2/	•440	
a' Orthorhombic pyroxene	3.166	.3159	5	(20 ⁰)	3.180	.3145	8
B' Monoclinic amphibole	-	0.01	"	$(NH_4)_2 SO_4$ (30°)	1.765 2.657	.5666	9
γ'Orthorhombic amphi-	2.849	.3510	"	K ₂ SO, (30°) KCl, fine powder (30°)	1.984	.3764 .5040	66
Glass	2.735	.3656	"	Forms of ZnS:		-9-40	
Forms of CaSiO ₃ :				Sphalerite, natural*	4.090	.2444	10
a (Pseudo-wollastonite)	2.904 2.906	•3444	2 4	Wurtzite, artificial† Greenockite, artificial	4.087 4.820	.2447 .2075	"
β (Wollastonite) Glass	2.900	.3441 .3454	"	Forms of HgS:	4.020		
Forms of Ca ₂ SiO ₄ :				Cinnabar, artificial	8.176	.1223	"
a - calcium-orthosilicate	3.26	.307	••• ••	Metacinnabar, artifi- cial	7.58	.132	
$\beta - $ " " $\gamma -$ "	3.27 2.965	.306 .337	"	Clai	7.20	.132	
β'— ""		.557		Minerals:			
Lime-alumina compounds :				Gehlenite, from Velar- dena	3.03	220	11
$3CaO \cdot Al_2O_3$ $5CaO \cdot 3Al_2O_3$	3.029 2.820	.3301 .3546	3	Spurrite, from Velardena,	j.03	.330	**
$C_aO \cdot Al_2O_8$	2.972	.3365	"	2Ca ₂ SiO ₄ CaCO ₃	3.005	.3328	65
3CaO · 5Al2O8				Hillebrandite, from Vel-			
$3CaO \cdot 5Al_2O_8$, unstable form	3.04	.329	4	ardena, CaSiO ₃ ·Ca $(OH)_2$	2.684	.3726	"
Forms of $MgSiO_8 \cdot CaSiO_3$:	3.54	.3-9		Pyrite, natural, FeS	5.012	.1995	10
Diopside, natural, cryst.	3.258	.3069	4	Marcasite, natural, FeS ₂	4.873	.2052	"
" artificial, " " glass	3.265 2.846	.3063 .3514	1	*Only 0.15% Fe total impurity.			
51033	2.040	•33-4		† Same composition as Sphaler- ite.			
						[

References: 1, Larsen 1909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4, Allen and White, 1909; 5, Allen, Wright and Clement, 1906; 6, Day and Allen, 1905; 7, Washington and Wright, 1910; 8, Merwin, 1911; 9, Johnston and Adams, 1911; 10, Allen and Crenshaw, 1912; 11, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.

TABLE 65.- DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

Temperature Molten tin 37 pts. Pb, 63, Sn.*	250°C. 300° 6.982 6.943 8.011 7.965	400° 500° 6.875 6.814 7.879 7.800	600° 900° 6.755 6.578 7.731 -	1200° 140 6.399 6.2 -	00° 1600° 80 6.162
---	---	---	-------------------------------------	-----------------------------	-----------------------

* Melts at 181. Day and Sosman, Geophysical Laboratory, unpublished.

For further densities inorganic substances see table 238.

" 66 66 66 6.6 244. organic

TABLES 66-67. WEICHT OF SHEET METAL.

TABLE 66. - Weight of Sheet Metal. (Metrio Measure.)

This table gives the weight in grams of a plate one meter square and of the thickness stated in the first column.

Thickness io thou- sandths of a cm.	Iron.	Copper.	Brass.	Aluminum	Platinum.	-Gold.	Silver.
1	78.0	89.0	85.6	26.7	21 5.0	193.0	105.0
2	1 56.0	178.0	171.2	53.4	430.0	386.0	210.0
3	234.0	267.0	256.8	80.1	645 0	579.0	31 5.0
4	312.0	356.0	342.4	106.8	860.0	772.0	420.0
5	390.0	44 5.0	428.0	133.5	107 5.0	965.0	525.0
6	468.0	534.0	51 3.6	160.2	1290.0	1158.0	630.0
7	546.0	623.0	599.2	186.9	1505.0	1351.0	735.0
8	624.0	712.0	684.8	213.6	1720.0	1544.0	840.0
9	702.0	801.0	770.4	240.3	1935.0	1737.0	945.0
10	780.0	890.0	856.0	267.0	2150.0	1930.0	1050.0

TABLE 67. - Weight of Sheet Metal. (British Measure.)

	Iron.	Copper.	Brass.	Alum	inum.	Plati	oum.
Thickness	Pounds per	Pounds per	Pounds per	Pounds per	Ounces per	Pounds per	Ounces per
in Mils.	Sq. Foot.						
1	.04058	.04630	.04454	.01 389	.2222	.1119	1.790
2	.08116	.09260	.08908	.02778	.4445	.2237	3.579
3	.12173	.13890	.13363	.04167	.6667	.3356	5.369
4	.16231	.18520	.17817	.05556	.8890	.4474	7.158
5	.20289	.23150	.22271	.06945	1.1112	.5593	8.948
 6	.24347	.27780	.26725	.08334	1.3335	.6711	10.738
7	.28405	.32411	.31179	.09723	1.5557	.7830	12.527
8	.32463	.37041	.35634	.11112	1.7780	.8948	14.317
9	.36520	.41671	.40088	.12501	2.0002	1.0067	16.106
10	.40578	.46301	.44542	.13890	2.2224	1.1185	17.896

	Go	ld.	Sil	ver.
Thickness in Mils.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.
1	1.4642	702.8	0.7967	382.4
2	2.9285	1405.7	1.5933	764.8
3	4.3927	2108.5	2.3900	1147.2
4	5.8570	2811.3	3.1867	1529.6
5	7.3212	3514.2	3.9833	1912.0
6	8.7854	4217.0	4.7800	2294.4
7	10.2497	4919.8	5.5767	2676.8
8	11.7139	5622.7	6.3734	3059.2
9	13.1782	6325.5	7.1700	3441.6
10	14.6424	7028.3	7.9667	3824.0

TABLE 68.

DENSITY OF LIQUIDS.

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

	Liquid	1.					Grams per cubic centimeter.	Pounds per cubic foot.	Temp. C.
Acetone							0.792	49.4	20 ⁰
Alcohol, ethyl.	• •	•	•	•		•	0.807	50.4	0
" methyl	• •	·	•	·		•	0.810	50.5	0
Anilin	• •	•	•	•	•	:	1.035	64.5	0
Benzol	• •	•	•		÷	:	0.899	56.1	0
Bromine	• •	•		:			3.187	199.0	0
Carbolic acid (crude	· ·	•	•				0.950-0.965	59.2-60.2	15
Carbon disulphide	-) ·	•	1	:			1.293	80. 6	ŏ
Chloroform .	• •						1.480	92.3	18
Ether	• •	•					0.736	45.9	0
Gasoline	•••						0.66-0.69	41.0-43.0	-
Glycerine	• •						1.260	78.6	0
Milk .							1.028-1.035	64.2-64.6	-
Naphtha (wood)							0.848-0.810	52.9-50.5	0
Naphtha (petroleun	n ether)						0.665	41.5	15
Oils: Amber .							0.800	49.9	15 16
Anise-seed							0.996	62.1	16
Camphor							0.910	56.8	-
Castor .							0.969	Ğ0.5	15
Cocoanut							0.925	57.7	15 16
Cotton Seed							0.926	57.8	
Creosote							1.040-1.100	64.9-68.6	15
Lard .							0.920	57.4	15
Lavender							0.877	54.7	ıŏ
Lemon .							0.844	52.7	16
Linseed (boi	led).						0.942	58.8	15
Olive .	· ´ •						0.918	57.3	15
Palm .							0.905	56.5	15
Pine .							0.850-0.860	53.0-54.0	15
Рорру .							0.924	57.7	-
Rapeseed (ci	rude).						0.915	57.1	15
	fined)						0.913	57.0	15
Resin .	• •						0.955	59.6	15
Train or Wh	nale .						0.918-0.925	57.3-57.7	15
Turpentine							0.873	54.2	16
Valerian							0.965	60.2	16
Petroleum .							0.878	54.8	0
" (light)							0.795-0.805	49.6-50.2	15
Pyroligneous acid							0.800	49.9	ŏ
Water							1.000	62.4	4
									1

TABLE 69.

DENSITY OF CASES.

The following table gives the density of the gases at 0° C, 76 cm. pressure, at sea-level and latitude 45° relative to air as unity and under the same conditions; also the weight of one liter in grams and one cubic foot in pounds.

Gas.	Specific Gravity.	Grams per liter.	Pounds per cubic foot.	Reference.
Air Acetylene Ammonia Argon Bromine Butane Carbon dioxide " monoxide Chlorine Coal gas { from Coal gas { to Cyanogen Ethane Fluorine Helium Hydrofluoric acid Hydrobromic acid Hydrobromic acid Hydrogen sulphide Krypton Methane Neon Nitrogen Nitric oxide, NO Nitric oxide, NO Nitric oxide, NO Nitric oxide, NO Nitrico soxide, N2 O Oxygen Sulphur dioxide Steam at 100° Xenon	1.000 0.92 0.597 1.379 5.524 2.01 1.5291 0.9672 2.491 0.320 0.740 1.806 1.0494 1.26 1.368 0.7126 2.71 1.2684 0.7126 2.71 1.2684 0.5576 0.6963 0.9673 1.0367 1.5298 1.053 2.2639 0.469 4.526	1.2928 1.1620 0.7706 1.782 7.1388 2.594 1.9768 1.2506 3.1674 0.414 0.957 2.3229 1.3567 1.697 0.1787 0.894 3.6163 1.6398 0.09004 1.5230 3.708 0.7160 0.9002 1.2514 1.3402 1.9777 1.4292 2.9266 0.581 5.851	.08071 .07254 .04811 .1112 .4457 .16194 .12341 .07807 .19774 .02583 .05973 .04522 .08470 .1059 .0116 .05581 .2258 .10237 .005621 .09508 .2315 .04508 .2317 .04508 .2317 .04508 .2317 .04508 .2317 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .04508 .0558 .0558 .04508 .0558 .0558 .04508 .035388 .035388 .03538 .03538 .03538 .03538 .03538 .03538 .03538	Rayleigh; Leduc. Berthelot, 1860. Leduc, C. R. 125, 1897. Ramsey-Travers, Proc. R. Soc. 67, 1900. Jahn, 1882. Frankland, Ann. Ch. Pharm. 71. Guye, Pintza, 1908. Rayleigh, Proc. R. Soc. 62, 1897. Leduc, C. R. 125, 1897. Gay-Lussac. Baume, Perot, J. Ch. et Phys. 1908. Moissan, C. R. 109. Ramsay-Travers, Proc. R. Soc. 67, 1900. Thorpe-Hambley, J. Chem. Soc. 53. Löwig, Gmelin-Kraut, Org. Chem. Guye-Gazarian, 1908. Rayleigh, Proc. R. Soc. 53, 1893. Leduc, C. R. 125, 1897. Watson, J. Ch. Soc. 1910. Thomson. Watson, J. Ch. Soc. 1910. Rayleigh, Proc. R. Soc. 62, 1897. Guye, Davila, 1908. Rayleigh, Proc. R. Soc. 62, 1897. Jaquerod, Pintza, 1908. Watson, J. Ch. Soc. 1910.

Compiled partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-Chemische Tabellen.

5

TABLE 70.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

Substance.	w	eight of	the dis	solved s tl	uhstanc ne soluti	e in 100 01.	parts b	y weigh	t of	U.	Authority.
	5	10	15	20	25	30	40	50	60	Temp.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.047 1.040 1.073 1.058 0.978	1.082 1.144 1.114	1.218 1.169				1.503 1.410 1.557 1.436		1.666 1.829	15.	Schiff. " Carius.
NH4Cl KCl NaCl LiCl CaCl ₂	1.015 1.031 1.035 1.029 1.041	1.065 1.072 1.057	1.044 1.099 1.110 1.085 1.132	1.135 1.150	1.072 1.191 1.147 1.232	- - 1.181 1.286	- - 1.255 1.402			15. 15. 15. 15. 15.	Gerlach. " " "
$\begin{array}{c} CaCl_2+6H_2O\\ AlCl_8&\cdot\cdot\\ MgCl_2&\cdot\cdot\\ MgCl_2+6H_2O\\ ZnCl_2&\cdot\cdot\end{array}$	1.030 1.041	1.040 1.072 1.085 1.032 1.089	1.111 1.130 1.049	1.153 1.177	1.196 1.226 1.085	1.241 1.278 1.103	1.176 1.340 - 1.141 1.417	1.183	1.276 - 1.222 1.737	18. 15. 15. 24. 19.5	Schiff. Gerlach. " Schiff. Kremers.
$\begin{array}{c} CdCl_2 \\ SrCl_2 \\ SrCl_2 + 6H_2O \\ BaCl_2 \\ BaCl_2 + 2H_2O \end{array}$	1.043 1.044 1.027 1.045 1.035	1.092	1.082 1.147	1.205	1.254 1.257 1.042 1.269 1.217	1.319 1.321 1.174 - 1.273	-	1.653 - 1.317 - -	1.887 - - - -	19.5 15. 15. 15. 21.	" Gerlach. " Schiff.
$\begin{array}{cccc} CuCl_2 & \ldots & \\ NiCl_2 & \ldots & \\ HgCl_2 & \ldots & \\ Fe_2Cl_6 & \ldots & \\ PtCl_4 & \ldots & \end{array}$	1.044 1.048 1.041 1.041 1.046		1.155 1.157 1.130 1.153	1.223 - 1.179	1.291 1.299 - 1.232 1.285	1.360 - 1.290 1.362	- 1.413	- - 1.545 1.785	- - 1.668 -	17.5 17.5 20. 17.5 -	Franz. " Mendelejeff. Hager. Precht.
$\begin{array}{c} \mathrm{SnCl}_2 + 2\mathrm{H}_2\mathrm{O}\\ \mathrm{SnCl}_4 + 5\mathrm{H}_2\mathrm{O}\\ \mathrm{LiBr} & \cdot & \cdot\\ \mathrm{KBr} & \cdot & \cdot\\ \mathrm{NaBr} & \cdot & \cdot \end{array}$	1.035	1.070	1.114	1.122 1.154 1.157	1.157 1.202 1.205	1.229 1.193 1.252 1.254 1.279	1.274	-	1.580 1.467 - - -	15. 15. 19.5 19.5 19.5	Gerlach. " Kremers. "
MgBr ₂ ZnBr ₂ CdBr ₂ CaBr ₂ BaBr ₂	1.041 1.043 1.041 1.042 1.043	1.091 1.088 1.087	1.144 1.139 1.137	1.202 1.197 1.192	1.245 1.263 1.258 2.250 1.260	1.328 1.324 1.313	1.450	1.648 1.678	1.873 - - -	19.5 19.5 19.5 19.5 19.5	66 66 66 66 66
SrBr2 KI LiI NaI ZnI2	1.043 1.036 1.036 1.038 1.043	1.076 1.077 1.080	1.140 1.118 1.122 1.126 1.138	1.164 1.170	I.222 I.232	1.292	1.489 1.394 1.412 1.430 1.467	1.573 1.598	1.953 1.732 1.775 1.808 1.873	19.5 19.5 19.5 19.5 19.5	66 66 66 66
$\begin{array}{c} CdI_2 \ . \ . \ . \\ MgI_2 \ . \ . \ . \\ CaI_2 \ . \ . \\ SrI_2 \ . \ . \\ BaI_2 \ . \ . \end{array}$	1.043	1.086 1.088 1.089	1.137 1.138 1.140	1.192 1.196 1.198	1.251 1.252 1.258 1.260 1.263	1.318 1.319 1.328	1.472 1.475	1.666 1.663 1.693	- 1.913 1.908 1.953 1.968	19.5 19.5 19.5 19.5 19.5	66 66 66 66
NaNO ₈	1.039 1.031 1.031	1.081 1.064	1.099	1.176 1.135 1.140	1.229 - 1.180	1.233 1.287 - 1.222 1.322	1.329 - 1.313 1.479	- - 1.416 1.675	- - 1.918	19.5 19.5 15. 20.2 15.	" Gerlach. Schiff. Kohlrausch.

* Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27. SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS. ,

Substance.	We	ight of	the diss	olved su the	ibstance solutio		parts by	weight	of	b. C.	Authority.
	5	10	15	20	25	30	40	50	60	Temp.	
$\begin{array}{cccc} \mathrm{NH}_4\mathrm{NO}_8 & \ldots \\ \mathrm{Zn}(\mathrm{NO}_8)_2 & \ldots \\ \mathrm{Zn}(\mathrm{NO}_8)_2 + 6\mathrm{H}_2\mathrm{O} \end{array}$	1.020 1.048	1.095	1.063 1.146	1.085 1.201 1.113		1.325	1.178 1.456 1.250	1.597	1.282	17.5 17.5 14.	Gerlach. Franz. Oudemans.
$Ca(NO_3)_2 \cdot \cdot \cdot Cu(NO_3)_2 \cdot \cdot \cdot$	1.037 1.044	1.054 1.075 1.093	1.143			1.260 1.328	1.367	1.329 1.482 -	1.604 -	17.5 17.5	Gerlach. Franz.
$\begin{array}{cccc} \operatorname{Sr}(\operatorname{NO}_8)_2 & \cdot & \cdot \\ \operatorname{Pb}(\operatorname{NO}_8)_2 & \cdot & \cdot \\ \operatorname{Cd}(\operatorname{NO}_8)_2 & \cdot & \cdot \\ \end{array}$	1.039 1.043 1.052	1.091 1.097	1.143 1.150	1.179 1.199 1.212	1.262 1.283	1.355	- 1.536	_ 1.759		19.5 17.5 17.5	Kremers. Gerlach. Franz.
$\begin{array}{ccc} \operatorname{Co(NO_8)_2} & \cdot & \cdot \\ \operatorname{Ni(NO_3)_2} & \cdot & \cdot \end{array}$	1.045 1.045	1.090 1.090		1.192 1.192	1.252	1.318 1.318	1.465 1.465		-	17.5 17.5	"
$\begin{array}{c} Fe_{2}(NO_{3})_{6} \\ Mg(NO_{3})_{2}+6H_{2}O \\ Mn(NO_{3})_{2}+6H_{2}O \\ K_{2}CO_{3} \\ K_{2}O_{3} \\ K_{3}O_{3} \\ K_{3$	1.039 1.018 1.025 1.044	1.038 1.052 1.092	1.060 1.079 1.141		1.105 1.138 1.245	1.129 1.169 1.300	1.179 1.235 1.417	1.232 1.307 1.543	1.657	17.5 21 8 15	" Schiff. Oudemans. Gerlach. "
$K_2CO_8 + 2H_2O$. Na ₂ CO ₃ 10H ₂ O.	1.037 1.019	1.072 1.038		1.150 1.077	1.191 1.098	1.118	-	1.415	1.511	15. 15.	"
$(NH_4)_2SO_4$ Fe ₂ (SO ₄) ₃ FeSO ₄ + 7H ₂ O .	1.027 1.045 1.025	1.055 1.096 1.053	1.150 1.081	1.113 1.207 1.111	1.141		1.226 1.489 1.238	1.287 - -		19. 18. 17.2 15	Schiff. Hager. Schiff. Gerlach.
$\begin{array}{c} MgSO_4 \\ MgSO + 7H_2O \\ \end{array}$	1.051 1.025	1.104 1.050	1.075	1.221 1.101	1.129	1.155	1.215	1.278	-	15.	"
$\begin{array}{c} Na_2So_4 + 10H_2O \\ CuSO_4 + 5H_2O \\ MnSO_4 + 4H_2O \\ ZnSO_4 + 7H_2O \end{array}$	1.019 1.031 1.031 1.027	1.039 1.064 1.064 1.057	1.098 1.099	1.081 1.134 1.135 1.122	1.173 1.174	1.124 1.213 1.214 1.191	- 1.303 1.269		1.443	15. 18. 15. 20.5	Schiff. Gerlach. Schiff.
$\begin{array}{c} \operatorname{Fe}_2(\mathrm{SO})_3 + \operatorname{K}_2 \mathrm{SO}_4 \\ + \operatorname{2}_4 \mathrm{H}_2 \mathrm{O} \\ \cdot \end{array}$	1.026	1.045	1.066	1.088	1.112	1.141	-	-	-	17.5	Franz.
$\begin{array}{c} \operatorname{Cr}_2(\mathrm{SO})_3 + \operatorname{K}_2 \mathrm{SO}_4 \\ + \operatorname{24H}_2 \mathrm{O} \\ \end{array}$	1.016	1.033	1.051	1.073	1.099	1.126	1.188	1.287	1.454	17.5	"
$\begin{array}{c} M_{g}SO_{4} + K_{2}SO_{4} \\ + 6H_{2}O \\ \end{array}$	1.032	1.066	1.101	1.138	-	-	-	_	-	I 5.	Schiff.
$\begin{array}{c} (\mathrm{NH}_4)_2\mathrm{SO}_4 + \\ \mathrm{FeSO}_4 + 6\mathrm{H}_2\mathrm{O} \\ \mathrm{K}_2\mathrm{CrO}_4 \end{array}$	1.028 1.039	1.058 1.082		1.122 1.174		1.191 1.279	- 1.397	-	-	19. 19.5	46 44
$K_2Cr_2O_7$	1.035 1.028		1.108	1.126	-	-	-		-	19.5 15.	Kremers. Schiff.
$\begin{array}{c c} Fe(Cy)_{6}K_{4} \cdot \cdot \cdot \\ Fe(Cy)_{6}K_{3} \cdot \cdot \cdot \\ Pb(C_{2}H_{3}U_{2})_{2} + \end{array}$	1.025				-	-	-	-	-	13	"
$\frac{10(2211302)2}{3H_2O \cdot \cdot \cdot \cdot}$ 2NaOH + As ₂ O ₅	1.031	1.064		1.137			1.315	1.426		15.	Gerlach.
$+ 24H_2O$	1.020	1.042	1.066	1.089	1.114	1.140	1.194		-	14.	Schiff.
	5	10	15	20	30	40 	60	80 	100		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.040 1.013	1.028	1.045	1.179	-	-	1.564 - 1.422	<u> </u>		15. 4. 15.	Brineau. Schiff. Kolb.
$\begin{bmatrix} N_2O_5 & \cdots & \cdots \\ C_4H_6O_6 & \cdots & \cdots \\ C_8H_8O_7 & \cdots & \cdots \end{bmatrix}$	1.033 1.021 1.018	1.047 1.038	1.070 1.058	1.141 1.096 1.079	1.150 1.123	1.207 1.170	 1.273	-	=	1 5. 1 5.	Gerlach. "
Cane sugar HCl	1.019 1.025	1.020	1.060 1.075	1.082 1.101 1.158	1.129 1.151	1.178	1.289			17.5 15. 14.	" Kolb. Topsöe.
$\begin{array}{cccc} HBr & \cdot & \cdot & \cdot \\ HI & \cdot & \cdot & \cdot \\ H_2SO_4 & \cdot & \cdot & \cdot \end{array}$	1.037 1.032	1.077 1.069	1.118 1.106	1.165 1.145	1.271 1.223	1.400	1 -	- 1.732	1.838		Kolb.
$\begin{array}{cccc} H_{2}SiFl_{6} & & & \\ P_{2}O_{5} & & & \\ P_{2}O_{5} + & & \\ P_{2}O_{5} + & & \\ 3H_{2}O & & \\ \end{array}$	1.035	1.077	1.119	1.174 1.167 1.119	1.188	1.264	- 1.676 1.438 1.373	- - 1.450	- - 1.528	17.5 17.5 15. 15.	Hager. Schiff. Kolb.
$\begin{array}{cccc} HNO & \cdot & \cdot & \cdot \\ C_2H_4O_2 & \cdot & \cdot & \cdot \end{array}$	1.028	1.056	1.088	1.119 1.028	1.154	1.052	1.068	1.075	1.055	J 1 5.	Oudemans.

TABLE 71.

DENSITY OF PURE WATER FREE FROM AIR.

[Under standard pressure (76 cm), at every teoth part of a degree of the international hydrogen scale from o^0 to 41^0 C, in grams per milliliter ¹]

De- grees				Te	nths of D	egraes.					Msan Differ-
Čenti- grade.	0	1	2	3	4	5	8	7	8	9	ences.
0	0.999 8681	8747	8812	8875 9408	8936	8996	9053	9109	9163	9216	+ 59
1 2	9267 9679	9315 9711	9363 9741	9408 9769	9452 9796	9494 982 i	9534 9844	9573 9866	9610 9887	9645 9905	+ 41 + 24
3	9922	9937	995I	9962	9973	<u>99</u> 81	99 88	9994	9998	*0000	$\frac{+8}{-8}$
4	1.000 0000	*9999	*9996	*99992	*9986	*9979	*9970	*9960	*9947	*9934	_ 0
56	0.999 9919	9902	9884	9864	9842	9819	9795 9468	9769	9742	9713	- 24 - 39
7	9682 9296	9650 9249	9617 9201	9582 9151	9545 9100	9507 9048	8994	9427 8938	9385 8881	9341 8823	-53 -67
7 8	8764	8703	8641	8577	8512	8445	8377	8308	8237	8165	
9	8091	8017	7940	7863	7784	7704	7622	7539	7455	7369	- 81
10	7282	7194	7105	7014	6921	6826	6729	6632	6533	6432	- 95 -108
II I2	6331 5248	6228 5132	6124 5016	6020 4898	5913 4780	5805 4660	5696 4538	5586 4415	5474 4291	5362 4166	-105 -121
13	4040	3912	3784	3654	3523	3391		3122	2986	2850	-133
14	2712	2 572	2431	2289	2147	2003	3257 1858	1711	1564	1416	-145
15	1266	1114	0962	0809	0655	0499	0343	0185	0026	*9865	—1 <u>5</u> 6
16	0.998 9705 8029	9542 7856	9378 7681	9214	9048	8881	8713	8544	8373 6610	8202	-168 -178
17 18	6244	6058	5873	7505 5686	7328 5498	7150 5309	6971 5119	6791 4927	4735	6427 4541	-190
19	4347	4152	3955	3757	3558	3358	3158	2955	2752	2549	-200
20	2343	21 37	1930	1722	1511	1 301	1090	0878	0663	0 449	-211
21	0233	0016	*9799	*9580	*9359	*91 39	*8917	*8694	*8470	*8245	221
22 23	0,997 8019 5702	7792 5466	7564	7335 4988	7104 4747	6873 4506	6641 4264	6408 4021	6173 3777	593 ⁸ 3531	-232 -242
24	3286	3039	2790	2541	2291	2040	1788	1 535	1280	1026	-252
25 26	0770	9 513 7892	0255	*9997	*9736	*9476	*9214	*8951	*8688	*8423	261
	0.996 81 58	7892	7624	7356	7087	6817	6545	6273	6000	5726	-271
27 28	545I 2652	5176 2366	2080	4620	4342 1505	4062 1217	3782 0928	3500 0637	3218 0346	2935 0053	
29	0.995 9761	9466	9171	8876	8579	8282	7983	7684	7383	7083	-298
30	6780	6478	6174	5869	5564	5258	4950	4642	4334	4024	-307
31	3714	3401	3089	2776	2462	2147	1832	1515	1198	0880	-315
32 33	0561 0.994 7 325	0241 6997	*9920	*9599 6338	*9276 6007	*8954 5676	*8630 5345	*8304 5011	*7979	*7653 4343	$-324 \\ -332$
34	4007	3671	3335	2997	2659	2318	1978	1638	1296	0 953	
35	0610	0267	*9922	*9576	*9230	*8883	*8534	*8186	*7837	*7486	347
35 36	0.993 71 36	6784	6432	6078	5725	5369 1782	5014	4658	4301	3943	-355
37 38	3585	3226	9227	2505 8859	2144 8490	8120	1419	1055 7380	0691 7008	0326 6636	
39	6263	5890	5516	5140	4765	4389	4011	3634	3255	2876	
40	2497	2116	1734	1352	0971	0587	0203	*9818	*9433	*9047	384
41	0.991 8661									5-4/	J~4
			<u> </u>			-	· · · ·	L		<u> </u>	l

⁴ According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907. SMITHSONIAN TABLES.

TABLE 72.

VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY.

Temp. C.	.0	••	.2	•3	.4	.5	.6	•7	.8	.9
0	1.000132	125	118	112	106	100	095	089	084	079
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	016	013	011	009
3	008	006	005	004	003	002	001	001	000	000
4	000	000	000	001	001	002	003	004	005	007
56 78 9	008 032 070 124 791	010 035 075 130 198	012 039 080 137 206	014 042 085 142 214	016 046 090 149 222	018 050 095 156 230	021 054 101 162 238	02 3 058 106 169 246	026 062 112 176 254	029 066 118 184 263
10	272	281	290	299	308	317	327	337	347	357
11	367	377	388	398	409	420	430	441	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	623	636	649	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	873	890	905	920	935	951	967	983	998	01 5 *
16	1.001031	047	063	080	097	113	130	147	164	182
17	198	216	233	252	269	287	305	323	341	358
18	378	396	415	433	452	471	490	510	529	548
19	568	588	606	626	646	667	687	707	728	748
20	769	790	811	832	853	874	895	916	938	960
21	981	002*	024*	046*	068*	091*	113*	135*	158*	181*
22	1.002203	226	249	271	295	319	342	364	3 ⁸ 9	412
23	436	459	483	507	53 ²	556	581	605	629	654
24	679	704	729	754	779	804	829	854	879	905
25	932	958	983	010*	036*	061*	088*	115*	141*	168*
26	1.003195	221	248	275	302	330	357	384	412	439
27	467	495	523	550	579	607	635	663	692	720
28	749	776	806	836	865	893	922	951	981	011*
29	1.004041	069	100	129	160	189	220	250	280	310
30	341	37 I	403	43 ²	464	494	526	557	588	619
31	651	682	713	744	777	808	840	872	904	936
32	968	001*	033*	066*	098*	132*	163*	197*	229*	263*
33	1.005296	328	361	395	427	461	496	530	562	597
34	631	665	698	73 ²	768	802	836	871	904	940
35	975	009*	044*	078*	115*	150*	185*	219*	255*	290*

Hydrogen Thermometer Scale.

Reciprocals of the preceding table.

TABLE 73.

DENSITY AND VOLUME OF WATER.

The mass of one cubic centimeter at 4° C. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
10°	0.99815	1.00186	+ 35 °	0.99406	1.00598
9	843	157	36	37 I	633
8	869	131	37	336	669
7	892	108	38	300	706
6	912	088	39	263	743
5	0.99930	1.00070	40	0.99225	1.00782
4	945	055	41	187	821
3	958	042	42	147	861
2	970	031	43	107	901
1	979	021	44	066	943
+ 0	0.99987	1.00013	45	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	001	48	896	116
4	1.00000	1.00000	49	852	162
5	0.99999	1.00001	50	0.98807	1.01207
6	997	003	51	762	254
7	993	007	52	715	301
8	988	012	53	669	349
9	981	019	54	621	398
10	0.99973	1.00027	55	0.98573	1.01448
11	963	037	60	324	705
12	952	048	65	059	979
13	940	060	70	0.97781	1.02270
14	927	073	75	489	576
15	0.99913	1.00087	80	0.97183	1.02899
16	897	103	85	0.96865	1.03237
17	880	120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	1.0515
21	802	198	120	.9434	1.0601
22	780	220	130	.9352	1.0693
23	757	244	140	.9264	1.0794
24	733	268	150	.9173	1.0902
25	0.99708	1.00293	160	0.907 5	1.1019
26	682	320	170	.897 3	1.1145
27	655	347	180	.8866	1.1279
28	627	375	190	.87 50	1.1429
29	598	404	200	.8628	1.1590
30	0.99568	1.00434	210	0.850	1.177
31	537	465	220	.837	1.195
32	506	497	230	.823	1.215
33	473	530	240	.809	1.236
34	440	5 ⁶ 3	250	.794	1.259

* From — 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to 41° , to Chappuis, 42° to 100° , to Thiesen; 110° to 250° , to means from the works of Ramsey, Young, Waterston, and Hirn.

SMITHSONIAN TABLES.

96

DENSITY OF MERCURY.

Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp. C.	Mass in grams per cu. cm.	Volume of I gram in Cu. cms.	Temp. C.	Mass in grams per cu, cm.	Volume of 1 gram in cu. cms.
10°	13.6202	0.0734205	30°	13.5217	0.0739552
9	6177	4338	31	5193	9685
8	6152	4472	32	5168	9819
7	6128	4606	33	5144	9953
6	6103	4739	34	5119	40087
$ \begin{array}{c} -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array} $	13.6078	0.07 34873	35	13.5095	0.0740221
	6053	5006	36	5070	0354
	6029	5140	37	5046	0488
	6004	5273	38	5021	0622
	5979	5407	39	4997	0756
0	13.5955	0.0735540	40	13.4973	0.0740890
1	5930	5674	50	4729	2230
2	5905	5808	60	4486	3572
3	5880	5941	70	4243	4916
4	5856	6075	80	4001	6262
5	13.5831	0.0736208	90	13.3776	0.0747611
6	5807	6342	100	3518	8961
7	5782	6476	110	3283	50285
8	5757	6609	120	3044	1633
9	5753	6743	130	2805	2982
10	13.5708	0.0736877	140	13.2567	0.07 5 43 34
11	5683	7010	150	2330	5688
12	5659	7144	160	2093	7044
13	5634	7278	170	1856	8402
14	5610	7411	180	1620	9764
15	13.5585	0.0737 545	190	13.1384	0.0761128
16	5560	7679	200	1148	2495
17	5536	7812	210	0913	3865
18	5511	7946	220	0678	5239
19	54 ⁸ 7	8080	230	0443	6616
20	13.5462	0.0738213	240	13.0209	0.0767996
21	5438	8347	250	12.9975	9381
22	5413	8481	260	9741	70769
23	5389	8615	270	9597	2161
24	5364	8748	280	9273	3558
25	13.5340	0.0 738882	290	12.9039	0.0774958
26	5315	9016	300	8806	6364
27	5291	9150	310	8572	7774
28	5266	9284	320	8339	9189
29	5242	9417	330	8105	80609
30	13.5217	0.0739551	340 350 360	12.7872 7638 74 05	0.0782033 3464 4900

Thiesen und Scheel, Tätigkeither. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903. Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techn. Reichsanstalt 2, p. 184, 1895.

TABLE 75.

DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4° C, as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular 19, 1913.

Per cent	Temperatures.								
C ₂ H ₅ OH by weight	10 ⁰ C.	15° C.	20 ⁰ C.	25° C.	30° C.	35° C.	40 ⁰ C.		
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99225		
1	785	725	636	520	379	217	034		
2	602	542	453	336	194	031	.98846		
3	426	365	275	157	014	.98849	663		
4	258	195	103	.98984	.9 8839	672	4 ⁸ 5		
56 78 9	098 .98946 801 660 524	032 .98877 729 584 442	.98938 780 627 478 331	817 656 500 346 193	670 507 347 189 031	501 335 172 009 .97846	311 142 •9797 5 808 641		
10	393	304	187	043	.97875	685	475		
11	267	171	047	.97897	723	527	312		
12	145	041	•97910	753	573	371	150		
13	026	.97914	775	611	424	216	.96989		
14	.97911	790	643	472	278	063	829		
15	800	669	514	334	133	.96911	670		
16	692	552	387	199	.96990	760	512		
17	583	433	259	062	844	607	352		
18	473	313	129	.96923	697	452	189		
19	363	191	.96997	782	547	294	023		
20	252	068	864	639	395	134	.95856		
21	139	•96944	729	495	242	•95973	687		
22	024	818	592	348	087	809	516		
23	.96907	689	453	199	.95929	643	343		
24	787	558	312	048	769	476	168		
25	665	424	168	.95895	607	306	.94991		
26	539	287	020	738	442	133	810		
27	406	144	.95 ⁸⁶⁷	576	272	.94955	625		
28	268	-9 5996	710	410	098	774	438		
29	125	844	548	241	.94922	590	248		
30	•95977	686	382	067	741	403	055		
31	823	524	212	.94890	557	214	.93860		
32	665	357	038	709	370	021	662		
33	502	186	.94860	525	180	.93825	461		
34	334	011	679	337	.93986	626	257		
35	162	.94832	494	146	790	425	051		
36	.94986	650	306	.93952	591	221	.92843		
37	805	464	114	756	390	016	634		
38	620	273	.93919	556	186	.92808	422		
39	431	079	720	353	.92979	597	208		
40	238	.93882	518	148	770	385	.91992		
41	042	682	314	.9 2940	558	170	774		
42	•93842	478	107	729	344	.91952	554		
43	639	271	.92897	516	128	733	332		
44	433	062	685	301	.91910	513	108		
45	226	.92852	472	085	692	291	.90884		
46	017	640	257	.91868	472	069	660		
47	.92806	426	041	649	250	.90845	434		
48	593	211	.91823	429	028	621	207		
49	379	.91995	604	208	.90805	396	.89979		
50	162	776	384	.90985	580	168	7 50		

TABLE 75 (continued).

DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN GRAMS PER MILLILITER.

	Tamparatura							
Per cent C_2H_5OH	Temperature.							
by weight	10 ⁰ C.	15° C.	20 ⁰ C.	25° C.	30° C.	35° C.	40 ⁰ C.	
50	0.92162	0.91776	0.91384	0.90985	0.90580	0.90168	0.89750	
51	.91943	555	160	760	353	.89940	519	
52	723	333	.90936	534	125	710	288	
53	502	110	711	307	.89896	479	056	
54	279	.90885	485	079	667	248	.88823	
55	055	659	258	.89850	437	016	589	
56	.90831	433	031	621	206	.88784	356	
57	607	207	.89803	392	.88975	552	122	
58	381	.89980	574	162	744	319	.87888	
59	154	752	344	.88931	512	085	653	
60	.89927	523	113	699	278	.87851	417	
61	698	293	.88882	466	044	615	180	
62	468	062	650	233	.87809	379	.86943	
63	237	.88830	417	.87998	574	142	705	
64	006	597	183	763	337	.86905	466	
65	.88774	364	.87948	527	100	667	227	
66	541	130	713	291	.86863	429	.85987	
67	308	.87895	477	054	625	190	747	
68	074	660	241	.86817	387	.85950	507	
69	.87839	424	004	579	148	710	266	
70	602	187	.86766	340	.85908	470	025	
71	365	.86949	527	100	667	228	.84783	
72	127	710	287	.85859	426	.84986	540	
73	.86888	470	047	618	184	743	297	
74	648	229	.85806	376	.84941	500	053	
75	408	.85988	564	134	698	257	.83809	
76	168	747	322	.84891	455	013	564	
77	.85927	505	079	647	211	.83768	319	
78	685	262	.84835	403	.83966	523	074	
79	442	018	590	158	720	277	.82827	
80	197	.84772	344	.83911	473	029	578	
81	.84950	525	096	664	224	.82780	329	
82	702	277	.83848	415	.82974	530	079	
83	453	028	599	164	724	279	.81828	
84	203	.83777	348	.82913	473	027	576	
85	.83951	525	095	660	220	.81774	322	
86	697	271	.82840	405	.81965	519	067	
87	441	014	583	148	708	262	.80811	
88	181	.82754	323	,81888	448	003	552	
89	.82919	492	062	626	186	.80742	291	
90	654	227	.81797	362	.80922	478	028	
91	386	.81959	529	094	655	211	.79761	
92	114	688	257	.80823	384	.79941	491	
93	.81839	413	.80983	549	111	669	220	
94	561	134	705	272	.79835	393	.78947	
95	278	.80852	424	.79991	555	114	670	
96	.Sog91	566	138	706	271	.78831	388	
97	698	274	.79846	415	.78981	542	100	
98	399	•79975	547	117	684	247	.77806	
99	094	670	243	.78814	382	.77946	507	
100	.79784	360	.78934	506	075	641	203	

TABLE 76.

DENSITIES OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULPHURIC ACID.

Per cent by weight of substance.	Methyl Alcohol. D $\frac{15^{\circ}}{4^{\circ}}$ C.	Cane Sugar. 20 ⁰	Sulphuric Acid. $D \frac{20^{\circ}}{4^{\circ}} C.$	Per cent by weight of substance.	$\begin{array}{c} \text{Methyl}\\ \text{Alcohol.}\\ \text{D}\frac{15^{0}}{4^{0}}\text{C.} \end{array}$	Cane Sugar. 20 ⁰	Sulphuric Acid. $D \frac{20^{\circ}}{4^{\circ}} C.$
0	0.99913	0.998234	0.99823	50	0.91852	1.229567	1.39505
I	.99727	1.002120	1.00506	51	.91653	1.235085	1.40487
2	.99543	1.006015	1.01178	52	.91451	1.240641	1.41481
3	.99370	1.009934	1.01839	53	.91248	1.246234	1.42487
4	.99198	1.013881	1.02500	54	.91044	1.251866	1.43503
56 78 9	.99029	1.017854	1.03168	55	.90839	1.257535	1.44530
	.98864	1.021855	1.03843	56	.90631	1.263243	1.45568
	.98701	1.025885	1.04527	57	.90421	1.268989	1.46615
	.98547	1.029942	1.05216	58	.90210	1.274774	1.47673
	.98394	1.034029	1.05909	59	.89996	1.280595	1.48740
10	.98241	1.038143	1.06609	60	.89781	1.286456	1.49818
11	.98093	1.042288	1.07314	61	.89563	1.292354	1.50904
12	.97945	1.046462	1.08026	62	.89341	1.298291	1.51999
13	.97802	1.050665	1.08744	63	.89117	1.304267	1.53102
14	.97660	1.054900	1.09468	64	.88890	1.310282	1.54213
15	.97 518	1.059165	1.10199	65	.88662	1.316334	1.55333
16	.97 377	1.063460	1.10936	66	.88433	1.322425	1.56460
17	.97237	1.067789	1.11679	67	.88203	1.328554	1.57595
18	.97096	1.072147	1.12428	68	.87971	1.334722	1.58739
19	.96955	1.076537	1.13183	69	.87739	1.340928	1.59890
20	.96814	1.080959	1.1 3943	70	.87507	1.347174	1.61048
21	.96673	1.085414	1.1 4709	71	.87271	1.353456	1.62213
22	.96533	1.089900	1.1 5480	72	.87033	1.359778	1.63384
23	.96392	1.094420	1.16258	73	.86792	1.366139	1.64560
24	.96251	1.098971	1.17041	74	.86546	1.372536	1.65738
2 5	.96108	1.103557	1.17830	75	.86300	1.378971	1.66917
26	.95963	1.108175	1.18624	76	.86051	1.385446	1.68095
27	.95817	1.112828	1.19423	77	.85801	1.391956	1.69268
28	.95668	1.117512	1.20227	78	.85551	1.398505	1.70433
29	.95518	1.122231	1.21036	79	.85300	1.405091	1.71585
30	•95366	1.126984	1.21850	80	.85048	1.411715	1.72717
31	.95213	1.131773	1.22669	81	.84794	1.418374	1.73827
32	.95056	1.136596	1.23492	82	.84536	1.425072	1.74904
33	.94896	1.141453	1.24320	83	.84274	1.431807	1.75943
34	•94734	1.146345	1.25154	84	.84009	1.438579	1.76932
35	.94570	1.151275	1.25992	85	.83742	1.445388	1.77860
36	.94404	1.156238	1.26836	86	.83475	1.452232	1.78721
37	.94237	1.161236	1.27685	87	.83207	1.459114	1.79509
38	.94067	1.166269	1.28543	88	.82937	1.466032	1.80223
39	.93894	1.171340	1.29407	89	.82667	1.472986	1.80864
40	.93720	1.176447	1.30278	90	.82396	1.479976	1.81438
41	.93543	1.181592	1.31157	91	.82124	1.487002	1.81950
42	.93365	1.186773	1.32043	92	.81849	1.494063	1.82401
43	.93185	1.191993	1.32938	93	.81568	1.501158	1.82790
44	.93001	1.197247	1.33843	94	.81285	1.508289	1.83115
45 46 47 48 49	.92815 .92627 .92436 .92242 .92048	1.202540 1.207870 1.213238 1.218643 1.224086	1.347 59 1.35686 1.36625 1.37574 1.38533	95 96 97 98 99	.80999 .80713 .80428 .80143 .79859	1.515455 1.522656 1.529891 1.537161 1.544462	1.83368 1.83548 1.83637 1.83605
50	.91852	1.229567	1.39505	100	•79577	1.551800	

 Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at 15°/15° C.; J. Russ., Phys. Chem. Soc., 41, p. 977, 1909.
 According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. 153, 1900.
 Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, 5, p. 131, 1900.

All reprinted from Circular 19, U.S. Bureau of Standards, 1913.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the Young's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

r				
Substance.	Temp. C.	Velocity in meters per	Velocity in feet per	Authority.
		meters per second.	second.	
26.1.41.1	0			14
Metals: Aluminum	-	5104	16740	Masson.
Brass	-	3500	11480	Various.
Cadmium	-	2307	7570	Masson.
Cobalt	-	4724	15500	Wertheim.
Copper	20	3560	11670	wertheim.
	100	3290	10800	"
	200 20	2950	9690	"
Gold (soft) " (hard)	20	1743	5717 6890	Various.
Iron and soft steel .		5000	16410	"
Iron	20	5130	16820	Wertheim.
"	100	5300	17390	"
"	200	4720	15480	"
" cast steel .	20	4990	16360	**
« « «	200	4790	1 57 10	4 4
Lead.	20	1227	4026	46
Magnesium	- 1	4602	15100	Melde.
Nickel	-	4973	16320	Masson.
Palladium .	-	3150	10340	Various.
Platinum	20	2690	8815	Wertheim.
	100	2570	8437	64
	200	2460	8079	"
Silver	20	2610	8553	
"	100	2640	8658	
Tin	-	2 500	8200	Various.
Zinc		3700	12140	
Various: Brick	-	3652	1 1980	Chladni.
Clay rock	-	3480	11420	Gray & Milne.
Cork .	-	500	1640	Stefan. Gray & Milne.
Granite	1 -	3950	12960	Gray & Mune.
Marble	1	3810	12500 4280	Warburg.
Paraffin · · ·	15	1304	14800	Gray & Milne.
Slate · · ·	16	4510	14800	Warburg.
Tallow	1 -	390 2850	9350	Gray & Milne.
Tuff		5000	16410	Various.
Glass } to	- 1	6000	19690	"
•	-	3013	9886	Ciccone & Campanile.
Ivory	0	54	177	Exner.
(black)		31	102	"
" " (red) .	0	69	226	4
	70		111	"
Wax	17	34 880	2890	Stefan.
"	28	44I	1450	
Woods: Ash, along the fibre .	-	4670	1 5310	Wertheim.
" across the rings .	-	1 390	4570	
" along the rings .	1	1260	4140	
Beech, along the fibre .		3340	10960	"
" across the rings .		1840	6030	
" along the rings		1415	4640	
Elm, along the fibre .	- 1	4120	13516	
" across the rings .	-	1420	4665	44
" along the rings .	-	1013	3324	44
Fir, along the fibre .	-	4640	1 3470	
Maple "· · ·	1 -	4110	12620	
Oak .		3850	10900	"
Pine "		3320 4280	14050	"
Poplar	· -	4460	14640	"
Sycamore ·		4405		
		1		

VELOCITY OF SOUND IN LIQUIDS AND CASES.

For gases, the velocity of sound $= \sqrt[4]{\gamma P/\rho}$, where P is the pressure, ρ the density, and γ the ratio of specific heat at constant pressure to that at constant volume (see Table 265).

Substance.	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
Liquids: Alcohol, 95%	° 12.5	1241.	4072.	Dorsing, 1908.
Equius: Alconol, 95%	20.5	1213.	3980.	<i>4</i>
Ammonia, conc.	16.	1663.	5456.	£4
Benzol	17.	1166.	3826.	46
Carbon bisulphide .	15.	1161.	3809.	"
Chloroform	15.	983.	3225.	"
Ether	15.	1032.	3386.	66
NaCl, 10% sol	15.	1470.	4823.	"
" 15% "	15.	1 530.	5020.	66
" 20% "	15.	1650.	5414.	66
Turpentine oil	15.	1326.	4351.	66
Water, air-free	13.	1441.	4728.	46
	19.	1461.	4794	66
66 66 66 · ·	31.	1 50 5.	4938.	66
" Lake Geneva .	9 .	1435.	4708.	Colladon-Sturm.
" Seine river .	15.	1437.	4714.	Wertheim.
** ** ** *	30.	1 528.	5013.	"
	6o.	1724.	5657.	**
Gases : Air, dry, CO ₂ -free .	0.	331.78	1088.5	Rowland.
	0.	331.36	1087.1	Violle, 1900.
"" " CO ₂ -free	o.	331.92	1089.0	Thiesen, 1908.
" 1 atmosphere .	o.	331.7	1088.	Mean.
"25 "	0.	332.0	1089.	" (Witkowski).
" <u>5</u> ŏ"	0.	334.7	1098.	" " "
"100 "	o.	350.6	1150.	" "
"•••••	20.	344.	1129.	
"•••••	100.	386.	1266.	Stevens.
"	500.	553.	1814.	"
"•••••	1000.	700.	2297.	61
Ammonia	0.	415.	1361.	Masson.
Carbon monoxide	o.	337.1	1106.	Wullner.
"	<u>`</u> о.	337.4	1107.	Dulong.
" dioxide	0.	2 58.0	846.	Brockendahl, 1906.
" disulphide .	0.	189.	620.	Masson.
Chlorine	o.	206.4	677.	Martini.
· · · · · ·	о.	205.3	674.	Strecker.
Ethylene	о.	314.	1030.	Dulong.
Hydrogen	0.	1269.5	4165.	
T 11	о.	1 286.4	4221.	Zoch.
Illuminating gas .	o.	490.4	1609.	
Methane	0.	432.	1417.	Masson.
Nitric oxide	0.	325.	1066.	
Nitrous oxide	0.	261.8	8 59.	Dulong.
Oxygen	0.	317.2	1041.	
Ether	0.	230.6	756.	Masson.
Water	0.	179.2	588.	"
water	0.	401.	1315.	
"	100.	404.8	1 328.	Treitz, 1903.
• • • •	130.	424.4	1 392.	••

NOTE: The values from Ammonia to Methane inclusive are for closed tubes.

TABLES 79-80. MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (1) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for (2) is nearly 40 times that for (3). Table 79 gives data for the middle octave, including vibration frequencies for three standards of pitch; a = 435 double vibrations per second, is the international standard and was adopted by the American Piano Manufacturers' Associa-tion. The 'just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one octave. thus:

major triads reduced to one octave, thus:

				4	:	5	:	6					
4 F 16	:	5 A	·	ĉ		F		4	:	5	:	6	
16		20		24 24		30 30		36		45		54	
				24	27	30	32	36	40	45	48	•••	

24 27 30 32 30 40 45 48 Other equivalent ratios and their values in E. S. are given in Table 80. By transferring D to the left and using the ratio 10 : 12 : 15 the scale of A-minor is obtained, which agrees with that of C-major except that $D = 56 \sqrt{3}$. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and suntracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may he found by successive transpositions by fifths or fourths as shown in Table 80. Disregarding the usually negligible difference of o.oz E. S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, o.22 E. S. The line "mean tone" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

N	Inte	rval.	Ratios.		Logar	ithms.	Number	of Vib	rations pe	r second.	Beats
Note.	Tem- pered.	Just.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Just.	Just.	Tem- pered.	for 0.1 E. S.
	E. S.	E. S.									
c′	0	o.	1.00	1.00000	0.0000	0.00000	256	264	258.7	258.7	1.50
37	I			1.05926		.02509	00			274.0	
d'	2	2.04	1.125	1.12246 1.18921	.05115	.05017	288	297	291.0	290.3	1.68
e'	3	3.86	1.25	1.25992	.09691	.07526 .10034	320	330	323.4	307.6 325.9	1.89
e' f'		4.98	1.33	1.33484	.12494	.12543	341.3	352	344.9	345.3	2.00
	56			1.41421		.1 50 51				365.8	
g′	7 8	7.02	1.50	1.49831	.17609	.17560	384	396	388	387.5	2.25
a'	8 9	8.84	1.67	1.58740 1.68179	.22185	.20069 .22577	426.7	440	431.1	410.6 <i>435</i> .0	2.52
a	10	0.04	1.07	1.78180	.22103	.25086	420.7	440	43***	460.9	2.32
b′	11	10.88	1.875	1.88775	.27300	.27 594	480	495	485.0	488.3	2.83
c″	12	12.00	2.00	2.00000	.30103	.30103	512	528	517.3	517.3	3.00

MADTE 00

TABLE 7	9.
---------	----

						140	LE 90.	•						
Ke	y of	с		D		E	F		G		A		В	С
7 #s 6 " 5 " 3 " 1 b 2 b 3 " 5 " 7 "	С# F B E A D G G G G C B B B B B B B B	0.00 0.00 0.00 22 22 22	1.14 0.92 1.14 0.92 0.92 0.70 0.92 0.70 0.92 0.92 0.90 0.90 0.90 0.90	2.04 1.82 2.04 2.04 1.82 1.82 1.82	3.18 2.96 2.94 2.96 2.74 2.96 2.74 2.96 2.74 2.94 2.94 2.94 2.94 2.94 2.92 2.72	4.08 3.86 4.08 3.86 4.08 3.86 3.86 3.86 3.86 3.86 3.86	5.00 4.78 5.00 4.78 4.98 4.98 4.98 4.98 4.76 4.76 4.76	6.12 5.90 6.12 5.90 6.12 5.90 5.90 5.90 5.90 5.90 5.90 5.90 5.90	7.02 7.02 7.02 7.02 6.80 6.80 6.80	8.16 7.94 8.16 7.94 7.72 7.94 7.72 7.94 7.72 7.94 7.72 7.92 7.92 7.92 7.92 7.92 7.70	9.06 8.84 9.06 8.84 9.06 9.06 8.84 8.84 8.84	9-98 9-76 9-98 9-76 9-97 9-76 9-96 9-96 9-96 9-96 9-96	11.10 10.88 11.10 10.88 11.10 10.88 10.88 10.88 10.88 10.88	12.00 11.80 12.00 12.00 12.00 12.00 11.78 11.78 11.78
Harmon Cycle of Cycle of Mean to Equal 7	fifths fourths ne	8 0.0 0.0 0.0 0.0 0.0	(1.71 1.05) 1.14 0.90 0.76	9 2.04 2.04 1.80 1.93 1.71	(19 (2.98) 3.18 2.94 3.11 3 43	3.86 4.08 3.84 3.86	(21 (4.70) 5.22 4.98 5.03 5.14	5.51 6.12 5.88 5.79	12 7.02 7.02 6.78 6.97 6.86	(²⁵ _{7.73}) 8.16 7.92 7.72	13 8.41 9.06 8.82 8.90 8.57	14 9.69 10.20 9.96 10.07 10.29	15 10.88 11.10 10.86 10.83	16 12.00 12.24 11.76 12.00 12.00

TABLE 81.

ACCELERATION OF GRAVITY.

For Sea Level and Different Latitudes.

Calculated from Helmert's formula :

 $g = 9^{\text{m}}.78030 (1 + 0.005302 \text{ sia.}^{1} \Phi - 0.000007 \text{ sio.}^{2} \Phi)$

							1
Latitude P	g cm. per sec. per sec.	Log. g	g feet per sec. per sec.	Latitude P	g cm. per sec. per sec.	Log. <i>g</i>	g feet per sec. per sec.
			32.0875	500	981.066	2.9916982	32.1871
00	978.030	2.9903522	.0888	51	.155	.9917376	.1901
5	.069	.9903695	.0927	52	.244	.9917770	.1930
10	.186	.9904214	.0949	53	.331	.9918156	.1959
12	.253	.9904312 .9904863	.0974	54	.418	.9918540	.1987
14	.332	.9944003		54			
12	978.376	2.9905058	32.0989	55	981.503	2.9918916	32.2015
15 16	-422	.9905262	.1004	56	.588	.9919292	.2043
17	.471	.9905480	.1020	57	.672	.9919664	.2070
18	.523	.9905710	.1037	58	-754	.9920027	.2097
19	.577	.9903930	.1055	59	.835	.9920385	.2124
			1		a		
20	978.634	2.9906203	32.1074	60	981.914	2.9920735	32.2150
21	.693	.9906463	.1093	61	.992	.9921080	.2175
22	·754 .818	.9906736	.1113	62	982.068	.9921415	
23		.9907019	.1134	63	.142	.9921743	.2224
24	.884	.9907313	.1156	64	.215	.9922066	.2248
25	978.952	2.9907614	32.1178	65	982.285	2.9922375	32.2271
26	979.022	.9907925	.1201	66	-354	.9922680	.2294
27	.094	.9908244	.1224	67	.420	.9922972	.2316
28	.168	.990 572	.1249	68	.485	.9923259	-2337
29	.244	.9908909	.1274	69	.546	.9923529	.2357
				70	982.606	2.9923794	32.2377
30	979.321	2.9909250	32.1299	71	.663	.9924046	.2395
31	.400 .481	.9909601	.1325	72	.718	.9924289	.2413
32	.562	.9909960	.1351	73	.770	.9924519	.2430
33 34	.646	.9910319 .9910691	.1378 .1406	74	.820	.9924740	.2447
34	.040	.9910091					
35	979.730	2.991 1064	32.1433	75 76	982.866	2.9924943	32.2462
36	.815	.9911441	.1461		.911	.9925142	.2477
37 38	.902	.991 1827	.1490	77 78	·952	.9925323	.2490
	.989	.9912212	.1518		.990	.9925491	.2503
39	980 0 77	.9912602	-1547	79	983.026	.9925650	-2514
40	980.166	2.9912996	32.1576	80	983.058	2.9925791	32.2525
41	.235	.9913391	.1605	81	.088	.9925924	.2535
42	-345	.9913789	.1635	82	.115	.9926043	.2544
43	-435	.9914188	.1664	83	.138	.9926145	-255I
44	.525	. 9914587	.1694	84	.159	.9926238	.2558
45	980.616	3.9914989	32.1724	85	983.176	2.9926312	32.2564
46	.706	.9915388	.1753	85 86	.190	.9926375	.2568
	.797	.9915791	.1783	87	•201	.9926423	.2572
47 48	.887	.9916190	.1813	88	.200	.9926459	-2574
49	-977	.9916588	.1842	90	.216	•9926489	-2577
l ' <u>`</u>							

To reduce log. g (cm. per sec. per sec.) to log. g (ft. per sec. per sec.) add log. 0.03280833 = 8.5159842 - 10.

CORRECTION FOR ALTITUDE.

- 0.0003086 cm. per meter when altitude is in meters. - 0.000003086 ft. per foot when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.
200 m. 300	0.0617 cm./sec. ² .0926	200 ft. 300	0.000617 ft./sec. ²
400	.1234	400	.001234
600 700	.1543 .1852 .2160	600 700	.001852
800 900	.2469 •2777	800 900	.002469

TABLE 82. GRAVITY.

Io this table the results of a number of the more recent gravity determinations are brought together. They serve to show the degree of accuracy which may be assumed for the numbers in Table 5. In general, gravity is a little lower than the calculated value for stations far inland and slightly higher on the coast line.

Place.	Latitude.	Elevation	Gravity	$r, \frac{cm.}{sec^2}$	Refer-
	N. +, S	ia meters.	Observed.	Reduced to sea level.	ence.
Singapore	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 14\\ 5\\ 680\\ 46\\ 2\\ 18\\ 10\\ 533\\ 3001\\ 3\\ 3001\\ 3\\ 1282\\ 1282\\ 1282\\ 1282\\ 1282\\ 114\\ 114\\ 10\\ 1645\\ 122\\ 651\\ 348\\ 165\\ 450\\ 100\\ 405\\ 577\\ 466\\ 67\\ 7\\ 49\\ 6\\ 0\\ 7\\ 8\end{array}$	978.08 978.25 978.10 978.15 978.15 978.37 978.53 978.67 978.53 978.67 978.91 979.62 979.62 979.63 979.63 979.66 979.66 979.66 979.66 979.66 979.66 979.66 979.66 979.66 979.66 979.66 979.66 979.66 980.02 980.02 980.34 980.34 980.34 980.56 980.67 980.67 980.67 980.67 980.67 981.26 981.26 981.51 981.66 981.66	#ca level. 978.08 978.25 978.23 978.37 978.37 978.37 978.37 978.37 978.37 978.37 978.37 978.46 978.97 978.97 979.92 979.95 979.92 979.92 979.92 979.92 979.92 979.93 980.04 980.14 980.20 980.14 980.27 980.37 980.42 980.75 980.64 980.64 980.65 980.64 980.64 980.65 980.64 980.74 980.77 981.20 981.20 981.20 981.20 981.20 981.60 981.60 <t< td=""><td>1 2 2 2 3 2 2 2 3 3 3 3 2 1 2 1 1 4 5 4 5 4 5 6 6 6 4 5 5 7 5 8 9 9 9 8 8 8 4 4 4</td></t<>	1 2 2 2 3 2 2 2 3 3 3 3 2 1 2 1 1 4 5 4 5 4 5 6 6 6 4 5 5 7 5 8 9 9 9 8 8 8 4 4 4
St. Paul's Island, "	57 07 58 18 59 10 59 32	12 5 5 4	981.67 981.74 981.82 981.83	981.67 981.74 981.82 981.83	4 4 4 4

1 Smith : "United States Coast and Geodetic Survey Report for 1884," App. 14.

2 Preston : "United States Coast and Geodetic Survey Report for 1890," App. 12.

2 Freston: "United States Coast and Geodetic Survey Report of 1090, heppendie
3 Preston: Ibid. 1888, App. 14.
4 Mendenhall: Ibid. 1891, App. 15.
5 Defforges: "Comptes Rendus," vol. 118, p. 231.
6 Pierce: "U. S. C. and G. S. Rep. 1883," App. 19.
7 Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," 1893. 8 Pierce: "U. S. C. and G. S. Report 1876, App. 15, and 1881, App. 17."

9 Messerschmidt: Same reference as 7.

• For references 1-4, values are derived by comparative experiments with invariable pendulums, the value for Washington taken as 980.111. For the latter see Appendix 5 of the Coast and Geodetic Survey Report for 1901. SMITHSONIAN TABLES.

TABLE 83.

SUMMARY OF RESULTS OF THE VALUE OF GRAVITY (g) AT STATIONS IN THE UNITED STATES AND ALASKA.*

Station.	Latitude,	Longitude.	Elevation.	g observed.
		0 / //	Meters.	cm./sec. ²
		67 16 54	38	080.630
Calais, Me	45 11 11	71 03 50	22	980.395
Boston, Mass.	42 21 33 42 22 48	71 03 30	14	980.397
Cambridge, Mass		71 07 45 71 48 28	170	980.323
Worcester, Mass	42 16 29 40 48 27	73 57 43	38	980.266
New York, N. Y.		74 39 28	64	980.177
Princeton, N. J.	40 20 57 39 57 06	75 11 40	16	980.195
Philadelphia, Pa.		76 29 00	247	980.299
Ithaca, N. Y. \ldots	42 27 04	76 37 30	30	080.096
Baltimore, Md.	39 17 50 38 53 13		14	980.111
Washington, C. & G. S.	30 53 13		10	980.113
Washington, Smithsonian	38 53 20 38 02 01	77 01 32 78 30 16	166	979.937
Charlottesville, Va			770	979.937
Deer Park, Md.	39 25 02	79 19 50 79 56 03	6	979.545
Charleston, S. C.	32 47 14	79 56 03	210	980.240
Cleveland, Ohio.	41 30 22	81 36 38 81 48 25	210 I	978.969
Key West, Fla.	24 33 33	84 23 18	324	979.523
Atlanta, Ga.	33 44 58			980.003
Cincinnati, Ohio	39 08 20	84 25 20	245	980.071
Terre Haute, Ind	39 28 42	87 23 49	151 182	980.277
Chicago, Ill.	41 47 25	87 36 03		980.277
Madison, Wis. (Univ. of Wis.)	43 04 35	89 24 00	270 2	
New Orleans, La.	29 56 58	90 04 14	-	979.323
St. Louis, Mo.	38 38 03	90 12 13	154	980.000
Little Rock, Ark.	34 44 57	92 16 24	89	979.720
Kansas City, Mo	39 05 50	94 35 21	278	979.989
Galveston, Tex.	29 18 12	94 47 29	3 189	979.271
Austin, Texas (University)	30 17 11	97 44 14		979.282
Austin, Texas (Capitol)	30 16 30	97 44 16	170	979.287
Ellsworth, Kan	3 ⁸ 43 43	98 13 32	469	979.925
Laredo, Tex	27 30 29	99 31 12	129	979.081
Wallace, Kan.	38 54 44	101 35 26	1005	979-754
Colorado Springs, Col	38 50 44	104 49 02	1841	979.489
Denver, Col.	39 40 36	104 56 55	1638	979.608
Pike's Peak, Col	38 50 20	105 02 02	4293	978.953
Gunnison, Col.	38 32 33	106 56 02	2340	979.34I
Grand Junction, Col	39 04 09	108 33 56	1398	979.632
Green River, Utah	38 59 23	110 09 56	1243	979.635
Grand Canyon, Wyo.	44 43 16	110 29 44	2386	979.898
Norris Geyser Basin, Wyo	44 44 09	110 42 02	2276	979-949
Lower Geyser Basin, Wyo.	44 33 21	110 48 08	2200	979.931
Pleasant Valley Jct., Utah	39 50 47	111 00 46	2191	979.511
Salt Lake City, Utah	40 46 04	111 53 46	1322	979.802
Ft. Egbert, Eagle, Alaska	64 47 22	141 12 24	174	982.182

* All the values in this table depend on relative determination of gravity and an adopted value for gravity at Washington (Coast and Geodetic Survey Office) of 980.111. This adopted value was the result of the determination in 1900 of the relative value of gravity at Potsdam and at Washington. See footuote on previous page.

TABLES 84-85.

LENGTH OF THE SECONDS PENDULUM.

TABLE 84. - Length of Seconds Pendulum at Sea Level for Different Latitudes.*

Lati- tude.	Length in centi- meters,	Log.	Length in inches.	Log.	Lati- tude.	Length in centi- meters.	Log.	Length in inches.	Log.
0 5 10 15 20	99.0950 .0989 .1108 .1302 .1562	1.996052 6069 6121 6206 6320	39.0131 .0152 .0200 .0274 .0378	1.591218 1234 1287 1372 1485	50 55 60 65 70	99.4027 .4471 .4888 .5263 .5587	1.997398 7592 7774 7938 8079	39.1348 .1524 .1687 .1835 .1962	1.592563 2758 2939 3103 3244
25 30 35 40 45	99.1884 .2259 .2672 .3116 .3571	1.996461 6625 6806 7000 7199	39.0506 .0652 .0816 .0990 .1169	1.591627 1790 1972 2166 2364	75 80 85 90	99.5850 .6045 .6165 .6206	1.998194 8279 8331 8349	39.2067 .2143 .2190 .2206	1.593360 3444 3496 3514

* Calculated from force of gravity table by the formula $l = g'/\pi^2$. For each 100 feet of elevation subtract 0.000596 centimeters, or 0.000235 inches, or 0.000296 feet.

Date of determi- nation.	Range of latitude included by the stations.	Leagth of peadulum in meters. for latitude φ.	Correspond- ing length of pendulum for lat. 45°	Refer- ence.
1799 15 1816 31 1821 8 1825 25 1827 41 1829 5 1830 9 1833 — 1869 51 1876 73 1884 123 Combining the	From $+67^{\circ}05'$ to $-33^{\circ}56'$ " $+74^{\circ}53'$ " $-51^{\circ}21'$ " $+38^{\circ}40'$ " $-60^{\circ}45'$ " $+79^{\circ}50'$ " $-12^{\circ}59'$ " $+79^{\circ}50'$ " $-51^{\circ}35'$ " $0^{\circ}0'$ " $+67^{\circ}04'$ " $+79^{\circ}51'$ " $-51^{\circ}35'$ " $+79^{\circ}50'$ " $-62^{\circ}56'$ " $+79^{\circ}50'$ " $-62^{\circ}56'$ " $+79^{\circ}50'$ " $-62^{\circ}56'$ " $+79^{\circ}50'$ " $-62^{\circ}56'$ s above results	$\begin{array}{c} 0.990631 + .005637 \sin^2 \phi \\ 0.990743 + .005466 \sin^2 \phi \\ 0.990880 + .005340 \sin^2 \phi \\ 0.990977 + .005142 \sin^2 \phi \\ 0.990555 + .005672 \sin^2 \phi \\ 0.990555 + .005673 \sin^2 \phi \\ 0.990917 + .005087 \sin^2 \phi \\ 0.990917 + .005185 \sin^2 \phi \\ 0.990911 + .005105 \sin^2 \phi \\ 0.990918 + .005262 \sin^2 \phi \\ 0.990910 + .005290 \sin^2 \phi \\ 0.990910 + .005290 \sin^2 \phi \\ \end{array}$	0.993450 0.993976 0.993550 0.993552 0.993552 0.993552 0.993555 0.993512 0.993554 0.993554 0.993549 0.993555	1 2 3 4 5 6 7 8 9 10 11 11 12

TABLE 85. - Length of the Seconds Pendulum.*

I Laplace : "Traité de Mécanique Céleste," T. 2, livre 3, chap. 5, sect. 42. 2 Mathieu : "Sur les expériences du pendule;" in "Connaissance des Temps 1816."

Additions, pp. 314-341, p. 332. 3 Biot et Arago: "Recueil d'Observations géodésiques, etc." Paris, 1821, p. 575. 4 Sabine: "An Account of Experiments to determine the Figure of the Earth, etc., by Sir Edward Sabine." London, 1825, p. 352.

Sir Edward Sabine." London, 1825, p. 352.
Saigey: "Comparaison des Observations du pendule à diverses latitudes; faites par MM. Biot, Kater, Sabine, de Freycinet, et Duperry;" in "Bulletin des Sciences Mathématiques, etc.," T. 1, pp. 31-43, and 171-184. Paris, 1827.
6 Pontécoulant: "Théorie analytique du Système du monde," Paris, 1829, T. 2, p. 466. 7 Airy: "Figure of the Earth;" in "Encyc. Met." 2d Div. vol. 3, p. 230.
8 Poisson: "Traité de Mécanique," T. 1, p. 377; "Connaissance des Temps," 1834, pp. 32-33; and Puissant: "Traité de géodésie," T. 2, p. 464.
9 Unferdinger: "Das Pendel als geodätisches Instrument;" in Grunert's "Archiv," 1869, p. 216

p. 316.

10 Fischer: "Die Gestalt der Erde und die Pendelmessungen;" in "Ast. Nach." 1876, col. 87.

11 Helmert: "Die mathematischen und physikalischen Theorieen der höheren Geodäsie, von Dr. F. R. Helmert," II. Theil. Leipzig, 1884, p. 241. 12 Harkness.

The data here given with regard to the different determinations which have been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 1891).
 † Calculated from a logarithmic expression given by Unferdioger.

TABLES 86-87. MISCELLANEOUS GEODETIC DATA.*

TABLE 86.

At	At Miles per degree Km. per d		er degree	At	Miles p	er degree	Km. per degree		
Lat.	of Long.	of Lat.	of Long.	of Lat.	Lat.	of Long.	of Lat.	of Long.	of Lat.
0° 10 20 30 40 45 50	69.17 68.13 65.03 59.96 53.06 49.00 44.55	68.70 68.72 68.79 63.88 68.99 69.05 69.11	111.32 109.64 104.65 96.49 85.40 78.85 71.70	110.57 110.60 110.70 110.85 111.03 111.13 111.23	55° 60 65 70 75 80 90	39.77 34.67 29.32 23.73 17.96 12.05 0.00	69.17 69.23 69.28 69.32 69.36 69.39 69.41	64.00 55.80 47.18 38.19 28.90 19.39 0.00	* 111.33 111.42 111.50 111.57 111.62 111.67 111.70

TABLE 87. -- Length of Degrees on the Earth's Surface.

For more complete table see " Smithsonian Geographical Tables."

TABLE 88. MISCELLANEOUS ASTRONOMICAL DATA.

^{*} Recent work of Doolittle's and others indicates a value not less than 20.51.

TABLES 89-91. - ASTRONOMICAL DATA.

Body.	Reciprocals of masses.	Meao distance from the sun. Km.	Sidereal period. Mean days	Equatorial diameter. Km.	Inclination of orbit.	Mean density. H ₂ O=1	Gravity at surface.
Sun Mercury Venus Earth* Mars Jupiter Saturn Uranus Neptune Moon	I. 600000. 408000. 329390. 3093500. 1047.35 3501.6 22869. 19700. † 81.45	58 x 10 ⁶ 108 " 149 " 228 " 778 " 1426 " 2869 " 2869 " 4495 " 38 x 10 ⁴	87.97 224.70 365.26 686.98 4332.59 107 59.20 30586.29 60188.71 27.32	1 391067 4842 1 2 394 1 27 56 7 320 1 4 5 2 50 1 2 30 40 4 8 5 90 5 6 0 40 3 4 7 3	7°.003 3.393 1.850 1.308 2.492 0.773 1.778 5.147	1.39 4.86 5.2 5.52 3.90 1.36 .63 1.34 1.28 3.37	27.6 .3 7.9 1.00 .4 2.6 1.01 .95 .97 .17

Table 89.-Planetary Data.

* Earth and moon. † Relative to earth. Inclination of axes: Sun 7⁰.25; Earth 23⁰.45; Mars 24⁰.6; Jupiter 3⁰.1; Saturn 26⁰.8; Neptune 27⁰.2. Others doubtful.

Table 90. - Equation of Time.

The equation of time when + is to be added to the apparent solar time to give mean time. When the place is not on a standard meridian (75'th, etc.) its difference in longitude in time from that meridian must be subtracted when east, added when west to get standard time (75'th meridian time, etc.). The equation varies from year to year cyclically, and the figure following the \pm sign gives a rough idea of this variation.

M. S		М.	S.		м.	s.		М.	s.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 15 4 May 1 2 15 4 June 1	-2 -3 -2	$ \begin{array}{c} 2 \\ 8 \\ 8 \\ 4 \\ 4 \\ 4 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$	Aug. 1 15 Sept. 1	+5 +6 +4 +0	24±5	Nov. 1 15 Dec. 1	-14 -16 -15 -10	$ \begin{array}{c} 12 \pm 8 \\ 5 \pm 6 \\ 19 \pm 2 \\ 22 \pm 4 \\ 58 \pm 8 \\ 53 \pm 10 \end{array} $

Table 91. - Miecellaneous Astronomical Data.

Apex of Solar Motion :

From proper motions, R. A.₁₈₁₀ = 17 51^m, Dec.₁₈₁₀ = + 31.4 (Weersma, Gron. Publ. 21.) From radial velocities, R. A.₁₉₀₀ = $17^{h}54^{m}$, Dec.₁₉₀₀ = + 25.1 (Campbell, Lick. Bull. 196.) Velocity = 19.5 Km. per sec. (Campbell.)

Nearest star so far as known: a Centauri, parallax = 0.759'' (Gron. Publ. 24) distance = 4.3 light years.

Stars of both greatest proper motion and greatest radial velocity so far as known :* Cordova, V243; proper motion = 8.70'' in position angle 130° radial velocity + 242 Km. per sec. (Campbell, Stellar Motions, 1913). Parallax = 0.319'' (Gron. Publ. 24, also proper motion). Distance = 10.2 light years.

Average velocities with regard to center of gravity of the stellar system, according to Campbell (Stellar Motion, 1913) :

 Type B Stars:
 6.6 Km. per sec.
 Type G Stars:
 15.0 Km. per sec.

 "A"
 10.9"
 "K"
 16.8"
 ""

 "F"
 14.4"
 "M"
 17.1"
 ""

Sun's magnitude = - 26.5, sending the earth 90,000,000 times as much light as the star Aldebaran.

Ratio of total radiation of sun to that of moon about 100,000 to 1 $\left. \begin{array}{ccc} & & & \\ & & & & \\ & &$

* Lalande, 1966, R.A.₁₉₁₀ 1^h3^m.9, Dec.₁₉₁₀ 61⁰.4' in 1913 was found to have a radial velocity (of approach) of 326 Km. per sec. (Mount Wilson Solar Observatory.)

TABLE 92.

TERRESTRIAL MAGNETISM.

Secular Change of Declination.

Changes in the magnetic declination between 1810, the date of the earliest available observations, and 1910, for one or more places in each state and territory.

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910
		0	0	0	0	0	0	0	0	0	0	0
Ala.	Montgomery	5.6E	5.8E	5.8E	5.6E	5.4E	5.0E	4.5E	3.9E	3.2E	2.8E	2.9E
Alas.	Sitka	-		-		-	28.7E	29.0E	29.3E	29.5E	29.7E	30.2E
	Kodiak	1 -	-	-	-	-	26.1E	25.6E	25.1E	24.7E	24.4E	24.1E
	Unalaska St. Michael	1 -	-	-	-	-	20.4E	20.1E	19.6E	19.0E	18.3E	17.5E
	St. Michael	1 -	-	-	-	-	-	-	24.7E	23.1E	22.1E	21.4E
Ariz.	Holbrook	-	-		-	13.6E	13.7E	13.8E	13.7E	13.4E	13.5E	13.9E
	Prescott	-	-	-	-	13.3E	13.5E	13.7E	13.6E	13.5E	13.7E	14.3E
Ark.	Little Rock	8.6E	8.8E	9.0E	9.0E	8.8E	8.6E	8.2E	7.6E	7.0E	6.6E.	6.9E
Cal.	Los Angeles	12.1E	12.6E	13.2E	13.6E	14.0E	14.2E	14.4E	14.6E	14.6E	14.9E	15.5E
	San José	15.0E	15.5E	16.0E	16.4E	16.8E	17.1E	17.3E	17.5E	17.5E	17.8E	18.5E
Cal.	Redding	15.6E	16.1E	16.6E	17.0E	17.4E	17.8E	18.1E	18.2E	18.3E	18.6E	19.3E
Colo.	Pueblo	-		-	-	13.8E	13.8E	13.8E	13.5E	13.0E	12.9E	13.3E
	Glenwood Sp.	-		-	-	16.1E	16.2E	16.3E	16.1E	15.7E	15.6E	16.1E
Conn.	Hartford	5.IW	5.6W	6.1W	6.8W	7.5W	8.2W	8.7W	9.4W	9.8W		11.0W
Del.	Dover	1.6W	1.9W	2.3W	2.8W	3.4W	4.0W	4.7W	5.3W	5.9W	6.4W	7.0W
D. C.	Washington	0.5E	0.3E	0.0	0.5W	1.0W	1.7W	2.4W	3.0W	3.6W	4.2W	4.7W
Fla.	Jacksonville	5.1E	5.1E	4.9E	4.6E	4.2E	3.7E	3.1E	2.4E	1.8E	1.3E	1.2E
	Pensacola	7.7E	7.8E	7.7E	7.5E	7.2E	6.8E	6.2E	5.6E	5.0E	4.5E	4.4E
	Tampa	6.4E	6.2E	5.9E	5.5E	5.0E	4.5E	3.9E	3.3E	2.8E	2.3E	2.0E
Ga.	Macon	5.9E	5.9E	5.7E	5.4E	5.0E	4.5E	3.9E	3.2E	2.6E	2.1E	2.0E
Haw.	Honolulu	-	-		-	9.4E	9.4E	9.5E	9.8E	10.1E	10.4E	10.6E
Idabo	Pocatello	-	-	-	-	17.4E	17.7E	17.8E	17.9E	17.7E	17.8E	18.4E
	Boise	-	-	-	-	18.0E	18.4E	18.6E		18.6E	18.8E	19.4E
111.	Bloomington	6.3E	6.5E	6.6E	6.5E	6.3E	5.9E	5.4E	4.7E	4.1E	3.6E	3.4E
Ind.	Indianapolis	5.0E	5.1E	5.0E	4.7E	4.4E	3.8E	3.2E	2.6E	2.0E	1.4E	1.1E
Ia.	Des Moines	-	10.2E	10.4E	10.5E	10.4E	10.2E	9.7E	9.1E	8.4E	7.9E	8.1E
Kans.	Emporia	-	-	-	-	-	11.5E	11.2E	10.7E	10.1E	9.8E	10.1E
	Ness City		-	-	-	12.4E	12.4E	12.2E	11.9E	11.4E	11.1E	11.4E
Ky.	Lexington	4.5E	4.5E	4.4E	4.1E	3.6E	3.1E	2.5E	1.9E	1.2E	0.7E	0.5E
	Princeton	6.8E	7.0E	7.0E	6.8E	6.5E	6.1E	5.6E	5.0E	4.3E	3.8E	3.7E
La.	Alexandria	8.4E	8.7E	8.8E	8.8E	8.7E	8.4E	8.0E	7.4E	6.9E	6.6E	6.8E
Me.	Eastport	13.6W	14.4W	15.2W	16.0W	17.0W	17.7W	18.2W	18.6W	18.7W	19.0W	19.4W
	Portland	9.0W		10.3W	11.0W	11.6W	12.3W	12.8W	13.4W	13.9W	14.4W	14.8W
Md.	Baltimore	0.9W	1.1W	1.4W	1.9W	2.4W	3.1W	3.8W	4.4W	5.0W	5.6W	6.1W
Mass.	Boston	7.3W	7.8W	8.4W	9.1W	9.8W	10.5W	11.0W	11.5W	12.0W	12.6W	13.1W
Mass.	Pittsfield	5.7W	6.1W	6.7W	7.4W	8.1W	8.7W	9.3W	10.0W		11.0W	
Mich.	Marquette	_	6.7E	6.7E	6.5E	6.0E	5.4E	4.6E	3.8E	3.0E	2.3E	2.0E
	Lansing	-	4.2E	4.1E	3.8E	3.3E	2.8E	2.1E	1.3E	0.5E	0.0E	0.4E
Minn.	Northome	-	10.4E	10.7 E	10.8E	10.7E	10.4E	10.0E	9.3E	8.6E	8.0E	8.1E
	Mankato	-	11.3E	11.6E	11.7E	11.6E	11.3E	10.9E	10.4E	9.5E	9.0E	9.1E
							<u> </u>					

* Tables have been compiled from United States Magnetic Tables and Magnetic Charts for 1905, published by the Coast and Geodetic Survey in 1908.

TABLE 92 (continued).

TERRESTRIAL MAGNETISM (continued).

Secular Change of Declination (continued).

		1			1	1	1	1	1	1	1	· · · · ·
State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910
		•	•	•	•	•	•	0	•	0	•	•
Miss.	Jackson	8.2E	8.4E	8.5E	8.4E	8.2E	7.9E	7.5E	6.9E	6.4E	6.0E	6.2E
Mo.	Sedalia	-	10.0E	10.2E	10.2E	10.1E	9.8E	0.4E	8.7E	8.0E	7.6E	7.9E
Mont.	Forsyth	- 1	-	- 1	18.2E	18.5E	18.6E	18.6E	18.4E	17.9E	17.8E	18.3E
	Helena	-	-	-	18.9E	19.3E	19.6E	19.8E	19.6E	19.4E	19.5E	20.0E
Nebr.	Hastings	-	11.6E	12.0E	12.1E	12.1E	12.0E	11.7E	11.2E	10.5E	19.3E	10.5E
Nebr.	Alliance	-	-	-	-	15.4E	15.4E	15.3E	14.8E	14.3E	14.2E	14.5E
Nev.	Elko	-	-	-	- 1	17.3E	17.6E	17.7E	17.7E	17.6E	17.8E	18.3E
	Hawthorne	-	-	[_	-	16.3E	16.6E	16.9E	17.0E	17.0E	17.3E	17.8E
N. H.	Hanover	7.1W	7.5W	8.2W	8.9W	9.8W	10.5W		11.6W	12.0W	12.5W	
N. J.	Treatoa	2.8W	3.1W	3.5W	4.1W	4.7W	5.4W	6.0W	6.7W	7.2W	7.8W	8.4W
N. M.	Santa Rosa	-	-	_	_	12.7E	12.8E	12.7E	12.5E	12.1E	12.0E	12.4E
	Laguna	-	-	-	-	13.4E	13.6E	13.6E	13.4E	13.0E	13.0E	13.5E
N. Y.	Albany	5.6W	5.8W	6.3W	6.9W	7.6W	-	9.1W			10.8W	
	Elmira	2.2W	2.4W	2.8W	3.3W	4.0W	4.8W	5.4W	6.3W	7.0W	7.6W	8.1W
N. C.	Newhern	1.7E	1.6E	1.3E	0.8E	0.3E	0.3W	1.0W	1.6W	2.2W	2.8W	3.3W
N. C.	Salishury	3.9E	3.8E	3.6E	3.2E	2.7E	2.1E	1.5E	0.8E	0.2E	0.4W	0.7W
N. Dak.	Jamestown		5.02	J	-	14.5E	14.3E	14.0E	13.5E	12.7E		
IL Das.	Dickinson	-	_	_	_	17.6E	17.6E	17.4E			12.4E	12.8E
Ohio	Columbus	3.4E	3.4E	3.2E	2.9E	2.4E	17.0E	17.4E	17.0E	16.4E		16.6E
Okla.	Okmulgee	3.40	3.415	3.212	1.9E				0.6E	0.0	0.7W	1.1W
Ukla,	Okinuigee					10.2E	10.1E	9.8E	9.4E	8.8E	8.5E	8.9E
Okla.	Enid	-	-	-	-	11.2E	11.1E	10.9E	10.5E	9.0E	9.7E	10.1E
Oreg.	Sumpter	-	-	-	-	19.3E	19.7E	20.0E	20.2E	20.2E		21.0E
	Detroit	16.7E	17.4E	18.0E	18.6E	19.2E	19.7E	20.1E	20.4E	20.5E		21.5E
Pa.	Philadelphia	2.2W	2.4W	2.8W	3.4W	4.1W	4.8W	5.5W	6.3W	6.8W	7.4W	8.0W
	Altoona	0.5W	0.6W	0.9W	1.3W	1.8W	2.4W	3.1W	3.8W	4.5W	5.1W	5.6W
P. R.	San Juan	_	-	-	_		_	_	_	_	1.0W	2.0W
R. I.	Newport	6.6W	7.1W	7.7W	8.4W	9.1W	9.8W	10.3W	10.8W	11.3W	11.9W	12.4W
s. c.	Columbia	4.4E	4.3E	4.1E	3.7E	3.2E	2.7E	2.1E	1.4E	0.8E	0.2E	0.1W
S. D.	Huron		-,	_	13.1E	13.1E	12.9E	12.6E	12.IE	11.4E	11.1E	11.4E
	Rapid City		-	-	-	16.4E	-	16.3E	15.8E	15.3E	_	15.4E
Tenn.	Chattanooga	5.3E	5.3E	5.1E	4.8E	4.4E	3.9E	3.3E	2.6E	2.0E	1.5E	1.3E
	Huntington	-	7.4E	7.4E	7.3E	7.0E	6.6E	6.1E	5.5E	4.9E	4.4E	4.3E
Tex.	Houston	-	8.9E	9.2E	9.3E	9.3E	9.2E	8.9E	8.5E	7.9E	7.7E	4.3E 8.1E
	San Antonio	-	_	9.6E	9.8E	9.9E	9.8E	9.6E	9.3E	8.9E	7.7E 8.7E	9.1E
	Pecos	-	-	10.8E	11.0E	11.1E	11.1E	11.0E	10.8E	10.4E		9.1E 10.7E
Tex.	Floydada	_	_	-	_	11.3E	11.3E	11.2E	10.9E	10.4E	TO -T	
Utah	Salt Lake	-	-	_	-	-	16.6E			10.4E	10.3E	10.7E
Vt.	Rutland	6.8W	7.2W	7.8W	8.5W			10.7E			16.5E	17.0E
Va.	Richmond	0.8E	0.6E	0.3W	0.1W	0.6W	1.2W	10.0W		11.6W	12.1W	12.7W
	Lynchhurg	1.9E	1.8E	1.6E	1.2E	0.8E	0.2E	•	2.5W	3.1W	3.7W	4.2W
					1.22			0.5W	1.2W	1.8W	2.4W	2.8W
Wash.	Wilson Creek	_	_	1		21.3E	21.6E	21.9E	21.9E	22.1E	22.4E	22.9E
	Seattle	19.1E	19.7E	20.3E	20.8E	21.3E	21.8E	22.1E	22.3E	22.6E	23.0E	23.5E
W. Va.	Charleston	2.3E	2.2E	2.0E	1.6E	1.1E	0.5E	0.2W	0.9W	1.5W	2.IW	2.6W
Wis.	Madison	-	8.6E	8.7E	8.6E	8.3E	7.8E	7.2E	6.4E	5.6E	5.0E	4.9E
Wyo.	Douglas	-	-	-	-	15.8E	16.0E	16.0E	15.8E	15.4E	15.3E	15.7E
	Green River	-	-	-	-	16.8E	17.0E	17.0E	16.9E	16.6E	16.6E	13.7E
		l						1				.,
	AN TASIES.	_				-		-	_	,	,	<u> </u>

TABLES 93-94.

TERRESTRIAL MAGNETISM (continued).

TABLE 93. - Dip or Inclination.

	65°	70 ⁰	75°	80°	85 ⁰	90 ⁰	95°	100 ⁰	1050	1100	1150	120 ⁰	125°
•	0	0	0	0	0	•	0	0	0		0	0	•
19	-	-	48.8	49.I	47.5	46.3	44.8	44.2	43.9	-	-		_
21	-	-	51.0	51.1	50.0	49.3	48.2	47.0	46.5	_	~		_
23	-	-	53.7	53.0	52.4	51.8	50.7	49.6	48.8	48.2	-	-	-
25	-	-	56.3	56.0	55.0	54.5	53.2	52.4	51.5	50.6	49.8	48.3	-
27	-	-	58.9	<u>5</u> 8.1	57.6	<u>56.8</u>	55.6	54.7	53.9	53.1	52.6	51.0	-
29	- 1	60.7	61.0	60.2	59.8	58.9	58.2	57.2	56.2	55.5	54.8	53.7	_
31	-	63.0	63.1	62.6	62.0	61.3	60.6	59.6	58.7	57.7	56.7	56.0	-
33	- 1	65.0	65.0	64.6	64.0	63.5	62.7	62.0	61.0	59.8	58.9	58.1	-
35 37	-	67.0	66.9	66.5	66.0	65.6	64.9	63.7	62.7	62.3	61.0	60.2	-
37	-	68.6	68.9	68.6	68.2	67.7	66.9	66.2	65.1	64.6	62.9	62.2	-
39	-	70.3	70.6	70.4	70.2	69.7	68.8	68. I	67.2	66.1	65.0	64.0	62.8
41 41	-	71.8	72.2	72.2	71.9	71.4	70.8	69.8	68.9	67.8	66.8	65.6	64.7
43	-	73.5	73.9	74. I	73.8	73.3	72.6	71.6	70.7	69.6	68.6	67.5	66.3
45	74.4	74.8	75.6	75 .5 76 .8	75.4	75.0	74.3	73.6	72.4	71.5	70.3	69.2	68.1
47	75.7	76.2	76.9	76.8	76.9	76.8	76.0	75.2	74.2	73.0	71.8	70.8	69.9
49	76.8	78.1	78.2	78 . 3	78.7	78.I	77.5	76.8	7 5.8	74.5	73.5	72.3	71.4

This table gives for the epoch January 1, 1905, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

TABLE 94. - Secular Change of Dip.

Values of magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1st of the years in the heading. The degrees are given in the third column and minutes in the succeeding columns.

Lati- tude.	Longi- tude.		1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
0	° 80	。 55 +	,	, 49	, 48	, 46	, 43	, 40	, 35	, 25	7 20	, 48	, 60	77
25 25 30	110 83	55 49+ 60+	49 08 66	20 70	30	39 74	46 73	55 67	35 61 57 60	35 68 51 61	39 76 53 68	48 86 63	96 78	106 96
30 30	100 115	57+ 54+	44 53	49 62	73 58 69	67 71	70 70	65 72	60 75	61 79	68 85	77 91	90 96	105 101
35 35 35	80 90 105	66+ 65+ 62+	57 65	58 59	57 51	54 44 32	45 37 30	35 32 24	26 26 24	21 25 24	20 25 28	22 27 34	30 36 42	38 48 50 08
35 40	120 75	60+ 71+	03 82	06 82	08 78	ŏ8 73	07 65	об 55	o8 43	11 33	13 27	14 24	12 24	08 24
40 40	90 105	70+ 67+	30 -	31	34	37 56	36 53	32 51	29 51	26 51 44	25 52 45	26 56	30 60 48	36 65 48
40 45 45	120 6 5 75	64+ 74+ 75+	116 103	48 110 99	46 101 95	44 92 90	44 80 85	44 68 73	44 57 62	46 53	45 35 43	45 28 38	24 36	20 34
45 45	90 105	74 + 72+	18 -	81 -	81 -	79 -	77	75 22	68 20	63 20	бі 21	59 22 26	60 24	60 27 20
45 45 49 49	122.5 92 120	68+ 78+ 72+	35 26 -	34 25 26	37 24 24	40 22 22	40 20 22	39 20 19	37 15 20	34 12 19	30 11 19	20 09 19	24 06 18	20 04 16

TABLES 95-96.

TERRESTRIAL MAGNETISM (continued).

TABLE 95 .- Horizontal Intensity.

This table gives for the epoch January 1, 1905, the horizontal intensity, H, expressed in C. G. S. units, corresponding to the longitudes in the heading and the latitudes in the first column.

	65 ⁰	70 ⁰	75 ⁰	80 ⁰	850	900	95 ⁰	1000	105°	1100	1150	120 ⁰	1250
0 19 21 23 25 27			.307 .301 .293 .284 .274	.314 .309 .303 .292 .280	.319 .314 .305 .295 .286	.322 .316 .309 .299 .289	.328 .320 .312 .304 .296	-332 -324 -315 -307 -298	.331 .324 .317 .308 .300	.320 .309 .303	.312 .306	.304 .298	
29 31 33 35 37		•257 •246 •233 •220 •208	.262 .251 .239 .225 .209	.269 .256 .245 .232 .218	.276 .263 .251 .240 .222	.281 .269 .257 .242 .226	.286 .274 .262 .248 .232	.289 .277 .266 .253 .238	.292 .282 .270 .256 .245	.294 .284 .273 .259 .246	.297 .285 .274 .262 .252	.291 .282 .274 .265 .251	
39 41 43 45 47 49	- .161 .145 .131	.197 .184 .170 .157 .144 .129	.198 .185 .170 .155 .140 .125	.203 .186 .169 .156 .142 .126	.206 .192 .175 .157 .142 .124	.212 .196 .178 .162 .150 .129	.217 .202 .187 .169 .152 .138	.224 .207 .194 .177 .161 .146	.229 .216 .201 .190 .170 .153	.237 .223 .210 .192 .180 .165	.240 .228 .215 .199 .188 .175	.242 .240 .222 .208 .196 .182	.245 .236 .226 .215 .201 .187

TABLE 96. - Secular Change of Horizontal Intensity.

Values of horizontal intensity in C. G. S. units for places designated by the latitude and longitude in the first two columns for January 1 of the years in the heading.

Latitude.	Longi- tude.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
° 25 25 30 30 30	° 80 110 83 100 115	.3099 .3229 .2803 	.3086 .3218 .2795 .3026	.3073 .3204 .2788 .2961 .3011	.3057 .3189 .2780 .2942 .2996	.3042 .3170 .2772 .2924 .2979	.3025 .3155 .2763 .2907 .2964	.3008 .3143 .2752 .2891 .2952	.2990 .31 30 .2740 .2877 .2940	.2970 .3117 .2725 .2865 .2929	.2949 .3104 .2706 .2850 .2920	.2920 .3090 .2680 .2830 .2910	.2890 .3075 .2644 .2804 .2898
35 35 35 35 35 40	80 90 105 120 75	.2384 - .1880	.2379 .1883	.2374 .1891	.2369 .2462 - .2720 .1902	.2367 .2462 .2620 .2707 .1911	.2363 .2461 .2608 .2695 .1919	.2359 .2458 .2599 .2683 .1925	.2352 .2455 .2590 .2672 .1930	.2347 .2447 .2583 .2663 .1931	.2337 .2437 .2573 .2656 .1928	.2320 .2430 .2560 .2650 .1920	.2296 .2399 .2544 .2644 .1909
40 40 40 45 45	90 105 120 65 75	- - .1 504 .1483	.2086 .1514 .1485	.2082 - .1525 .1488	.2079 .2272 .2429 .1537 .1495	.2076 .2266 .2420 .1553 .1506	.2075 .2261 .2412 .1567 .1516	.2074 .2257 .2406 .1578 .1527	.2072 .2253 .2399 .1589 .1538	.2068 .2248 .2392 .1600 .1546	.2060 .2240 .2386 .1608 .1550	.2050 .2230 .2380 .1610 .1550	.2036 .2217 .2379 .1610 .1554
45 45 45 49 49	90 105 122.5 92 120	- .2175 .1332 .1841	.1635 .2170 .1330 .1841	.1633 .2162 .1328 .1840	.1631 .1920 .2153 .1324 .1839	.1628 .1919 .2145 .1321 .1836	.1626 .1918 .2135 .1319 .1831	.1624 .1916 2127 .1318 .1826	.1623 .1913 .2121 .1318 .1821	.1624 .1910 .2117 .1321 .1819	.1623 .1906 .2115 .1324 .1820	.1620 .1900 .2115 .1330 .1820	.1616 .1892 .2115 .1335 .1824

TABLES 97-98. /

TERRESTRIAL MAGNETISM (continued).

TABLE 97. - Total Intensity.

This table gives for the epoch January 1, 1905, the values of total intensity, F, expressed in C. G. S. units corresponding to the longitudes in the heading and the latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
0 19 21 23 25 27			.466 .478 .495 .512 .530	.480 .492 .504 .522 .530	.472 .489 .500 .514 .534	.466 .485 .500 .515 .528	.462 .480 .493 .507 .524	.463 .475 .486 .503 .516	.459 .471 .481 .495 .509	.480 .487 .505	- - .483 .504	- - 457 -474	
29 31 33 35 37		.525 .542 .551 .563 .570	.540 .555 .566 .574 .581	.541 .556 .571 .582 .598	•549 •560 .572 .590 •598	- 544 .560 .576 .586 .596	.543 .558 .571 .584 .591	.534 .547 .567 .571 .590	.525 .543 .557 .558 .582	.519 .531 .543 .557 .573	.515 .519 .530 .540 .553	.492 .504 .518 .533 .538	
39 41 43 45 47 49	 - .599 .587 .574	.584 .589 .599 .599 .604 .626	.596 .605 .613 .623 .618 .611	.605 .608 .617 .623 .622 .621	.608 .618 .627 .623 .626 .633	.611 .614 .619 .626 .657 .626	.600 .614 .625 .624 .628 .638	.600 .600 .614 .627 .630 .639	.591 .600 .608 .628 .624 .624	.585 .590 .602 .605 .616 .617	.568 .579 .589 .590 .602 .616	.552 .581 .580 .586 .596 .599	•536 •552 •562 •576 •585 •588

TABLE 98. - Secular Change of Total Intensity.

Values of total intensity in C. G. S. units for places designated by the latitudes and longitudes in the first two columns for January 1 of the years in the heading. (Computed from Tables 92 and 94.)

Lati- tude	Longi- tude.	1855	1 86 0	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
° 25 25 30 30 30	80 110 83 100 115	.5516 .4935 .5800 .5285	·5493 ·4938 ·5796 - ·5280	.5467 .4933 .5790 .5583 .5269	-5434 -4925 -5777 -5570 -5247	.5400 .4908 .5757 .5544 .5215	.5364 .4902 .5720 .5499 .5194	.5322 .4891 .5668 .5456 .5179	.5290 .4883 .5625 .5432 .5167	•5264 •4876 •5600 •5427 •5160	•5247 •4873 •5590 •5421 •5158	.5222 .4868 .5581 .5416 .5151	.5206 .4860 .5559 .5405 .5140
35 35 35 35 40	80 90 105 • 120 75	.6089 - - .6206	.6080 - - .6216	.6063 - - 6220	.6038 .5991 - .5462 .6227	.5996 .5964 .5674 .5433 .6212	.5946 .5942 .5629 .5406 .6182	.5900 .5912 .5610 .5388 .6136	.5863 .5901 .5590 .5374 .6098	.5874 .5882 .5588 .5361 .6070	.5830 .5865 .5585 .5350 .6045	.5818 .5858 .5582 .5332 .6019	•5789 •5852 •5572 •5309 •5985
40 40 45 45	90 105 120 65 75	- - .6188 .6454	.6254 .6186 .6431	.6258 .6167 .6413	.6264 .6048 .5691 .6152 .6404	.6250 .6019 .5670 .6134 .6412	.6226 .5997 .5651 .6107 .6363	.6208 .5986 .5637 .6077 .6327	.6187 .5976 .5620 .6048 .6306	.6170 .5967 .5608 .6019 .6266	,61 51 .5963 .5593 .6005 .6247	.6141 .5953 .5590 .5987 .6233	.6135 .5940 .5591 .5962 .6235
45 45 45 49 49	90 105 122.5 92 120	- .5956 .6643 -	.6465 .5938 .6624 .6100	.6457 - .5930 .6604 .6085	.6434 - .5918 .6566 .6071	.6408 .5896 .6533 .6061	.6386 .6332 .5864 .6523 .6028	.6330 .6314 .5834 .6472 .6017	.6291 .6303 .5804 .6445 .5995	.6382 .6299 .5776 .6451 .5988	.6264 .6392 .5754 .6447 .5992	.6259 .6284 .5745 .6450 .5986	.6244 .6275 .5728 .6456 .5988

TABLE 99.

AGONIC LINE.

The line of no declination appears to be still moving westward in the United States, but the line of no annual change is only a short distance to the west of it, so that it is probable that the extreme westerly position will soon be reached.

Lat.	Long	itudes of t	he agonic l	ine for the	years —
N.	1800	1850	1875	1890	1905
25 30	• - -	• - -	• - -	• 75.5 78.6	o 76.1 79•7
35 6 7 8 9	- 75.2 76.3 76.7 76.9	76.7 77•3 77•7 78•3 78•7	79.0 79.7 80.6 81.3 81.6	79-9 80.5 82.2 82.6 82.2	81.7 82.8 83.5 83.6 83.6
40 I 2 3 4	77.0 77.9 79.1 79.4 79.8	79·3 80.4 81.0 81.2 –	81.6 81.8 82.6 83.1 83.3	82.7 82.8 83.7 84.3 84.9	84.0 84.6 84.8 85.0 85.5
45 6 7 8 9			83.6 84.2 85.1 86.0 86.5	85.2 84.8 85.4 85.9 86.3	86.0 86.4 86.4 86.5 87.2

TABLE 100.

RECENT VALUES OF THE MACNETIC ELEMENTS AT MACNETIC OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

					Magnetic	Elements	5.	1
Place.	Latitude.	Longitude.	Middle of			Intensit	y (C.G.S	units).
			year.	Declination.	Inclination.	Hor'l.	Ver'l.	Total.
	01			• •	· · · ·			
Pawlowsk Sitka	59 41 N	30 29E	1907	1 09.9E	70 37.7 N	.1650	•4694	•4975
Katharinenburg	57 03N 57 03N	135 20W 60 38E	1910 1907	30 16.4E 10 35.5E	74 32.2N 70 52.2N	.1559 .1762	.5637 .5081	.5849 .5378
Rude Skov	55 51N	I2 27E	1910	9 28.7 W	68 45.0N	.1738	.4468	•4794
Eskdalemuir	55 ION	3 12W	1911	18 12.4W	69 37.1N	.1685	-4534	.4837 ¦
Stonyhurst Wilhelmshaven	53 51N	2 28W 8 09E	1912 1910	17 03.6W	68 41.4N	.1740 .1812	.4460	.4787
Potsdam	53 32N 52 23N	13 04E	1910	11 37.0W 8 45.9W	67 30.5N 66 20.4N	.1812	·4377 .4291	·4737 .4685
Seddin	52 17N	13 01 E	1912	8 47.2W	66 17.4N	.1884	.4290	4685
Irkutsk	52 16N	104 16E	1905	1 58.1E	70 25.0N	.2001	.5625	.5970
De Bilt Valencia	52 06N 51 56N	5 11E 10 15W	1910 1911	12 58.2W	66 46.5N 68 12.1N	.1854 .1789	.4321	.4702 .4817
Clausthal	51 48N	10 20E	1905	20 38.1 W 10 40.3 W		.1/09	·4473	.4017
Bochum	51 29N	7 14E	1911	11 48.3W				
Kew	51 28N	0 19W	1911	15 55.3W	66 57.2N	.1850	•4349	.4726
Greenwich Uccle	51 28N	0.00	1911	15 33.0W	66 52.1N 66 00.1N	.1852 .1902	·4337	.4716 .4677
Hermsdorf	50 48N 50 46N	4 21E 16 14E	1912	13 13 9W 7 06.9W	00 00.114	.1902	•4273	.40//
Beuthen	50 21N	18 55E	1908	6 12.3W				
Falmouth	50 09N	5 05W	1912	17 24.2W	66 26.6N	.1880	.4312	.4704
Prague	50 0 5 N	14 25E	1910	8 09.6W 5 18.1W	64 YF FN	•••	• • •	•••
Cracow St. Helier (Jersey)	50 04N 49 12N	19 58E 2 05W	1911 1907	16 27.4W	64 15.5N 65 34.5N	•••		
Val Joyeux	48 49N	2 01 E	1911	14 17.6W	64 41.6N	.1974	.4176	.4619
Munich	48 09N	11 37E 14 08E	1910	9 31.5W	63 08.4N	.2064	.4075	.4568
Kremsmünster	48 03N		1904	9 02.4W	• • • •	.2107		•••
O'Gyalla (Pesth) Odessa	47 53N 46 26N	18 12E 30 46E	1911 1910	6 25.6W	62 26.9N	.2107	.4161	.4693
Pola	44 52N	13 51E	1911	3 35.9W 8 17.5W	60 03.6N	.2219	.3853	.4446
Agincourt (Toronto)		79 16W	1910	6 03.9W	74 3 ⁸ .5N	.1627	·5923	.6142
Perpignan	42 42N	2 53E	1910	12 44.8W	56 02.8N	2545	.3780	•4557
Tiflis Capodimonte	41 43N 40 52N	44 48E 14 15E	1905	2 41.6E	56 11.7N	.2545		
Ebro (Tortosa)	40 49N	0 31E	1911	13 18.6W	57 54.8N	.2326	.3709	.4378
Coimbra	40 I 2N	8 25W	1911	16 27.4W	58 46.4N	.2301	•3795	.4438
Mount Weather	39 04N	77 53W	1908	3 39.2W 8 33.0E	68 47.8N		.5597	.6003
Baldwin Cheltenham	38 47 N 38 44 N	95 IOW 76 50W	1900	5 41.4W	70 35.4N	.1983	.5626	.5966
Athens	37 59N	23 42E	1908	4 53.0W	52 11.7N	.2620	.3361	.4262
San Fernando	36 28N	6 I 2 W	1911	15 05.2W	54 31.5N	.2489		
Tokio	35 41N	139 45E	1910 1910	4 58.2W	49 07.3N 59 19.6N	.3001 .2741	.3467 .4621	.4585 .5372
Tucson Zi-ka-wei	32 15N 31 12N	110 50W	1910	2 33.6W	45 36.6N	.3306	.3377	.4726
Dehra Dun	30 19N	78 03E	1910	2 31.9E	43 54.8N	.3326	.3202	.4617
Helwan	29 52N	31 20E 88 22E	1912	2 25.4W	40 43.7 N	.3006	.2588	.3967
Barrackpore	22 46N 22 18N	88 22E	1910 1910	o 55.5E 0 00.4E	30 42.2N 30 58.8N	·3733 .3711	.2217	.4341 .4328
Hongkong Honolulu	22 18N 21 19N	158 04 W	1910	9 29.7E	39 47.2N	.2916	.2428	·3795
Toungoo	18 56N	96 27 E	1910	0 24.9E	23 02.IN	.3880	.1650	.4216
Alibág	18 38N	72 52E	1912	0 51.2E	23 56.1 N	.3687	.1637	.4034 .4478
Vieques	18 09N	65 26W	1910 1911	2 20.6W 0 40.9E	49 52.0N 16 18.2N	.2000	.3424	.3981
Antipolo Kodaikanal	14 36N 10 14N	77 28E	1911	0 40.92 0 55.0W	3 45.2N	.3748	.0246	·3757 .4286
Batavia-Butenzorg	6 11S	106 49E	1909	0 49.5E	31 09.25	.3668	.2218	.4286
St. Paul de Loanda	8 48S	13 13E	1910	16 12.3W	35 32.2S	.2012	.1437 .2004	.2473 .4086
Samoa (Apia)	13 485	171 46W	1908	9 41.9E	29 21.7S 54 05.7S	.3561 .2533	.3499	.4319
Tananarive Mauritius	18 55S 20 06S	47 32E 57 33E	1907	9 29.7W 9 18.5W	53 30.6S	.2331	.3151	.3920
Maurinus	10000	5, 55.5	\$ 1906	8 55.3 W	13 57.2S	.2477	.0617	.2553
Rio de Janeiro	22 55S	43 11W	1910		• • • •	• • •		•••
L	l		I					

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at $o^\circ\,C.$ for mercury and at $4^\circ\,C.$ for water.

			11		
	METRIC MEA	ŚURE.		BRITISH MEA	SURE.
Cms. of Hg.	Pressure io grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34.533	0.491 174
2	27.1912	0.386752	2	69.0 66	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
ı	I	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	I 5.24	0.216764
7	7	0.0995638	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	ю	0.1422340	10	25.40	0.361 274

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.*

	r brass scale and n measure.		brass scale and measure.	Corrections fo metric	r glass scale and measure.
Height of barometer in inches.	a in inches for temp. F.	Height of barometer in mm,	a in mm. for temp. C.	Height of barometer in mm.	a in mm, for temp. C.
15.0 16.0 17.0 17.5 18.0 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.4	temp. F. 0.00135 .00145 .00154 .00158 .00163 .00167 .00172 .00176 0.00181 .00190 .00190 .00203 .00203 .00203 .00221 0.00217 .00221 .00226 .00231 .00236 .00249 0.00254 .00263 .00267 .00268	mm. 400 410 420 430 440 450 440 450 470 480 490 510 520 530 510 520 530 530 550 570 580 570 580 590 600 630 640 630 640 650 650 650 650 650 650 650 65	temp. C. 0.0651 .0668 .0684 .0700 .0716 .0732 .0749 .0765 .0781 .0797 0.0813 .0830 .0846 .0846 .0862 .0878 .0894 .0911 .0927 .0943 .0959 0.0975 .0929 .1008 .1024 .1040 .1056 .1121	mm. 50 100 250 250 300 350 400 450 500 520 540 560 580 600 610 620 630 640 650 640 650 660 670 680 690 700 710 720 730 740	temp. C. 0.0086 .0172 .0258 .0345 .0431 .0517 .0603 0.0689 .0775 .0801 .0895 .0930 .0965 .0939 0.1034 .1051 .1068 .1085 .1103 .1120 .1137 0.1154 .1172 .1189 .1220 .1223 .1240 .1258 0.1275
29.6 29.8 30.0 30.2 30.4 30.6	.00270 .00272 0.00274 .00276 .00277	700 710 720 730 740 750	0.1137 .1154 .1170 .1186 .1202 .1218	7 50 760 770 780 790 800	.1292 .1309 .1327 .1344 .1361 .1378
30.8 31.0 31.2 31.4 31.6	.00279 .00281 .00283 .00285 .00285	760 770 780 790 800	.1235 .1251 .1267 .1283 .1299	850 900 950 1000	0.1464 .1551 .1639 .1723

* The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the tem-perature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The height at the standard temperature, H' the observed height at the temperature t, and a(t'-1) the height at the standard temperature, H' the observed height at the temperature t, and a(t'-1) to correction for temperature. The standard temperature is 0° C. for the metric system and 28° , 5 F. for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 28° , 5 F., because of the fact that the brass scale is graduated so as to be standard at 52° F. while mercury has the standard density at 32° F. Example.—A barometer having a brass scale gave H = 765 mm. at 25° C.; required, the cor-responding reading at v° C. Here the value of a is the mean of .1235 and .1251, or .1243; \cdot a (t'-t)N. B.—Although a is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for a, and when great accuracy is wanted the proper coefficients have to be deter-mined by comminent.

same values for a, and when great accuracy is wanted the proper coefficients have to be determined by experiment.

TABLE 103.

CORRECTION OF BAROMETER TO STANDARD CRAVITY.

Altitude term. Correction is to be subtracted.

Height			Obser	rved heigt	nt of baro	meter ia 1	millimeter	'S.		
above sea level in meters.	400	450	500	550	600	650	700	750	800	
100 200 300 400 500 600 700 800 900 1000 1200 1300 1400 1500 1600 1700 1800 1700 1800 1900 2000 2100 22000 2300	ters sea aod	for ele level in	.147 .157 .167 .167 .196 .206 .226	lbove lumn	.118 .130 .142 .153 .176 .188 .200 .212 .224 .235 .247 .235 .247 .259 .271	.064 .077 .090 .103 .115 .128 .141 .154 .166 .179 .204 .217 .204 .217 .225	.014 .028 .041 .055 .068 .096 .109 .123 .137 .150 .104 .178 .191 .205	.015 .030 .044 .059 .073 .083 .102 .117 .131 .146 1.340 1.292 1.244 1.196	.016 .032 .047 .063 .078 .078 .078 .078 .1.255 1.213 1.172 1.130 1.088	15000 14500 14500 13500 13500 12500
2400 2500 2700 2800 2900 3000 3100 3200 3300 3400 3500 3500	.195 .203 .211 .219 .227 .235 .243 .251 .259 .267 .275 .283	.212 .220 .229 .238 .247 .256 .265 .274 .283 .292 .201 .309	.236 .245 .255 .205 .275 .285 .294	.259 .270 1.077 1.005 .934 .862	.283 .295 I.050 .984 .918 .853 .787 .721 .655	1.315 1.255 1.196 1.136 1.076 1.016 .957 .897 .897 .837 .777	1.291 1.237 1.184 1.130 1.076 1.022 .969 .915 .861 .807 .753 .700	1.149 1.101 1.053 1.005 .957 .909 .861 .813 .765	1.004 .962 .920 .879 .837 .795 .753	12000 11500 10500 10000 9500 9500 9500 8500 8500 7500 7000 6500
3000 3700 3800 3900 4000 .192 .096	.233 .291 .299 .307 .314 .359 .269 .179 .090	-503 -419 -335 -251 -167 -084	.779 .701 .623 .545 .467 .389 .311 .233 .155 .078	.862 .790 .718 .646 .574 .503 .431 .359 .287 .215	.789 .724 .658 .592 .526 .461 .395	of an sea	inch for evel in la	in hund elevation ast colum meter in l	above n and	6000 5500 4500 4500 3500 2500 2500 1500 500
32	30	28	26	24	22	20	18	16	14	Height above sea level in
			Observed	l height o	f barome	ter in incl	ies.			feet.

.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitude 45°. - English Scale.

		_			H	leight o	f the ba	rometer	in inche	s.			
Latitu	ide.	19 20 21			22	23	24	25	26	27	28	29	30
0 °	90°	Inch. 0.051	Inch. 0.053	Inch. 0.056	Inch. 0.059	Inch. 0.061	Inch. 0.064	Inch. 0.067	Inch. 0.069	Inch. 0.072	Inch. 0.074	Inch. 0.077	Inch. 0.080
5 6 7 8 9	85 84 83 82 81	0.050 .049 .049 .049 .048	0.052 .052 .052 .051 .051	0.055 .055 .054 .054 .054	0.058 .057 .057 .056 .056	0.060 .060 .059 .059 .058	0.063 .062 .062 .061 .061	0.066 .065 .065 .064	0.068 .068 .067 .067 .067	0.071 .070 .070 .069 .068	0.073 .073 .072 .072 .072	0.076 .076 .075 .074 .073	0.079 .078 .077 .077 .076
10 11 12 13 14	80 79 78 77 76	0.048 .047 .046 .045 .045	0.050 .049 .049 .048 .047	0.053 .052 .051 .050 .049	0.055 .054 .054 .053 .052	0.058 .057 .056 .055 .054	0.060 .059 .058 .057 .056	0.063 .062 .061 .060 .059	0.065 .064 .063 .062 .061	0.068 .067 .066 .065 .063	0.070 .069 .068 .067 .066	0.073 .072 .071 .069 .068	0.075 .074 .073 .072 .071
15 16 17 18 19	75 74 73 72 71	0.044 .043 .042 .041 .040	0.046 .045 .044 .043 .042	0.048 .047 .046 .045 .044	0.051 .050 .049 .047 .046	0.053 .052 .051 .050 .048	0.055 .054 .053 .052 .050	0.058 .056 .055 .054 .052	0.060 .059 .057 .056 .055	0.062 .061 .060 .058 .057	0.065 .063 .062 .060 .059	0.067 .065 .064 .062 .061	0.069 .068 .066 .065 .063
20 21 22 23 24	70 69 68 67 66	0.039 .038 .036 .035 .034	0.041 .040 .038 .037 .036	0.043 .042 .040 .039 .037	0.045 .044 .042 .041 .039	0.047 .045 .044 .043 .041	0.049 .047 .046 .044 .043	0.051 .049 .048 .046 .045	0.053 .051 .050 .048 .046	0.055 .053 .052 .050 .048	0.057 .055 .054 .052 .050	0.059 .057 .056 .054 .052	0.061 .059 .057 .055 .053
25 26 27 28 29	65 64 63 62 61	0.033 .031 .030 .028 .027	0.034 .033 .031 .030 .028	0.036 .034 .033 .031 .030	0.038 .036 .034 .033 .031	0.039 .038 .036 .034 .032	0.041 .039 .038 .036 .034		0.044 .043 .041 .039 .037	0.046 .044 .042 .040 .038	0.048 .046 .044 .042 .039	0.050 .048 .045 .043 .041	0.051 .049 .047 .045 .042
30 31 32 33 34	60 59 58 57 56	0.025 .024 .022 .021 .019	0.027 .025 .023 .022 .020	0.028 .026 .025 .023 .021	0.029 .027 .026 .024 .022	0.031 .029 .027 .025 .023	0.032 .030 .028 .026 .024	.031 .029	0.035 .032 .030 .028 .026	0.036 .034 .032 .029 .027	0.037 .035 .033 .030 .028	0.039 .036 .034 .031 .029	0.040 .037 .035 .032 .030
35 36 37 38 39	55 54 53 52 51	0.017 .016 .014 .012 .011		0.019 .017 .015 .014 .012	0.020 .018 .016 .014 .012	0.021 .019 .017 .015 .013	0.022 .020 .018 .015 .013	.021 .018 .016	0.024 .021 .019 .017 .014	.022	0.025 .023 .021 .018 .015		0.027 .025 .022 .019 .017
40 41 42 43 44	50 49 48 47 46	0.009 .007 .005 .004 .002	.007 .006	0.010 .008 .006 .004 .002	0.010 .008 .006 .004 .002		0.011 .009 .007 .004 .002	.009 .007 .005	.010 .007 .005	.010 .008 .005	.010 .008 .005	.01 I .008 .005	0.014 .011 .008 .006 .003

N. B. From latitude 0° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

* "Smithsonian Meteorological Tables," p. 58.

t

TABLE 105.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitude 45°. - Metrio Scale.

					н	eight of	the baro	meter in	a millim	eters.			
Lati	ude.	520	560	600	620	640	660	680	700	720	740	760	780
0 °	90°	mm. 1.38	mm. 1.49	mm. 1.60	mm. 1.65	тт. 1.70	тт. 1.7б	mm. 1.81	mm. 1.86	mm. 1.92	mm. 1.97	mm. 2.02	mm. 2.08
5	85	1.36	1.47	1.57	1.63	1.68	1.73	1.78	1.84	1.89	1.94	1.99	2.04
6	84	1.35	1.46	1.56	1.61	1.67	1.72	1.77	1.82	1.87	1.93	1.98	2.03
7	83	1.34	1.45	1.55	1.60	1.65	1.70	1.76	1.81	1.86	1.91	1.96	2.01
8	82	1.33	1.43	1.54	1.59	1.64	1.69	1.74	1.79	1.84	1.89	1.94	2.00
9	81	1.32	1.42	1.52	1.57	1.62	1.67	1.72	1.77	1.82	1.87	1.92	1.97
10	80	1.30	1.40	1.50	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.90	1.95
11	79	1.28	1.38	1.48	1.53	1.58	1.63	1.68	1.73	1.78	1.83	1.88	1.93
12	78	1.26	1.36	1.46	1.51	1.56	1.60	1.65	1.70	1.75	1.80	1.85	1.90
13	77	1.24	1.34	1.44	1.48	1.53	1.58	1.63	1.67	1.72	1.77	1.82	1.87
14	76	1.22	1.32	1.41	1.46	1.50	1.55	1.60	1.65	1.69	1.74	1.79	1.83
15	75	1.20	1.29	1.38	1.43	1.48	1.52	1.57	1.61	1.66	1.71	1.75	1.80
16	74	1.17	1.26	1.35	1.40	1.44	1.49	1.54	1.58	1.63	1.67	1.72	1.76
17	73	1.15	1.24	1.32	1.37	1.41	1.45	1.50	1.54	1.59	1.63	1.68	1.72
18	72	1.12	1.21	1.29	1.34	1.38	1.42	1.46	1.51	1.55	1.59	1.64	1.68
19	71	1.09	1.17	1.26	1.30	1.34	1.38	1.43	1.47	1.51	1.55	1.59	1.64
20	70	1.06	1.14	1.22	1.26	1.31	1.35	1.39	1.43	1.47	1.51	1.55	1.59
21	69	1.03	1.11	1.19	1.23	1.27	1.31	1.35	1.38	1.42	1.46	1.50	1.54
22	68	1.00	1.07	1.15	1.19	1.23	1.26	1.30	1.34	1.38	1.42	1.46	1.49
23	67	0.96	1.04	1.11	1.15	1.18	1.22	1.26	1.29	1.33	1.37	1.41	1.44
24	66	.93	1.00	1.07	1.10	1.14	1.18	1.21	1.25	1.28	1.32	1.35	1.39
25	65	0.89	0.96	1.03	1.06	1.10	1.13	1.16	1.20	1.23	1.27	1.30	1.33
26	64	.85	.92	0.98	1.02	1.05	1.08	1.11	1.15	1.18	1.21	1.25	1.28
27	63	.81	.88	.94	0.97	1.00	1.03	1.06	1.10	1.13	1.16	1.19	1.22
28	62	.77	.83	.89	.92	0.95	0.98	1.01	1.04	1.07	1.10	1.13	1.16
29	61	.73	.79	.85	.87	.90	.93	0.96	0.99	1.02	1.04	1.07	1.10
30	60	0.69	0.75	0.80	0.83	0.85	0.88	0.91	0.94	0.96	0.98	1.01	1.04
31	59	.65	.70	.75	.77	.80	.82	.85	.87	.90	.92	0.95	0.97
32	58	.61	.65	.70	.72	.75	.77	.79	.82	.84	.86	.89	.91
33	57	.56	.61	.65	.67	.69	.71	.74	.76	.78	.80	.82	.84
34	56	.52	.56	.60	.62	.64	.66	.68	.70	.72	.74	.76	.78
35	55	0.47	0.51	0.55	0.56	0.58	0.60	0.62	0.64	0.66	0.67	0.69	0.71
36	54	.43	•46	•49	.51	-53	.54	•56	.58	.59	.61	.63	.64
37	53	.38	•41	•44	.45	-47	.48	•50	.51	.53	.54	.56	.57
38	52	.33	•36	•39	.40	-41	.43	•44	.45	.46	.48	.49	.50
39	51	.29	•31	•33	.34	-35	.37	•38	.39	.40	.41	.42	.43
40	50	0.24	0.26	0.28	0.29	0.30	0.31	0.31	0.32	0.33	0.34	0.35	0.36
41	49	.19	.21	.22	.23	.24	.24	.25	.26	.27	.27	.28	.29
42	48	.14	.16	.17	.17	.18	.18	.19	.19	.20	.21	.21	.22
43	47	.10	.10	.11	.12	.12	.12	.13	.J3	.13	.14	.14	.14
44	46	.05	.05	.06	.06	.06	.06	.06	.07	.07	.07	.07	.07

N. B. — From latitude 0° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

* "Smithsonian Meteorological Tables," p. 59.

TABLES 106-107. TABLE 106. --- Correction of the Barometer for Capillarity.*

			1. Met	RIC MEAS	SURE.	1								
		·	Height	OF MENISCUS IN MILLIMETERS.										
Diameter of tube in mm.	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8						
	Correction to be added in millimeters.													
4 56 7 8 9 10 11 12 13	0.83 .47 .27 .18 - - - -	1.22 0.65 .41 .28 .20 .15 - - -	1.54 0.86 .40 .29 .21 .15 .10 .07 .04	1.98 1.19 0.78 .53 .38 .28 .20 .14 .10 .07	2.37 1.45 0.98 .67 .46 .33 .25 .18 .13 .10	- 1.80 1.21 0.82 .56 .40 .29 .21 .15 .12	- 1.43 0.97 .65 .46 .33 .24 .18 .13	- - - .1.13 0.77 .52 .37 .27 .19 .14						
			2. Bri	tish Mea	SURE.									
			Hei	GHT OF ME	NISCUS IN I	NCHES.								
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08						
			Correction	to be added	in hundredtl	ns of an inch	•							
.1 5 .20 .25 .30 .35 .40 .40 .45 .50 .55	2.36 1.10 0.55 .36 - - -	4.70 2.20 1.20 0.79 .51 .40 - -	6.86 3.28 1.92 1.26 0.82 .61 .32 .20 .08	9.23 4.54 2.76 1.77 1.15 0.81 .51 .35 .20	11.56 5.94 3.68 2.30 1.49 1.02 0.68 .47 .31	7.85 4.72 2.88 *1.85 1.22 0.83 .50 .40	- 5.88 3.48 2.24 1.42 0.96 .64 .47	- 4.20 2.65 1.62 1.15 0.71 .52						

* The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

					Diamete	r of tube	in mm.				•
Height of meniscus.	τ4	15	16	17	18	19	20	21	22	23	24
mm. 1.6 1.8 2.0 2.2 2.4 2.6	1 57 181 206 233 262 291	185 211 240 271 303 338	214 244 278 313 350 388	245 281 319 358 400 444	280 320 362 406 454 503	318 362 409 459 511 565	356 407 460 515 573 633	398 455 513 574 639 7 ⁰⁶	444 507 571 637 708 782	492 560 631 704 781 862	541 616 694 776 859 948

TABLE 107. — Volume of Mercury Meniscus in Cu. Mm.

Scheel und Heuse, Annalen der Physik, 33, p. 291, 1910.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by $P = k w a v^2$

where k is a constant depending on the units employed, w the mass of unit volume of the air, a the area of the surface and v the velocity of the wind.* Engineers generally use the table of values of P given by Smeaton in 1759. This table was calculated from the formula

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

 $P = .00228 v^2$.

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's experiments give kw = .00166 at ordinary barometric pressure and 10° C. temperature.

For planes inclined at an angle a less than 90° to the direction of the wind the pressure may be expressed as $P_a = F_a P_{90}$.

Table 108, founded on the experiments of Langley, gives the value of F_a for different values of a. The word *aspect*, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

	in. × 4.8 in. 6 (nearly).		in. \times 12 in. ect 1.	Plane 6 in. × 24 in. Aspect $\frac{1}{2}$.			
a	Fa	a	Fa	a	Fa		
0 °	0.00	00	0.00	0 °	0.00		
5	0.28	5	0.15	5	0.07		
5 10	0.44	10	0.30	10	0.17		
15	0.55	15	0.44	15	0.29		
20	0.62	20	0.57	20	0.43		
25	0.66	25	0.69	25	0.58		
30	0.69	30	0.78	30	0.71		
35 40	0.72	35	0.84	_	-		
	0.74	40	o.88	-	-		
45	0.76	45	0.91	-	-		
50	. 0.78	50	-	-	-		

TABLE 108. - Values of P_a in Equation $P_a = P_a P_{99}$.

* The following pressures in pounds per square inch show roughly the influence of the shape and size of the resisting surface (Dines' results). The wind velocity was 20.9 miles per hour. The flat plates were $\frac{3}{2}$ in. thick.

Square, sides 4 in		•									1.51	Plate, 6 in. diam. 90° cone at back 1.49
Circle, same area		•									1.51	Same, cone in front
Rectangle, 16 in. by 1											1.70	" sharp 30 ⁰ cone at back
Square, 12 io. sides .		•									1.57	" cone in front
Circle, same area											1.55	5 in. Robinson cup on 81 in. of 1 in. rod 1.68
Rectaogle, 24 in. by 6.	•										1.50	Same, with back to wind 0.73
Square, sides 10 m.											1.52	o in. cup on 64 in. of 5 in. rod
Plate, 6 io. diam. 42 thick	¢							÷	÷		1.45	Same, with back to wind
Dilto, curved side to win	d		÷								0.02	2] in. cup on 9] in. of 1 in. rod
Sphere, 6 in, diam,			÷.		÷.	•	•	•	•	•	0.92	Same, with back to wind
option of a mainter of a	•	•	•	•	•	•	•		•	•	0.07	Same, with back to wind

AERODYNAMICS.

On the basis of the results given in Table 108 Langley states the following condition for the soaring of an aeroplane 76.2 centimeters long and 12.2 centimeters broad, weighing 500 grams, — that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6.

Inclination to the hori- zontal a.	Soaring s	peed v.		ded per minute ivity).	Weight of planes of like form, capable of soaring at speed v with the ex- penditure of one horse power.			
	Meters per sec.	Feet per sec.	Kilogram meters.	Foot pounds.	Kilograms.	Pounds.		
20 5 10 15 30 45	20.0 15.2 12.4 11.2 10.6 11.2	66 50 41 37 35 37	24 41 65 86 175 336	174 297 474 623 1268 2434	95.0 55.5 34.8 26.5 13.0 6.8	209 122 77 58 29 15		

In general, if
$$\rho = \frac{\text{weight}}{\text{area}}$$

Soaring speed $v = \sqrt{\frac{\rho}{k} \frac{1}{F_a \cos a}}$

Activity per unit of weight $= v \tan a$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1893).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about $\frac{1}{12}$ the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be α , and the angle between the direction of resultant air pressure and the normal to the direction of motion be β . Then $\beta < \alpha$, and the soaring speed is

$$v = \sqrt{\frac{p}{k}} \frac{1}{F_a \cos \beta}$$
, while the activity per unit of weight $= v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

Angle of inclination $a = -3^{\circ}$	oo	+ 3°	6°	9°	1 2 ⁰
	0.50	0.75	0.90	1.00	1.05
$\tan\beta = 0.01$	0.02	0.03	0.04	0.10	0.17

Thus a curved surface shows finite soaring speeds when the angle of inclination α is zero or even slightly negative. Above $\alpha = 12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.

TABLES 110-112.

TABLE 110. -- Friction.

The following table of coefficients of friction f and its reciprocal r/f, together with the angle of friction or angle of repose ϕ , is quoted from Raokine's "Applied Mechanics." It was compiled by Rankine from the results of General Morin and other authorities, and is sufficient for all ordinary purposes.

* Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

TABLE 111. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE	112. –	Lubricants	Fer	Cutting	Tools.
-------	--------	------------	-----	---------	--------

Material.	Turning.	Chucking.	Drilling.	Tapping Milling.	Reaming.
Tool Steel, Soft Steel, Wrought iron Cast iron, brass Copper Glass	dry or oil dry or soda water dry or soda water dry dry turpentine or kerosene	oil or s. w. soda water soda water dry dry	oil oil ar s. w. oil or s. w. dry dry	oil oil oil dry dry	lard oil lard oil lard oil dry mixture

Mixture = 1/2 crude petroleum, 3/2 lard oil. Oil = sperm or lard.

Tables 111 and 112 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons. SMITHSONIAN TABLES.

TABLE 113.

VISCOSITY.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is by the observation of the rate of flow of the fluid through a capillary tube, the length of which is great in comparison with its diameter. Poiseuille * gave the following formula for calculating the viscosity coefficient in this case : $\mu = \frac{\pi h r^4 s}{2}$ $\frac{\pi}{8\nu l}$, where h is the pressure height, r the radius of the tube, s the density of the fluid, v the quantity flowing per unit time, and l the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube, hence hand / are different. The product hs is the pressure under which the flow takes place. Hagenbach † pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from

 v^2 \hbar , according to Hagenbach, is $\frac{1}{\sqrt{2} \cdot g'}$, where g is the acceleration due to gravity. Gartenmeister \sharp points out an error in this to which his attention had been called by Finkener, and states that the quantity to be subtracted from k should be simply $\frac{v^2}{g}$; and this formula is used in the reduction of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formulæ take into account irregularities in the distortion of the fluid near the ends of the tube, but this is probably provide in the long enough to make the rate of the tube heat the ends of the tube.

negligible in all cases here quoted from, although it probably renders the results obtained by the "viscosimeter " commonly used for testing oils useless for our purpose.

The term "specific viscosity" is sometimes used in the headings of the tables; it means the ratio of the viscosity of the fluid under consideration to the viscosity of water at a specified temperature.

The friction of a fluid is proportional to the size of the rubbing surface, to $\frac{dv}{dx}$, where v is the

velocity of motion in a direction perpendicular to the rubbing surface, and to a constant known as the viscosity.

ن ت Hem	Poiseville. 1846.	Sprung. 1876.	Slotte. 1883.	Thorpe-Rogers. 1894.§	Hosking. 1909.	Temp. C.	Slotte. 1883.	Thorpe-Rogers 1894.	Hosking. 1909.
0° 5 10 15 20 25 30 35 40 45 50	0.01716 .01515 .01309 .0146 .01008 .00897 .00803 .00803 .00721 .00653 .00595	0.01778 .01510 .01301 .0135 .01003 .00802 .00802 .00802 .00723 .00657 .00602 .00553	0.01808 .01524 .01314 .0108 .00806 .00803 .00724 .00602 .00602 .00553	0.01778 .01510 .01303 .01134 .01002 .00891 .00720 .00654 .00597 .00548	0.01793 .01522 .01310 .01006 .00893 .00800 .00724 .00657 .00600 .00550	65 70 75 80 85	0.00510 .00472 .00438 .00408 .00382 .00358 .00358 .00337 .00318 .00301 .00285	0.00506 .00436 .00436 .00380 .00356 .00355 .00316 .00299 .00283	.00508 .00469 .00436 .00356 .00356 .00316 .00316 .00300 .00284¶
		(b) Var	lation of §	Specific Viscosi	y of Wate	r with	Temperati	ure. (j	
0 ⁰ 5 ⁰ 10 ⁰ 15 ⁰ 20 ⁰	1.000 .849 .730 .637 .561	25° 30 35 40 45	0.498 .446 .404 .367 .335	55 60 65	.262 .243	75° 80 85 90 95	0.212 .199 .187 .176 .167	100° 124° 153° – –	0.158 .124¶ .101¶ _ _

(a) Variation of Viscosity of Water, with Temperature. Dynes per sq. cm.

* "Comptes rendus," vol. 15, 1842; "Mém. Serv. Étr." 1846.
† "Pogg. Ann." vol. 109, 1860.
‡ "Zeitschr. Phys. Chem." vol. 6, 1890.
§ Thorpe and Rogers, "Philos. Trans." 185A, p. 397, 1894; "Proc. Roy. Soc." 55, p. 148, 1894.
¶ Hosking. Phil. Mag. 17, p. 502, 1909; 18, p. 260, 1909.
¶ de Haas, Diss. Leiden, 1894.

TABLES 114-116.

VISCOSITY.

TABLE 114. - Solution of Alcohol in Water.*

Coefficients of viscosity, in C. G. S. units, for solution of alcohol in water.

Temp.	Percentage by weight of alcohol in the mixture.												
C.	0	8.21	16.60	34.58	43-99	53.36	75-75	87.45	99.72				
00	0.0181	0.0287	0.0453	0.0732	0.0707	0.0632	0.0407	0.0294	0.0180				
5	.01 52	.0234	.0351 .0281	.0558	.0552	.0502	.0344	.0256	.0163 .0148				
10 15	.0131 .0114	.0195	.0230	.0435 .0347	.0438 .0353	.0405	.0250	.0195	.0134				
20	.0101	.0142	.0193	.0283	.0286	.0276	.0215-	.0172	.0122				
						,			-				
25	0.0090	0.0123	0.0163	0.0234	0.0241	0.0232	0.0187	0.01 52	0.0110				
30	1800.	8010.	.0141	.0196	.0204	.0198	.0163	.0135	.0100				
35	.0073	.0096	.0122	.0167	.0174	.0171	.0144	.0120	.0092				
40	.0067	.0086	.0108	.0143	.01 50	.0149	.0127	.0107	.0084				
45	.0061	.0077	.0095	.0125	.01 31	.0130	.0113	.0097	-0077				
50	0.0056	0.0070	0.0085	0.0109	0.0115	0.0115	0.0102	0.0088	0.0070				
	.0052	.0063	.0076	.0096	.0102	.0102	.0091	.0086	.0065				
55 60	.0048	.0058	.0069	.0086	.0091	.0092	.0083	.0073	.0060				

The following tables (115-116) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes.†

sity.	Flashing point.	Burning point.	Sp. viso z	cosity. W $\cos^{\circ} C_{*} = \tau$.	ater at
Density.	[™] G.	- ⁿ G [−] C.	20° C.	50° C.	100° C.
.931	243	274	-	11.30	2.9
.921	216	246	-	7.31	2.5
.906	189	208	-	3.45	1.5
.921	163	190	-	27.80	2.8
.917	132	168		_	2.6
.904 .891 .878 .855	170 151 108 42	207 182 148 45	8.65 4.77 2.94 1.65	2.65 1.86 1.48	1.7 1.3 -
.905	165	202	-	3.10	1.5
.894	139	270	7.60	3.60	1.3
.866	90	224	2.50	1.50	-

TABLE 115. - Mineral Oils. ‡

TABLE 1	16. — Oils.
---------	-------------

Oil.	Density.	° Flashing ? point.	o Burning O point.	Viscosity at 19° C., water at 19° C.=1.
Cylinder oil Machine oil Wagon oil """ Naphtha residue	.917 .914 .914 .911 .910	227 213 148 157 134	274 260 182 187 162	191 102 80 70 55
Oleo-naphtha """ Oleonid best quality	.910 .904 .894 .884	219 201 184 185 188	257 242 222 217 224	121 66 26 28 20
Olive oil Whale oil ""	.916 .879 .875	-		22 9 8

* This table was calculated from the table of fluidities given by Noack (Wied. Ann. vol. 27, p. 217), and shows a maximum for a solution containing about 40 per ceot of alcohol. A similar result was obtained for solutions of acetic

acid. † Table 115 is from a paper by Engler in Dingler's "Poly. Jour." vol. 268, p. 76, and Table 116 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very uncertain quantity, neither the density nor the flashing point being a good guide to viscosity. ‡ The different groups in this table are from different residues.

TABLE 117. VISCOSITY.

Liquid.			G. %	Coefficient of viscosity.	Temp. Cent. ⁰	Authority.
Ammonia " · ·		•		0.0160 0.0149	11.9 14.5	Poiseuille. "
Anisol	• •	•		0.0111	20.0	Gartenmeister.
Colophonium .	•••	•		3×10 ¹⁶	I 5.	Reiger.
Di-ethyl ether .	· ·	•		0.00276	6.7	Thorpe, Roger.
Glycerine .	· ·			42.20 25.18 13.87 8.30	2.8 8.1 14.3 20.3	Schottner. "
"	• •			4.94	26.5	u
Glycerine and water """" """	 		94.4 6 80.31 64.05 49.79	7-437 1.021 0.222 0.092	8.5 8.5 8.5 8.5	65 66 66 66
Glycol				0.0219	0.0	Arrhenius.
Menthol, solid . " liquid .	 	:		209 X 10 ¹⁰ 0.069	14.9 34-9	Heydweiller.
Mercury*				0.0184	20 0.0	Koch.
	• •	•		0.0170	20.0	"
	• •	:		0.0122	100.0	"
		:		0.0122	200,0	"
"				0.0093	300.0	66
Meta-cresol				0.1878	20.0	Gartenmeister.
Olive oil				0.9890	1 5.0	Brodmann.
Paraffins: Decane			1	0.0077	22.3	Bartolli & Stracciati.
Dodecane				0.0126	23.3	66 66
Heptane				0.0045	24.0	se 66
Hexadecane		•		0.0359	22.2	4L 4L
Hexane				0.0033	23.7	4e 44
Nonane		•		0.0062	22.3	66 66
Octane				0.0053	22.2	44 64
Pentane		:		0.0026	21.0	£6 65
Pentadecane				0.0281	22.0	66 66
Tetradecane				0.0213	21.9	46 66
Tridecane				0.0155	23.3	** **
Undecane		•		0.0095	22.7	5L 6L
Petroleum (Caucasian)		•		0.0190	17.5	Petroff.
Phenol	· ·	•		0.127	18.3	Scarpa.
Rape oil	•••	:		25.3 3.85	0.0 I0.0	O. E. Meyer.
				1.63	20.0	66 66
	• •	•		0.96	30.0	
		_				

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. units.

*Calculated from the formula $\mu = .017 - .000066t + .00000021t² - .0000000025t⁸ (vide Koch, Wied. Ann. vol. 14, p. 1881).$

TABLE 118.

VISCOSITY.

This table gives the viscosity of a number of liquids together with their temperature variation. The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.*

			Ter	mperature	e Centigra	de.			ė
Liquid.								!	Reference.
Liquiti	0 ⁰	10 ⁰	20 ⁰	30 ⁰	40 ⁰	50 ⁰	70 ⁰	90 ⁰	Ref
Acetates: Methyl	-	.0046	.0041	.0036	.0032	.0030	[-	1
Ethyl	-	.0051	.0044	.0040	.0035	.0032	i - 1	1 - 1	I
Propyl	-	.0066	.0059	.0052	.0044	.0039	1 - 1	1 - 1	I
Allyl	1 - 1	.0068	.0061	.0054	.0049	.0044	-		I
Amyl	-	.0106	.0089	.0077	.0065	.0058		(<u> </u>	
Acids: Formic	1 - 1	.02262	.01804	.01465	.01224	.01025	(I)	(<u> </u>	I
Acetic	_	.0150	.0126	.0109	.0094 .0081		(I)	i I I	3
Propionic "		.0125	.0107 .0118	.0092 .0101	.0091	.0073	i I 1	_	JI
Duturia		.0139	.0163	.0136	.0091	.0102	1 - 1	(<u> </u>	2
Butyric Valeric	1 []	.0196	.0103	.0130	.0115	.0102	1 - 1	i _ !	3
Salicylic	1 []	.0271	.0220	.0222	.0155	.0127	1 _ 1	1 – 1	3
Alcohol : Methyl	.00813	.0320 .00686		.00515	.00450	.00396	1 - 1	i – I	4
Ethyl	.01770	.01449		.00990	.00828	.00698	.00504	i – 1	4
Propyl	.03882	.01449	.02255	.01778	.01403	.01128	.00757	.00526	4
Butyric	.03002	.03872	.02947	.02266	.01780	.01409	.00926	.00633	4
Allyl	.02144	.01703	.01361	.01165	.00911	.00760	.00548	.00407	4
Isopropyl	.04564	.03245	.02369	.01755	.01329	.01026	.00642	- 1	4
Isobutyl	.08038	.05547	.03906	.02863	.02121	.01609	.00973	.00633	4
Amyl (opinac.)	.08532	.06000	.04341	.03206	.02414	.01849	.01147	.007 58	4
Aldehyde	.00267	.00244	.00222	[` _		-	- · ·	- 1	
Aniline		- · · ·	.0440	.0319	.0241	.0189	i – 1	(-)	3 5
Benzole	.00902	.007 59	.00649	.00562	.00492	.00437	.00351	i – I	4
Bromides : Ethyl	.00478	.00432	.00392	.00357	- 1	-	-	i - 1	4
Propyl	.00645	.00575	.00517	.00467	.00425	.00388	.00328	i - 1	4
Allyl	.00619	.00552	.00496	.00449	.00410	.00374	.00316	(-)	4
Ethylene	.02435	.02035	.01716		.01 280	.01124	.00895	.00733	4
Carbon bisulphide	.00429	.00396	.00367	.00342	.00319		i • 1	i - 1	4 6
Carbon dioxide (liq.)	.00099	.00085		1 - 1		- 1	, -)	i – I	
Chlorides : Propyl	.00436	.00390	.00352	.00319	.00291	-	i - 1	i — I	4
Allyl	.00402	.00358	.00322	1 - 1	6.6		- I	(-	4
Ethylene	.01128	.00961	.00833	.00730	.00646	.00576	.00470	(-)	4
Chloroform	.00700	.00626		.00511	.00466	.00390	1	- 1	4
Ether		.0026	.0023 .00666	.0021	1				I
Ethylbenzole	.00874	.00758	1 9	1 22	.00529	.00477	.00394	.00330	4
Ethylsulphide	.00559	.00496		.00401 .00446	.00363	.00331	.00279	.00237	4
Iodides : Methyl Ethyl	.00594	.00536 .00645	.00487	.00440	.00409	.00444	.00378	i [`]	1
Propyl	.00938	.00045		.00530	.00404	.00444	.00378	.00387	
Allyl	.00930	.00819			.00598	.00534	.00450	.00387	4
Metaxylol	.00930			.00547	.00300	.00534	.00440	.00301	4
Nitrobenzene	_		.0203	.0170	.0144	.0124		1.003-31	4 1
Paraffines : Pentane	.00283	.00256		.00212			I _ !	- 1	4
Hexane	.00396			.00290	.00264	.00241	.00221	_ !	4
Heptane	.00519			.00369	1 1	1 1	.00253	.00214	4
Octane	.00703	1 1		.00478		.00386	.00318	.00266	4
Isopentane	.00273	-	55	.00204	-	<u> </u>	<u> </u>	- 1	4
Isohexane	.00371					.00226	_	_ '	4
Isoheptane	.00477						.00235	.00200	4
Propyl aldehyde	- 1	.0047	.0041	.0036	.0033	-	-		i
Toluene	.00768	.00668	.00586			.00420	.00348	.00292	4
I					<u> </u>			<u> </u>	

1 Pribram-Handl, Wien. Ber. 78, 1878, 80, 1879, 84, 1881.

1897; Proc. Roy. Soc. 55, 1894, 60, 1896; Jour. Chem. Soc. 71, 1897; Chem. News, 75, 1897. 5 Wijkander, Wied. Beibl. 3, 1879. 6 Warburg-Babo, Wied. Ann. 77, 1882.

2 Gartenmeister, Zeitschr. Phys. Chem. 6, 1890. 3 Rellstab, Diss. Bonn, 1868. 4 Thorpe-Roger, Philos. Trans. 185 A, 1894, 189 A,

* Calculated from the specific viscosities given in Landolt & Börnstein's Pbys. Chem. Tab. For inorganic acids, see Solutions.

VISCOSITY OF SOLUTIONS.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity \times 100 is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
BaCl ₂ "	7.60 15.40 24.34	- - -	77.9 86.4 100.7	10 "	44.0 56.0 66.2	30 "	35.2 39.6 47.7	50 "	- -	·	Sprung. "
Ba(NO ₈)2 "	2.98 5.24	1.027 1.051	62.0 68.1	15 "	51.1 54.2	25 "	42.4 44.1	35	34.8 36.9	45 "	Wagner.
CaCl ₂ "	15.17 31.60 39.75 44.09		1 10.9 272.5 670.0 –	10 " "	71.3 177.0 379.0 593.1	30 " "	50.3 124.0 245.5 363.2	50 " "	-	1 1 1	Sprung. " "
Ca(NO ₈) ₂ "	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15 "	74.6 112.7 217.1	25 "	60.0 90.7 156.5	3 <u>5</u> "	49.9 7 5.1 1 28.1	45 "	Wagner. "
CdCl ₂ "	11.09 16.30 24.79	1.109 1.181 1.320	77.5 88.9 104.0	15 "	60.5 70.5 80.4	25 "	49.1 57.5 64.6	35 "	40.7 47.2 53.6	45 "	66 66 66
Cd(NO ₈) ₂ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15 "	50.1 58.7 69.0	25 "	41.1 48.8 57·3	35 "	34.0 41.3 47.5	45 "	66 66 66
CdSO ₄ "	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15 "	61.8 72.4 91.8	25 "	49.9 58.1 73.5	35 "	41.3 48.8 60.1	45 "	66 66 66
CoCl ₂ "	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15 "	65.1 85.1 126.6	25 "	53.6 73.7 101.6	35 "	44.9 58.8 85.6	45 "	" "
Co(NO ₈)2 "	8.28 1 5.96 24.53	1.073 1.144 1.229	74.7 87.0 110.4	15 "	57.9 69.2 88.0	25 "	48.7 55.4 71.5	35 "	39.8 44.9 59.1	45 "	"
CoSO4 "	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 "	68.7 95.5 146.2	25 "	55.0 76.0 113.0	35 "	45.1 61.7 89.9	45 "	در در در
CuCl ₂ "	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	15 "	67.8 95.8 137.2	25 "	55.1 77.0 107.6	3 <u>5</u> "	45.6 63.2 87.1	45 "	۵۵ ۵۵ ۵۵
Cu(NO ₈) ₂ "	18.99 26.68 46.71	1.177 1.264 1.536	97.3 126.2 382.9	15 "	76.0 98.8 283.8	25 "	61.5 80.9 215.3	35 "	51.3 68.6 172.2	45 "	66 66
CuSO ₄ "	6.79 1 2.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	15 "	61.8 74.0 96.8	25 "	49.8 59·7 75·9	35 "	41.4 52.0 61.8	45 "	66 66 68
HC1 "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	15 "	57.9 66.5 79.9	25 "	48.3 56.4 65.9	3 <u>5</u> "	40.1 48.1 56.4	45 "	66 66 66
HgCl ₂ "	0.23 3·55	1.002 1.033	- 76.75	- 10	58.5 59.2	20 "	46.8 46.6	30 "	38.3 38.3	40 "	"

TABLE 119 (continued).

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	1	μ.	t	μ	ŧ	μ	t	Authority.
HNO ₈ "	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15 "	54.8 57.3 65.5	25 "	45·4 47·9 54·9	3 <u>5</u> "	37.6 40.7 46.2	45 "	Wagner. "
H ₂ SO ₄ "	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15 "	61.0 75.0 95.5	25 "	50.0 60.5 77 .5	35 "	41.7 49.8 64.3	45 "	66 66 66
KC1 "	10.23 22.21	-	70.0 70.0	10 "	46.1 48.6	30 "	33.1 36.4	50 "	-	-	Sprung. "
KBr "	14.02 23.16 34.64	-	67.6 66.2 66.6	10 "	44.8 44.7 47.0	30 *	32.1 33.2 35.7	50 "			66 66 66
KI " "	8.42 17.01 33.03 45.98 54.00	-	69.5 65.3 61.8 63.0 68.8	10 " "	44.0 42.9 42.9 45.2 48.5	30 * * * *	31.3 31.4 32.4 35.3 37.6	50 " "		1111	66 66 66 66
KClO ₈	3.51 5.69	-	71.7 -	10 "	44.7 45.0	30 "	31.5 31.4	50 "	=	-	61 66
KNO8 "	6.32 12.19 17.60	-	70.8 68.7 68.8	10 "	44.6 44.8 46.0	30 "	31.8 32.3 33.4	50 "			66 66
K ₂ SO ₄	5.17 9.77	-	77.4 81.0	10 "	48.6 52.0	30 "	34.3 36.9	50 "	-	~	66 64
K ₂ CrO ₄ "	11.93 19.61 24.26 32.78	- 1.233	75.8 85.3 97.8 109.5	10 " "	62.5 68.7 74-5 88.9	30 "	41.0 47.9 54.5 62.6	40 " "			" Slotte. Sprung.
K ₂ Cr ₂ O ₇	4.71 6.97	1.032 1.049	72.6 73.1	10 "	55.9 56.4	20 "	45.3 45.5	30 "	37.5 37.7	40 "	Slotte. "
LiCl "	7.76 13.91 26.93		96.1 121.3 229.4	10 "	59.7 75.9 142.1	30 "	41.2 52.6 98.0	50 "			Sprung. "
Mg(NO ₃) ₂ "	18.62 34.19 39.77	1.102 1.200 1.430	99.8 213.3 317.0	15 "	81.3 164.4 250.0	25 "	66.5 132.4 191.4	35 "	56.2 109.9 158.1	45 "	Wagner. "
MgSO4 "	4.98 9.50 19.32		96.2 1 30.9 302.2	10 "	59.0 77.7 166.4	30 "	40.9 53.0 106.0	50 "	. <u>-</u> -	1 1	Sprung. "
MgCrO4 "	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10 "	84.8 125.3 172.6	20 "	67.4 99.0 133.9	30 "	55.0 79.4 106.6	40 "	Slotte. "
MnCl ₂ " "	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 1 30.9 2 56.3 5 37 • 3	15 " "	71.1 104.2 193.2 393.4	25 " "	57.5 84.0 155.0 300.4	35 "	48.1 68.7 123.7 246.5	45 "	Wagner. " "

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	ŧ	μ	t	μ	ŧ	Authority.
Mn(NO ₈)2 "	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 396.8	15 "	76.4 126.0 301.1	25 "	64.5 104.6 221.0	35 "	55.6 88.6 188.8	45 "	Wagner. "
MnSO ₄ "	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	15 "	98.6 172.2 474-3	25 "	78.3 137.1 347.9	35 "	63.4 107.4 266.8	45 "	« «
NaCl "	7.95 14.31 23.22	- - -	82.4 94.8 128.3	10 " "	52.0 60.1 79·4	30 "	31.8 36.9 47.4	50 "	-	-	Sprung. "
NaBr "	9.77 18.58 27.27	-	7 5.6 82.6 95.9	10 " "	48.7 53.5 61.7	30 "	34·4 38·2 43.8	50 "		- - -	66 66 66
Nal " "	8.83 17.15 35.69 55.47		73.1 73.8 86.0 157.2	10 " "	46.0 47·4 55·7 96·4	30 " "	32.4 33.7 40.6 66.9	50 "	-		66 66 66
NaClO ₈ "	11.50 20.59 33.54	=	78.7 88.9 121.0	10 "	50.0 56.8 75·7	30 "	35·3 40.4 53·0	50 "			66 66
NaNO8 "	7.25 12.35 18.20 31.55		75.6 81.2 87.0 121.2	10 "	47.9 51.0 55.9 76.2	30 "	33.8 36.1 39.3 53.4	50 "			66 66 66 66
Na2SO4 " "	4.98 9.50 14.03 19.32		96.2 130.9 187.9 302.2	10 " "	59.0 77.7 107.4 166.4	30 "	40.9 53.0 71.1 106.0	"			66 66 66 66
Na ₂ CrO ₄ "	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 1 <i>2</i> 7.5	"	66.6 79.3 97.1		53·4 63·5 77·3		43.8 52.3 63.0	40 "	Slotte. "
NH4Cl " "	3.67 8.67 1 5.68 23.37		71.5 69.1 67.3 67.4	"	45.0 45.3 46.2 47.7	66	31.9 32.6 34.0 36.1			-	Sprung. " "
NH₄Br "	1 5.97 2 5.33 36.88	Ē	65.2 62.6 62.4	"	43.2 43·3 44·6	1 "	31.5 32.2 34·3	1	– – –		66 66
NH4NO3 " "	5.97 12.19 27.08 37.22 49.83		69.6 66.8 67.0 71.7 81.1	66 66	44-3 44-3 47-7 51.2 63-3	- 46 - 66 - 66	31.6 31.9 34.9 38.8 48.9	44 44 44			66 66 66 66
(NH4)2SO4 "	8.10 15.94 25.51		107.9 120.2 148.4	"	52.3 60.4 74.8	. "	37.0 43.2 54.1	2 "	-	-	66 66 66

TABLE 119 (continued).

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	<u>"</u>	t	μ	t	μ	t	μ	ź	Authority.
(NH ₄) ₂ CrO ₄ "	10.52 19.75 28.04	1.063 1.120 1.173	79.3 88.2 101.1	10 "	62.4 70.0 80.7	20 "	- 57.8 60.8	- 30 "	42.4 48.4 56.4	40 - -	Slotte. "
(NH ₄) ₂ Cr ₂ O ₇ ""	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10 "	56.3 57.2 58.8	20 "	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40 "	" "
NiCl ₂ "	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15 "	70.0 109.7 171.8	25 "	57.5 87.8 139.2	3 <u>5</u> "	48.2 72.7 111.9	45 "	Wagner. "
Ni(NO ₃) ₂ "	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	15 "	70.1 105.9 169.7	25 "	57.4 85.5 128.2	35 "	48.9 70.7 152.4	45 "	а ((((
NiSO4 "	10.62 18.19 25.35	1.092 1.198 1.314	94.6 1 54.9 298.5	15 "	73.5 119.9 224.9	25 "	60.1 99.5 173.0	35 "	49.8 75.7 152.4	45 "	а и и
Pb(NO ₈) ₂	17.93 32.22	1.179 1.362	74.0 91.8	15 "	59.1 72.5	25 "	48.5 59.6	35	40.3 50.6	45 4	"
Sr(NO ₃)2 "	10.29 21.19 32.61	1,088 1.124 1.307	69.3 87.3 116.9	15 "	56.0 69.2 93.3	25 "	45.9 57.8 76.7	35 "	39.1 48.1 62.3	45 "	
ZnCl ₂ "	15.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	15 "	72.7 86.6 117.9	25 "	57.8 69.8 90.0	325 "	48.2 57.5 72.6	45 "	14 44 44
Zn(NO ₈)2 "	1 5.95 30.23 44.50		80.7 104.7 167.9	15 "	64.3 85.7 130.6	25 "	52.6 69.5 105.4	35 "	43.8 57.7 87.9	45 "	66 66 68
ZnSO4 "	7.12 16.64 23.09		97.1 156.0 232.8	15 "	79.3 118.6 177.4	25 "	62.7 94.2 135.2	3 <u>5</u> "	51.5 73.5 108.1	45 "	46 44 44

TABLE 120.

SPECIFIC VISCOSITY.*

	Normal solution.		1 nor	mal.	‡ normal.		‡ nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$\begin{array}{cccc} Acids: Cl_2O_3 & . & . \\ HCl & . & . \\ HClO_3 & . & . \\ HNO_3 & . & . \\ H_2SO_4 & . & . \end{array}$	1.0562 1.0177 1.0485 1.0332 1.0303	1.012 1.067 1.052 1.027 1.090	1.0283 1.0092 1.0244 1.0168 1.0154	1.003 1.034 1.025 1.011 1.043		1.000 1.017 1.014 1.005 1.022	1.0074 1.0025 1.0064 1.0044 1.0035	0.999 1.009 1.006 1.003 1.008	Reyher. " " Wagner.
Aluminium sulphate Barium chloride " nitrate Calcium chloride . " nitrate	1.0550 1.0884 - 1.0446 1.0596	1.406 1.123 - 1.156 1.117	1.0278 1.0441 1.0518 1.0218 1.0300	1.178 1.057 1.044 1.076 1.053	1.0138 1.0226 1.0259 1.0105 1.0151	1.082 1.026 1.021 1.036 1.022	1.0068 1.0114 1.0130 1.0050 1.0076	1.038 1.013 1.008 1.017 1.008	66 66 66 66
Cadmium chloride . " nitrate . " sulphate . Cobalt chloride . " nitrate . " sulphate .	1.0779 1.0954 1.0973 1.0571 1.0728 1.0750	1.134 1.165 1.348 1.204 1.166 1.354	1.0394 1.0479 1.0487 1.0286 1.0369 1.0383	1.063 1.074 1.157 1.097 1.075 1.160	1.0197 1.0249 1.0244 1.0144 1.0184 1.0193	1.031 1.038 1.078 1.048 1.032 1.077	1.0098 1.0119 1.0120 1.0058 1.0094 1.0110	1.020 1.018 1.033 1.023 1.018 1.040	64 66 64 64 64 84
Copper chloride " nitrate " sulphate . Lead nitrate Lithium chloride . " sulphate .	1.0624 1.0755 1.0790 1.1380 1.0243 1.0453	1.205 1.179 1.358 1.101 1.142 1.290	1.0313 1.0372 1.0402 0.0699 1.0129 1.0234	1.098 1.080 1.160 1.042 1.066 1.137	1.0158 1.0185 1.0205 1.0351 1.0062 1.0115	1.047 1.040 1.080 1.017 1.031 1.065	1.0077 1.0092 1.0103 1.0175 1.0030 1.0057	1.027 1.018 1.038 1.007 1.012 1.032	65 66 66 86 86 86 86 86
Magnesium chloride " nitrate . " sulphate Manganese chloride " nitrate . " sulphate	1.0512	1.201 1.171 1.367 1.209 1.183 1.364	1.0188 1.0259 1.0297 1.0259 1.0349 1.0365	1.094 1.082 1.164 1.098 1.087 1.169	1.0091 1.0130 1.0152 1.0125 1.0174 1.0179	1.044 1.040 1.078 1.048 1.043 1.076	1.0043 1.0066 1.0076 1.0063 1.0093 1.0087	1.021 1.020 1.032 1.023 1.023 1.023	и и и и
Nickel chloride " nitrate " súlphate Potassium chloride . " chromate " nitrate . " sulphate	1.0591 1.0755 1.0773 1.0466 1.0935 1.0605 1.0664	1.205 1.180 1.361 0.987 1.113 0.975 1.105	1.0308 1.0381 1.0391 1.0235 1.0475 1.0305 1.0338	1.097 1.084 1.161 0.987 1.053 0.982 1.049	1.0144 1.0192 1.0198 1.0117 1.0241 1.0161 1.0170	1.044 1.042 1.075 0.990 1.022 0.987 1.021	1.0067 1.0096 1.0017 1.0059 1.0121 1.0075 1.0084	1.021 1.019 1.032 0.993 1.012 0.992 1.008	66 66 66 66 66 66 66
Sodium chloride "bromide "chlorate . "nitrate Silver nitrate	1.0401 1.0786 1.0710 1.0554 1.1386	1.097 1.064 1.090 1.065 1.058	1.0208 1.0396 1.0359 1.0281 1.0692	1.047 1.030 1.042 1.026 1.020	1.0107 1.0190 1.0180 1.0141 1.0348	1.024 1.015 1.022 1.012 1.006	1.0056 1.0100 1.0092 1.0071 1.0173	I.013 I.008 I.012 I.007 I.000	Reyher. " " Wagner.
Strontium chloride . " nitrate . Zinc chloride " nitrate " sulphate	1.0676 1.0822 1.0590 1.0758 1.0792	1.141 1.115 1.189 1.164 1.367	1.0336 1.0419 1.0302 1.0404 1.0402	1.067 1.049 1.096 1.086 1.173	1.0171 1.0208 1.0152 1.0191 1.0198	1.034 1.024 1.053 1.039 1.082	1.0084 1.0104 1.0077 1.0096 1.0094	1.014 1.011 1.024 1.019 1.036	66 66 66 66

* In the case of solutions of salts it has been found (*vide* Arrhennius, Zeits. für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1^n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and *x* the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 23° C.

TABLES 121-122.

TABLE 121.-VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 10⁶ times the coefficients of viscosity in C. G. S. units.

Substance.	Temp. ° C.	μ.	Refer- ence.	Substance.	Temp. °C.	μ.	Refer- ence.		
Substance. Acetone . Air . " .	18.0 -21.4 0.0 15.0 99.1 182.4 302.0 66.8 78.4 97.4 82.9 108.4 82.9 0.0 20.0 20.0 14.7 17.9 99.7 183.7 19.0 10.0 16.9	78. 163.9 173.3 180.7 220.5 299.3 135. 142. 142. 143. 143. 143. 143. 143. 143. 144. 160. 96. 108. 210.4 220.8 224.1 273.3 322.1 79. 118.		Substance. Chloroform . " Ether Ethyl iodide . Helium . " Hydrogen . " . Mercury . " . Methane . " . Methane . " . Chloroform . " . " . " . " . " . " . " . "	° C. 0.0 17.4 61.2 0.0 16.1 36.5 72.3 0.0 15.3 60.6 15.0 184.6 -20.6 184.6 -20.6 184.6 184.6 270.0 300.0 330.0 330.0 330.0 330.0 300.0 24.0	4. 95-9 102.9 189.0 68.9 73-2 79.3 216.0 189.1 196.9 234.8 269.9 81.9 88.9 105.9 121.5 139.2 489.* 532.* 532.* 527.* 627.* 627.* 120.1 232.	ence. I 3 1 4 3 5 4 4 3 2 4 3 2		
dioxide dioxide dioxide monoxide Chlorine dioxid	-20.7 15.0 99.1 182.4 302.0 0.0 20.0 0.0 20.0	92.4 129.4 145.7 186.1 222.1 268.2 163.0 184.0 128.7 147.0	1 2 " " " 4 "	Water vapor	15.0 302.0 -21.5 10.9 53.5 15.4 53.5 0.0 16.7 100.0	105.2 213.9 156.3 170.7 189.4 195.7 215.9 90.4 96.7 132.0	2 7 4 1 1 9		
I Pulnj, Wien. Ber. 69, (2), 1874. 6 Schumann, Wied. Ann. 23, 1884. 2 Breitenbach, Ann. Phys. 5, 1901. 7 Obermayer, Wien. Ber. 71, (2a), 1875. 3 Steudel, Wied. Ann. 16, 1882. 8 Koch, Wied. Ann. 14, 1881, 19, 1883. 4 Graham, Philos. Trans. Lond. 1846, III. 9 Meyer-Schumann, Wied. Ann. 13, 1881.									

* The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\mu = 489 [r + 746 (t-270)]$.

TABLE 122. - VISCOSITY OF AIR. 20.2°C.

Holman, Phil. Mag. 1886	1.810 × 10-4	Markowski, ditto. 1904	1.835×10-4
Fischer, Phys. Rev. 1909	1.807	Tanzler, Ver. D. Phys. G. 1906	1.836
Grindlay, Gibson, Pr. Roy. Soc.		Tomlinson, Phil. Trans. 1886	1.811
1908	1.809		1.812
Rankine, ditto. 1910	1.814		1.812
Rapp, unpublished	1.810	Hogg, Am. Acad. Proc. 1905	1.808
Breitenbach, Wied. Ann. 1899	1.833	Gilchrist	1.812
Schultze, Ann. der Phys. 1901	1.837		

The viscosity of air at 20.2° may be taken as 1.812×10^{-4} within a probable error of less than 0.2 per cent. Its variation with the temperature may be obtained from Holman's formula = 1715.50×10^{-7} (1 + 0.00275t - 0.0000034t²). See Phys. Rev. 1913, p. 124, where full references may be obtained.

TABLE 123.

COEFFICIENT OF VISCOSITY OF GASES.

Temperature Coefficients.

If μ_t = the viscosity at t^o C, μ_o = the vicosity at o^o, a = the coefficient of expansion, β , γ , and n = coefficients independent of t, then

(1)
$$\mu_{\ell} = \mu_{0}(1 + \alpha \ell)^{n}$$
. (Meyer, Obermayer, Puluj, Breitenbach.)
(II) $= \mu_{0}(1 + \beta \ell)$. (Meyer, Obermayer.)
(III) $= \mu_{0}(1 + \alpha \ell)^{\frac{1}{2}}(1 + \gamma \ell)^{2}$. (Schumann.)
(IV) $= \mu_{0}\frac{1 + \frac{C}{273}}{1 + \frac{C}{T}}\sqrt{1 + \frac{t}{273}}$. (Sutherland.)

Gas.	µ0107.	α.	Constants.	Range ° C.	Refer- ence.				
Air* " " Argon. Argon. " " Benzole Carbon dioxide "	- 1733.1 1811. 2208. 2733. 698.4 1387.9 1497.2 1382.1 1625.2 689. 961.3 922.2 889.03 - 1969. 2348. 857.4 - 1625.6 1353.3 -	0.003665 .003665 - - - .004 - .003701 .003701 .003665 .003665 .003665 .003665 .003665 .003665 .003719 -	$n = 0.77$ $C = 119.4$ $n = 0.7675$ $n = 0.7544$ $n = 0.7544$ $n = 0.7544$ $n = 0.7544$ $r = 0.7544$ $n = 0.7544$ $r = 0.8119$ $r = 0.00185$ $C = 239.7$ $r = 0.00385$ $C = 239.7$ $r = 0.00385$ $\beta = 0.003485$ $n = 0.941$ $\beta = 0.002695$ $n = 0.941$ $\beta = 0.003505$ $n = 0.942$ $r = 0.68125$ $r = 0.9225$ $n = 0.68125$ $r = 0.72.2$ $n = 1.6$ $\beta = 0.002695$ $r = 0.738$ $\beta = 0.003455$ $r = 0.929$ $n = 0.78225$ $r = 0.929$	0-100 15.0-99.7 99.7-182.9 15-100 14.7-99.7 99.7-183.7 18.7-100 -21.5-53.5 $17.5^{-}53.5$ 0-30.5 -21.5-53.5 15.6-157.3 0-15.0 15.3-99.6 99.6-184.6 -21.5-53.5 -21.5-100.3	1 2 3. 4 4 3 3 5 6 5 7. 8 6 7. 4 3 3 2 4 0 7. 4 3 4 1 0 7. 4				
I Holman, Proc. Amer. Acad. 12, 1876; 21, 1885; Philos. Mag. (5) 3, 1877; 21, 1886. 5 Schumann, Wied. Ann. 23, 1884. Breitenbach, Wied. Ann. 5, 1901. 6 Breitenbach, Ann. Phys. 5, 1901. Schultze, Ann. Phys. (4) 5, 1901. 7 Obermayer, Wien. Ber. 73 (2A), 1876. Rayleigh, Proc. Roy. Soc. 62, 1897; 66, 1900; 67, 1900. 9 Schultze, Ann. 19, 1883.									

* See Table 122 for viscosity of air.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 124.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dt_{x} at the place x, through q sq. cm. of a diffusion cylinder under the influence of a drop of concentration dc/dx, then $dC = -k_{x} dc_{x}$

$$dS = -kq \, \frac{dc}{dx} \, dt.$$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

Substance.	с	t0	k	Refer- ence	Substance.	c	t0	k	Refer- ence.
						0.864	8.5	0.70	
Bromine	0.1	12.	0.8	I	Calcium chloride .	1.22		0.70	4
Chlorine		12.	I.22				9.	0.72	"
Copper sulphate .	"	17.	0.39	2		0.060	9.		
Glycerine	"	10.14	0.357	3		0.047	9.	0.68	
Hydrochloric acid .	"	19.2	2.21	2	Copper sulphate .	1.95	17.	0.23	2
Iodine	"	12.	(0.5)	I	" "	0.95	17.	0.26	
Nitric acid	"	19.5	2.07	2	""	0.30	17.	0.33	"
Potassium chloride .	"	17.5	1.38	2	""	0.005	17.	0.47	
" hydrate .	£ £	13.5	1.72	2	Glycerine	2/8	10.14	0.354	3
Silver nitrate	66	12.	0.985	2	· · · · ·	6/8	10.14	0.345	I 11
Sodium chloride .	66	15.0	0.94	2	" • • •	10/8	10.14	0.329	"
Urea	"	14.8	0.97	3	"	14/8	10.14	0.300	"
Acetic acid	0.2	13.5	0.77	4	Hydrochloric acid .	4.52	11.5	2.93	4
Barium chloride	"	8.	0.66	4	· · · · ·	3.16	11.	2.67	1 1
Glycerine	"	10.1	3.55	3	"",	0.945	11.	2.12	"
Sodium actetate .	"	12.	0.67	5		0.387	11.	2.02	"
" chloride .		15.0	0.94	5	6 6 6 1 1 1 1 1 1 1 1 1 1	0.250	11.	1.84	"
Urea	- 44	14.8	0.969		Magnesium sulphate		5.5	0.28	4
Acetic acid	1.0	12.	0.74	36		0.541	5.5	0.32	"
Ammonia	- 66	15.23	1.54	7		3.23	10.	0.27	"
Formic acid	"	12.	0.97	7		0.402	10.	0.34	64
Glycerine	66	10.14	0.339	1 2	Potassium hydrate .	0.75	12.	1.72	6
Hydrochloric acid .	"	12.	2.09	3		0.49	12.	1.70	
Magnesium sulphate		7.	0.30			0.375	12.	1.70	
Potassium bromide.	64	10.	1.13	4 8	" nitrate .	3.9	17.6	0.89	2
" hydrate .		12.	1.72	6	" "	I.4	17.6	1.10	
Sodium chloride	"	150	0.94	2		0.3	17.6	1.26	"
" "		14.3	0.964		" "	0.02	17.6	1.28	"
" hydrate .	"	12.	1.11		" sulphate	0.95	19.6	0.79	"
" iodide .	66	10.	0.80	8		0.28	19.6	0.86	"
Sugar		12.	0.254			0.05	19.6	0.97	"
Sulphuric acid		12.	1.12	١ŏ		0.02	19.6	1.01	"
Zinc sulphate .	"	14.8	0.236		Silver nitrate .	3.9	12.	0.535	"
Acetic acid	2.0	12.	0.69	9		0.9	12.	0.88	"
Calcium chloride .	- 66	10.	0.68	8	44 44	0.02	12.	1.035	66
Cadmium sulphate .		19.04			Sodium chloride	2/8	14.33		3
Hydrochloric acid .	"	12,	2.21	9		4/8	14.33	1 ¥	3.
Sodium iodide	"	10.	0.90	8		6/8	14.33	1 16	2
Sulphuric acid .	"	12.	1.16	6		10/8	14.33		"
Zinc acetate	"	18.05				14/8	14.33		
44 EL	"	0.04		· ·	Sulphuric acid	9.85	18.	2.36	2
Acetic acid	3.0	12.	0.68	12		4.85	18.	1.90	i ii
Potassium carbonate	"	10.	0.60	8		2.85	18.	1.60	"
" hydrate.	"	12.	1.89	6		0.85	18.	1.34	"
Acetic acid	4.0	12.	0.66	6		0.35	18.	1.32	.6
Potassium chloride.	14	10.	1.27	8	66 61	0.005		1.30	"
	ł			١Ŭ		1 0.003		130	
I Euler, Wied. Ann. 63, 1897. 5 Kawalki, Wied. Ann. 52, 1894; 59, 1896. 2 Thovert, C. R. 133, 1901; 134, 1902. 6 Arthenius, Zeitschr. Phys. Chem. 10, 1892. 3 Heimbrodt, Diss. Leipzig, 1903. 7 Abegg, Zeitschr. Phys. Chem. 11, 1893. 4 Scheffer, Chem. Ber. 15, 1882; 16, 1883; 8 Schuhmeister, Wien. Ber. 79 (2), 1879. Zeitschr. Phys. Chem. 2, 1888. 9 Seitz, Wied. Ann. 64, 1898.									

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 125.

DIFFUSION OF VAPORS.

	Vapor.				Temp. C.	<i>kt</i> for vapor diffusing into hydrogen.	kt for vapor diffusing into air.	kt for vapor diffusing into carbon dioxide
Acids: Formic					0.0	0.5131	0.1315	0.0879
66					65.4	0.7873	0.2035	0.1343
66					84.9	0.8830	0.2244	0.1519
Acetic	•	•	•	•	0.0	0.4040	0.1061	0.0713
"	•	•	•	•	65.5	0.6211	0.1 578	0.1048
"	•	•	•	•	98.5	0.7481	0.1965	0.1321
Isovale		•	•	•	0.0	0.2118		
150vale		•	•	•	98.0	0.3934	0.0555 0.1031	0.0375 0.0696
	•	•	•	•	9010	0.3934	0.100-	
Alcohols: Met	hyl.	•	•	.	0.0	0.5001	0.1325	0.0880
61	· ·		•	. 1	25.6	0.6015	0.1620	0.1046
•	۰.				49.6	0.6738	0.1809	0.1234
Ethy	1.		•	. 1	0.0	0.3806	0.0994	0.0693
"				.	40.4	0.5030	0.1372	0.0898
**			•	.	66.9	0.5430	0.1475	0.1026
Prop	ovl.			.	0.0	0.31 53	0.0803	0.0577
			•		66.9	0.4832	0.1237	0.0901
"					83.5	0.5434	0.1379	0.0976
Buty	1				0.0	0.2716	0.0681	0.0476
"	• •				99.0	0.5045	0.1265	0.0884
Amy	1				0.0	0.2351	0.0589	0.0422
"	•				99.1	0.4362	0.1094	0.0784
Hex	v1 ·	•	•	•	0.0	0.1998	0.0499	0.0351
"	yr .	:	:	:	99.0	0.3712	0.0927	0.0651
	·	•	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_
Benzene .			•		0.0	0.2940	0.0751	0.0527
"					19.9	0.3409	0.0877	0.0609
" .		•	•	•	45.0	0.3993	0.1011	0.0715
	1.2.				0.0	0.3690	0.0883	0.0629
Carbon disulph	iae .	•	•	•		0.4255	0.1015	0.0726
"	•	•	•	•	19.9	0.4626	0.1120	0.0789
	•	•	•	·	32.8	0.4020	0	
Esters : Methy	l acetate	э.			0.0	0.3277	0.0840	0.0557
2000101 2.20011y	"				20.3	0.3928	0.1013	0.0679
Ethyl	**				0.0	0.2373	0.0630	0.0450
	"				46.1	0.3729	0.0970	0.0666
Methu	l butyra	te.			0.0	0.2422	0.0640	0.0438
"					92.1	0.4308	0.1139	0.0809
Ethyl	"		-		0.0	0.2238	0.0573	0 .0406
Etilyi "	"		-		96.5	0.4112	0.1064	0.07 56
	valerate				0.0	0.2050	0.0505	0.0366
66	"		•	•	97.6	0.3784	0.0932	0.0676
							0.0777	0.0552
Ether .		•	•	•	0.0	0.2960	0.0775	0.0636
"	• •	•	•	•	19.9	0.3410	0.0893	0.0030
					0.0	0.6870	0.1980	0.1310
Water .	• •	•	•	•	E	1.0000	0.2827	0.1811
"•••	• •	•	•	•	49·5 92·4	1.1794	0.3451	0.2384
"		•	•	•	94.4	1/ 24		1 .

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.*

* Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at 0° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{76}{9}$, where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $-CO_2$, n = 1.968; $CO_2 - N_2O$, n = 2.05; $CO_2 - H$, n = 1.742; CO - O, n = 1.785; H - O, n = 1.755; O - N, n = 1.792. Winkelmann's results, as given in the above table, seem to give about a for vapors diffusing into air, hydrogen or carbon dioxide.

TABLES 126-127.

DIFFUSION OF GASES, VAPORS, AND METALS.

TABLE 126. - Coefficients of Diffusion for Varions Gases and Vapors.*

* Compiled for the most part from a similar table in Landolt & Börnstein's Phys. Chem. Tab.

TABLE 127. - Diffusion of Metals into Metals.

 $\frac{dv}{dt} = k \frac{d^2 v}{dx^2}$; where x is the distance in direction of diffusion; v, the degree of concentration of in grams diffusing metal; t, the time; k, the diffusion constant = the quantity of metal in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm. thick.

Diffusing Metal.	Dissnlving Metal.	Tempera- ture ° C.	k.	Diffusing Metal.	Dissolving Metal.	Tempera- ture ⁰ C.	k.
Gold " " " " Silver	Lead . " . " . Bismuth Tin "	555 492 251 200 165 100 555 555 555	3.19 3.00 0.03 0.008 0.0002 4.52 4.65 4.14	Platinum. Lead Rhodium. Tin Lead Zinc Sodium. Potassium Gold	Lead . Tin . Lead . Mercury " " " "	492 555 550 15 15 15 15 15 15	1.69 3.18 3.04 1.22* 1.0* 1.0* 0.45* 0.40* 0.72*

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896. * These values are from Guthrie.

TABLE 128.

SOLUBILITY OF INORGANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the *anhydrous* salt soluble in 1000 grams of water at the given temperatures.

Solt				Temper	rature Ce	entigrade	•			
Sait.	0 ⁰ 10	° 20°	30 ⁰	40 ⁰	50 ⁰	60 ⁰	70 ⁰	800	900	1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1150 160 313 32 30 - 26 2 111 316 315 50 595 6 405 4 1614 17.4 93 12 1671 17.5 818 - 744 8 156 2 433 0 589 60 500 2 225 2 1279 13 285 3 333 2 970 10 7 2 127 12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30° 2700 404 84 91 - 382 116 1010 565 1973 339 1841 - 255 - 330 841 - 140 373 101 650 - 390 1523 458 1260 14 130 129	40° 3350 457 - 124 40 408 142 1153 6500 2080 2080 2080 295 - 402 96 760 1170 295 - 402 96 760 145 6570 295 - 402 96 760 145 809 145 809 1598 145 809 1598 145 809 1598 145 145 1598 1598 145 1598 1598 145 1598 1598 1457 1598 1598 1457 1598 1458 145 15988 1598 1598 1598 1598 1598 1598 1598 1598	50^{0} 4000 521 - 159 - 436 171 - 935 2185 644 1949 - 336 820 3151 486 117 - 336 820 3151 486 117 - 1210 420 1210 420 197 690 - 522 1680 855 1400 2165 133	60° 4700 591 248 211 62 464 203 1368 940 2290 838 1999 1791 390 - - 550 139 860 1270 455 200 710 505 600 1260 1260 1270 139 800 1270 1260 1270 139 800 1270 1260 1270 139 800 1270 139 800 1270 1260 1270 139 800 1270 1260 1270 105 1260 1260 1270 1260 1260 1270 1260	70° 5500 - 270 - 494 236 1417 950 2395 1070 2050 - 457 - 560 173 325 730 - 1380 1480 1380 1580 198 144	80° 6500 731 - 352 270 1470 960 2103 2078 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 5258 535 1040 510 510 243 395 510 243 395 510 243 395 510 243 395 510 243 395 510 510 510 510 510 510 510 51	900 7600 808 - - - 556 306 1527 - 2601 1630 2149 - 430 371 - 1470 - 538 475 771 - 2010 2040 168 - - - - - - - - - - - - -	100 ⁰ 9100 891 1540 - 157 588 342 1590 1030 2705 1970 2203 735 1060 5357 - 540 1050 1566 566 560 791 1050 1050 2460 1780 558 566 566 566 566 566 566 566
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	408 44 297 3, 119 1 1183 - 706 7, 795 8, - 711 12 204 20 356 3, 820 8, 317 55 1630 175	16 – 26 214 53 335 57 358 50 990 52 900	409 453 414 270 2418 780 - 39 409 435 360 - 1970 111	456 - 458 - 2970 810 1058 - (1aq) 363 1235 960 2200 127	- 504 504 - 3540? 844 1160 105 - 475 367 - 1050 2480 145	- 550 552 - 4300? 880 1170 200 - 464 371 1470 1150 2830 164	- 596 602 - 5130? 916 - 244 - 458 375 - 3230	- 642 656 - 5800 953 1185 314 - 452 380 1750 1240 380	- 689 713 7400 992 - 408 - 452 385 - -	738 773 8710 1033 1205 523 - 452 391 2040 1260 4330
NaHCO8 Na2HPO4 NaI NaNO8		39 93 90 1790	241 1900 962	639 2050 1049	2280 1140	2570 1246	949 - 1360	2950 1480	- 1610	988 3020 1755

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

SOLUBILITY OF SALTS AND CASES IN WATER.

TABLE 128 (concluded) - Solubility of Inorganic Salts in Water ; Variation with the Temperature.

The numbers give the number of grams of the *anhydrous* salt soluble in 1000 grams of water at the given temperatures.

					[emperation]	ature Ce	ntigrade	*			
Salt.	°°	10 ⁰	20 ⁰	30 ⁰	40 ⁰	500	60 ⁰	70 0	80 ⁰	900	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 420\\ 32\\ 141\\ 50\\ 196\\ 525\\ -272\\ 5\\ 365\\ 770\\ 195\\ 364\\ 442\\ -\\ 395\\ 7\\ -\\ 2\\ 39\\ 27\\ 442\\ 948\\ -\\ 948\\ -\\ \end{array}$	515 39 90 305 610 600 - 6 444 426 426 426 426 426 - 2 62 37 	1090 62 2874 447 700 640 - 8 523 911 5339 108 708 14 - 39 649 - -	1190 99 - 847 680 425 12 607 976 813 535 600 12 876 876 62 - - 5 543 62 -	1290 135 495 495 482 1026 720 15 694 1035 1167 585 667 14 913 30 40 67 209 76 - 2009 76 -	1450 174 - 468 1697 760 502 20 787 1093 1556 631 744 17 926 51 25 8 304 92 - 768	1740 220 - 455 2067 810 548 24 880 1155 2000 674 831 21 940 - 16 10 104 - -	- 255 - 445 - 594 28 977 1214 2510 2510 2510 2510 255 956 - 11 13 695 127 7 ² - 890	31 30 300 - 437 2488 - 632 33 1076 1272 3090 750 924 30 972 - - 6 1110 146 69 - 860	- 429 2542 - 688 - 1174 1331 3750 787 962 34 990 - 20000 165 58 - 920	- 330 427 2660 - 776 48 1270 1389 4520 4520 4520 4520 1389 4520 1389 4520 1389 4520 1389 4520 1389 4520 1011 - - - 4140 - - - - - - - - - - - - - - - - - - -

TABLE 129. - Solubility of a Few Organic Salts in Water; Variation with the Temperature.

Salt.	°0	20 ⁰	20 ⁰	30 ⁰	40 ⁰	50 ⁰	60 ⁰	70 0	800	900	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 28 1150 92 2900 3	53 45 1260 140 - 4	102 69 1390 206 3350 6	1 59 106 1 560 291 - 9	228 162 1760 433 3810 13	321 244 1950 595 18	445 358 2180 783 4550 24	635 511 2440 999 - 32	978 708 2730 1250 5750 45	1 200 - 3070 1 530 - 57	- 1209 3430 1850 7900 69

TABLE 130. - Solubility of Gases in Water; Variation with the Temperature.

The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

Gas.	°0	100	200	30 ⁰	40 ⁰	50 °	60 ⁰	70 ⁰	80 ⁰
$\begin{array}{c} O_2\\ H_2\\ N_2\\ Br_2\\ Cl_2\\ CO_2\\ H_2S\\ NH_3\\ SO_2 \end{array}$	7.10	.0551 .00174 .0230 248. 9.97 2.32 5.30 689. 162.	.0443 .00160 .0189 148. 7.29 1.69 3.98 535. 113.	.0368 .00147 .0161 94. 5.72 1.26 - 422. 78.	.0311 .00138 .0139 62. 4.59 0.97 - 54.	.0263 .00129 .0121 40. 3.93 0.76 - -	.0221 .00118 .0105 28. 3.30 0.58 - - -	.0181 .00102 .0089 18. 2.79 - - - -	.0135 .00079 .0069 11. 2.23 - - - -

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen. SMITHSONIAN TABLES.

TABLE 131.

CdSO48/3H2O at 25° ZnSO4.7H2O at 250 NaCl at 24.050 Mannite at 24.050 Conc. of satd. soln. gs. CdSO4 per roo gs.H₂O Conc. of satd. soln. gs. ZnSO4 per 100 gs. H₂O. of satd. soln. NaCl. per ogs. H₂O. . of satd. soln. . monnite per o gs. H₂O. Percentage change. Percentage chaoge Percentage change. Percentage change Pressure in atmospheres. Conc. (gs. 1 Ioo £ Conc. (gs. 1 roo § 76.80 20,66 I 57.95 35.90 78.01 + 1.81 500 + 1.57 57.87 -0.14 21.14 + 2.32 36.55 57.65 - 0.52 1000 78.84 + 2.68 21.40 + 3.57 37.02 + 3.12 1500 21.64 +4.7237.36 +4.07

CHANCE. OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE.*

* E. Cohen and L. R. Sinnige, Z. physik. Chem. 67, p. 432, 1909; 69, p. 102, 1909. E. Cohen, K. Inouye and C. Euwen, *ibid.* 75, p. 257, 1911. These authors give a critical résumé of earlier work along this line.

.

								_	_		-	
T			Ав	SORP	TION COEFF	ICIENTS, a _t ,	FOR GASI	ES IN	WATE	R.		
Temperatur Centigrade. t		ide.	Carbor monoxid CO		Hydrogen. H	Nitrogen. N	Nita oxic N	de.	03	trous kide. V_2O		Oxygen. O
0 5 10 15 20 25 30 40 50 100		02 01 72 06 	0.0354 .0315 .0282 .0254 .0232 .0214 .0200 .0177 .0161 .0141		0.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608 .01600	0.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195 .01074 .01011	0.07 .06 .05 .05 .04 .04 .03 .03 .03	46 71 15 71 32 51 51	0.8 0.7 0.6	1.048 0.8778 0.7377 0.6294 0.5443 - - - -		.0492 5 .04335 .03852 .03456 .03137 .02874 .02874 .02646 .02316 .02080 .01690
Temperature Centigrade. t	Ai	r.	Ammonia. NH ₃		Chlorine. Cl	Ethylene. $C_{2}H_{4}$	Metha CH		Hydrogen suiphide. H ₃ S			Sul phur lioxide. SO ₃
0 5 10 15 20 25	0.02/ .02 .010 .010 .010	953 955	1174.6 971.5 840.2 756.0 683.1 610.8		3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488 –	0.054 .048 .043 .039 .034 .025	89 67 103 199	3. 3. 3. 2.	37 I 965 586 233 905 604		79·79 67·48 56.65 47·28 39·37 32·79
		A	SORFTIO	v Co	EFFICIENTS,	a _t , for GA	ASBS IN A	сонс	L, C ₂	H₅OH.		
Temperature Centigrade. t	Carbon dioxide. CO ₃	Ethyle C ₂ H			Hydrogen. H	Nitrogea. N	Nitric oxide. NO	oxi	rous de. 20	Hydrog sulphic H ₃ S	le.	Sulphur dioxide. SO ₂
0 5 10 15 20 25	4.329 3.891 3.514 3.199 2.946 2.756	3.59 3.32 3.08 2.88 2.71 2.57	3 .50 6 .40 2 .41 3 .41	226 086 053 028 710 598	0.0692 .0685 .0679 .0673 .0667 .0662	0.1263 .1241 .1228 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659 .2595	3.8 3.9 3.2 3.0	90 38 325 31 5 31 5 31 9	17.8 14.7 11.9 9.5 7.4 5.6	Ś 9 4 1	328.6 251.7 190.3 144.5 114.5 99.8

ABSORPTION OF CASES BY LIQUIDS.*

* This table contains the volumes of different gases, supposed measured at o^o C. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature *t* and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schöofeld, Setschenow, and Winkler. The numbers are io many cases averages from several of these authorities.

NOTE. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

$$\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ a_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

CAPILLARITY.-SURFACE TENSION OF LIQUIDS.*

TABLE 133. - Water and Alcohol in Contact with Air.

Salt in

solution.

BaCl₂

CaCl₂

HCI

44

"

KCl

"

MgCl₂

"

NaCl

66

NH₄Cl

"

SrCl₂

66

"

K₂CO₈

**

 Na_2CO_8

"

KNO₈

66

NaNO₈

"

CuSO₄

 H_2SO_4

"

K₂SO₄

MgSO4

 Mn_2SO_4

"

ZnSO₄ 44

"

TABLE 135 .--- Solutions of Salts in Water, †

Density.

1.2820

1.0497

1.3511

1.2773

1.1190

1.0887

1.0242

1.1699

1.1011

1.1694

1.1932

1.1074

1.0360

1.0758

1.0535 1.0281

1.0400

1.1329

1.0605

1.0283

1.1263

1.0466

1.3022

1.1311

1.1775 1.0276

1.8278

1.4453

1.2636

1.2744

1.0329 1.3981 15-16

1.2830

1.1039

1.0463 15-16 1.2338 15-16

1.0362 15-16

1.3114 15-16

1.1204 15-16

1.0567 15-16

1.3575 15-16 1.1576 15-16

Temp. C.°

15-16

15-16

Ī9

19

20

20

20

15-16

15-16

15-16

20

20

20

16

16

16

15-16

14-15

14-15

14-15

14

14

12

12

15-16

15-16

15

15

15

15-16

15-16

15-16

15-16

1.0744 15-16

1.0360 15-16

1,0680 15-16

1.1119 15-16

Temp.	in dy	Surface tension in dynes per centimeter.		in dy	e tension mes per neter.	Temp.	Surface tension in dynes per cen- timeter.
C.	Water.	Ethyl alcohol.	C.*	Water.	Ethyl alcohol.	с.	Water.
0 ⁰ 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 - -	64.3 63.6 62.9 62.2 61.5 - -

TABLE 134. - Miscellaneons Liquids in Contact with Air.

Liquid	Temp. C.º	Surface tension in dynes per ceo- timeter.	Autbority.
Aceton Acetic acid	16.8 17.0	23.3 30.2	Ramsay-Shields. Average of various.
Amyl alcohol	15.0	24.8	"
Benzole	15.0	28.8	46
Butyric acid	15.0	28.7	"
Carbon disulphide	20.0	30.5	Quincke.
Chloroform	20.0	28.3	Average of various.
Ether	20.0	18.4	"
Glycerine	17.0	63.14	Hall.
Hexane	0.0	21.2	Schiff.
"	68.0	14.2	
Mercury .	18.0	520.0	Average of various.
Methyl alcohol .	15.0	24.7	
Olive oil	20.0	34.7	Maria
Petroleum	20.0	25.9	Magie. Schiff.
Propyl alcohol	5.8	25.9 18.0	30mm. 4
Talual	97.1	29.1	"
	15.0 109.8	18.9	"
Turpentine	21.0	28.5	Average of various.
rupendice			

* This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1800) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1803) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timbero (Wied. Ann. vol. 20).

temperature made by Timberg (Wied. Ann. vol. 30). The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters. † From Volkmann (Wied. Ann. vol. 7, p. 353).

SMITHSONIAN TABLES.

Tension

in dynes

per cm.

81.8

77.5

95.o

90.2

73.6

74.5

75.3 82.8

80.1

78.2

, 90.1 85.2

78.0 85.8

80.5 77.6 84.3

81.7 78.8 85.6

79-4 77.8

90.9 81.8

77.5

79.3 77.8

77.2 78.9

77.6 83.5

80.0

78.6

77.0

79.7

79.7 78.0

77.4 83.2

77.8

79.1

77.3 83.3

80.7 77.8

63.0?

TABLES 136-138.

TENSION OF LIQUIDS. TABLE 136. --- Surface Tension of Liquids.*

					Specific	Surface ter timeter of 1	ision in dyn iquid ia con	es per cen- tact with —
Liquid.				gravity.	Air.	Water.	Mercury.	
Water					1.0	75.0	0.0	(392)
Mercury			•	•	13.543	513.0	392.0	0
Bisulphide of carbon	•		•	•	1.2687	30.5	41.7 26.8	(387)
Chloroform	•	•	•	-	1.4878	(31.8)	-	(415)
Ethyl alcohol	•	•	•	•	0.7906	(24.1)	18.6	364
Olive oil	•	•	•	•	0.9136	34.6 28.8		317
Turpentine	•	•	•	•	0.8867		11.5	241
Petroleum	•	•	•	•	•7977	29.7	(28.9)	271
Hydrochloric acid	•	•	•	•	1.10	(72.9)	-	(392)
Hyposulphite of soda solution	· ·	•	•	•	1.1248	69.9	-	429

TABLE 137. - Surface Tension of Liquids at Solidifying Point.

Subst	ance.		Tempera- ture of solidifi- cation. Cent. ⁰	Surface tension in dynes per centimeter.	Substance.		Tempera- ture of solidifi- cation. Cent. ^o	Surface tension in dynes per centimeter.
Platinum Gold . Zinc . Tin . Mercury Lead . Silver . Bismuth Potassium Sodium	• • • • • •		2000 1200 360 230 40 330 1000 265 58 90	1691 1003 877 599 588 457 427 1390 371 258	Antimony . Borax . Carbonate of soda Chloride of sodium Water . Selenium . Sulphur . Phosphorus . Wax .	• • • • • • •	432 - 1000 1000 - 0 217 111 43 68	249 216 210 116 87.9‡ 71.8 42.1 42.0 34.1

TABLE 136. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. || They find that a film of oleate of soda solution containing I of soap to 70 of water, and having 3 per cent of KNO8 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micromillimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (*vide* Newton's rings, Table 222).

When the percentage of KNO₈ is diminished, the thickness of the black patch increases. For example, KNO₈ = 3 I 0.5 0.0

Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO₈ dissolved, increased the thickness of the film.

1 part soap to 30 of water gave thickness 21.6 micro-mm.

I part soap to 40 of water gave thickness 22.1 micro-mm.

I part soap to 60 of water gave thickness 27.7 micro-mm.

I part soap to 80 of water gave thickness 29.3 micro-mm.

* This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1877). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20° C.
† Quincke, "Pogg. Ann." vol. 135, p. 661.
‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.
"Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.
NOTE — Quincke points out that substance may be divided into groups in each of malth the princ for the substance for the substance of the substance for the substance may be divided into groups in each of malthe the princ for the substance of the substance of the substance for the substance of the substance of the substance for the substance of the substance o

Nors. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half; that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, goid, silver, cadminm, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

TABLE 139.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimeters of mercury.

Tem- pera- ture Cent.	Acetone. C ₈ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride. CCl ₄	Chloro- form, CHCl ₈	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₆ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol. CH₄O	Turpen- tine. C ₁₀ H ₆
25° 20 15 10 5		- .58 .88 1.29 1.83	- 4.73 6.16 7.94 10.13	-98 1.35 1.85 2.48		- •33 .51 .65 .91	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35 1.92	- - - -
0 5 10 15 20	- - - 17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	5.97 10.05 16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	.21 .29 - .44
25 30 35 40 45	22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	- .69 - 1.08 -
50 55 60 65 70	62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	1.70 - 2.65 - 4.06
75 80 85 90 95	138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 3 ⁸ 3.55	103.21 123.85 147.09 174.17 205.17	- 6.13 - 9.06 -
100 105 110 115 120	279.73 317.70 359.40 405.00 454.69	134.01 153.18 174.44 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 275.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495-33 555.62 621.46 693-33 771.92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 18.60 25.70
125 130 135 140 145	508.62 566.97 629.87 697.44 –	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80		736.22 811.65 892.19 977.96	498.05 569.13 647.93 733.71 830.89	- 34.90 - 46.40 -
150 155 160 165 170		433.37 478.65 527.14 568.30 634.07	909.59 - - - -	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92 - - -			936.13	60.50 68.60 77.50 - -

VAPOR PRESSURES.

Tem- pera- ture, Centi- grade.	Ammouia. NH _S	Carbon dioxide. CO ₂	Ethyl chloride. C ₂ H ₅ Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₈ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₂	Hydrogen sulphide. H ₂ S
30 °	86.61	-	11.02	-	57.90	57.65		58.52	28.75	-
-25 -20 -15 -10 -5	1 10.43 1 39.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67		71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	3 7.38 47.95 6 0.79 7 6.25 9 4.69	374-93 443-85 519.65 608.46 706.60
0 5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 307 5.38 3499.86 3964.69 4471.66	46.52 56.93 61.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11 –	415.10 477.80 - - -	4664.14 5170.85 6335.98 –	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55		257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22 -	- - - -	- - - -		521.36 - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4219.57		498.27 561.41 630.16 704.75 785.39		- - - -	- - -		- - - -		
100	4660.82	-	872.28	-	-	-	-	-	-	-

VAPOR PRESSURE.

TABLE 140. --- Vapor Pressure of Ethyl Alcohol.*

J.	0 °	1°	2 °	3 °	4 °	5 °	6 °	7°	8 °	9 °
Temp.			Va	por pressur	e in millim	eters of me	ercury at o	° C.	·	
0° 10 20 30 40 50 60 70 From	12.24 23.78 44.00 78.06 133.70 220.00 350.30 541.20	1 3.18 25.31 46.66 82.50 140.75 230.80 366.40 564.35	$ \begin{array}{r} 14.15 \\ 27.94 \\ 49.47 \\ 87.17 \\ 148.10 \\ 242.50 \\ 383.10 \\ 588.35 \\ \end{array} $	15.16 28.67 52.44 92.07 155.80 253.80 400.40 613.20	16.21 30.50 55.56 97.21 163.80 265.90 418.35 638.95 Ramsay	17.31 32.44 58.86 102.60 172.20 278.60 437.00 665.55 and You	18.46 34.49 62.33 108.24 181.00 291.85 456.35 693.10	19.68 36.67 65.97 114.15 190.10 305.65 476.45 721.55	20.98 38.97 69.80 120.35 199.65 319.95 497.25 751.00	22.34 41.40 73.83 126.86 209.60 334.85 518.85 781.45 mbers.†
<u>ن</u>	0°	10 °	20 °	30 °	40 °	50 °	60 °	70 °	80 °	80 °
Temp			Vaj	por pressur	e in millim	eters of me	ercury at o ^c	^о С.		
0 ° 100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45519.	219.82 7368.7		540.91 1 18 58.	811.81 14764.	1 186.5 18185.

TABLE 141. -- Vapor Pressure of Methyl Alcohol.‡

IJ	0 °	1°	2 °	3 °	4 °	5°	6 °	7 °	8 °	9 °
Temp.			Va	por pressur	re in millin	eters of m	ercury at o	° C.		
0 ° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0
30 40 50 60	1 58.9 2 59.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374·7 575·3	247.4 391.7 599.4 -

* This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

† In this formula a = 5.0720301; $\log b = \overline{z}.6406131$; $\log c = 0.6050854$; $\log a = 0.003377538$; $\log \beta = \overline{1.99682424}$ (c is negative).

‡ Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

TABLE 142.

VAPOR PRESSURE.*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0°	1°	2 °	3°	4 °	5 °	6 °	7 °	8 °	9 °
				(a) CAI	RBON D	SULPHIE)E.			
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	1 33.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25
		-		(b) (CHLOROB	ENZENE.	•			·
20 ° 3° 4°	8.65 14.95 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35·35	1 3.42 22.69 37.08	14.17 23.87 38.88
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 1 \$6.05 223.45	46.84 73.11 110.41 161.95 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70 –	333·35 454·65 608.75 –	344.15 468.50 626.15 -	355-25 482.65 643.95	366.65 497.20 662.15 –	378.30 512.05 680.75 -	390.25 527.25 699.65 –
				(c)]	Bromobi	ENZENE.				
40 °	-	-	-		-	12.40	13.06	1 3.75	14.47	15.22
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72 42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 3 ⁸ 3.75 509.70	1 50.57 212.44 292.60 395.10 523.90	156.03 219.58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 5 ⁸ 3.85	179.41 250.00 340.80 455.90 599.65	18 5.67 258.10 351.15 468.90 61 5.75	192.10 266.40 361.80 482.20 632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757-55	776.95	796.70	816.90
				(đ	l) Anili	INE.				
80 ° 90	18.80 30.10	19.78 31.44	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37.30	25.14 38.90	26.32 40 .5 6	27.54 42.28	28.80 44.0б
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.80 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 2 4 1.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35 -	352.65 473.60 625.05	363.50 487.25 642.05 -	374.60 501.25 659.45

* These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes. SMITHSONIAN TABLES.

VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthaline, and Mercury.

Temp. C.	0 °	٦°	2 °	3 °	4 °	5 °	6 °	7 °	8 °	9 °
				(e) Met	THYL SA	LICYLATI	E.			
70 °	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4·34
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	7·42
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	1 3.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.3 ⁸	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200 210 220	432.35 557.50 710.10	443•75 571.45 727.05	455·35 585.70 744·35	467.25 600.25 761.90	479·35 61 5.05 779 ^{.8} 5	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
	·	·	L	(f) Bro	MONAPH	THALINE	E		· · · · · · · · · · · · · · · · · · ·	
110 °	3.60	3.74	3.89	4.05	4.22	4.40	4-59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.7 I	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82
190	77.15	79•54	81.99	84.51	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	1 30.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35	395.60	405.05	414 .65	424.45	434-45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	545-35	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677-85	692.40	707.15	722.15	737.45
	I	<u> </u>	•	(£	3) Merc	URY.				
270 °	123.92	126.97	1 30.08	133.26	136.50	139.81	143.18	146.61	1 50.1 2	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324.37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350 3 ⁶⁰	658.03 784.31	669.8 6	681.86	694.04	706.40	718.94	731.65	744.54	757.61	770.87

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

$\begin{array}{rcccccccccccccccccccccccccccccccccccc$		12.8 22.5 6.6 12.3 13.5	36.5 61.0 15.4	179.0			-			
Ba(ClO ₃) ₂ · · BaCl ₂ · ·		1 33	22.5 27.0	34.4 39.0	318.0					
$\begin{array}{cccc} BaBr_2 & \cdot & \cdot \\ Ca(SO_3)_2 & \cdot \\ Ca(NO_3)_2 & \cdot \end{array}$	• • •	15.8 16.4 16.8 9.9 16.4	33·3 36.7 38.8 23.0 34.8	70.5 77.6 91.4 56.0 74.6	108.2 1 50.0 1 06.0 1 39.3	204.7 161.7	205.4			
$\begin{array}{cccc} CaCl_2 & \cdot & \cdot \\ CaBr_2 & \cdot & \cdot \\ CdSO_4 & \cdot & \cdot \\ CdI_2 & \cdot & \cdot \\ CdI_2 & \cdot & \cdot \\ CdBr_2 & \cdot & \cdot \end{array}$		17.0 17.7 4.1 7.6 8.6	39.8 44.2 8.9 14.8 17.8	95.3 125.8 18.1 33.5 36.7	166.6 191.0 52.7 55.7	241.5 283.3 80.0	319.5 368.5	1 1 1		
CdCl ₂ Cd(NO ₈) ₂ Cd(ClO ₈) ₂ CoSO ₄ CoCl ₂		9.6 15.9 17.5 5.5 15.0	18.8 36.1 10.7 34.8	36.7 78.0 22.9 83.0	57.0 122.2 45.5 136.0	77·3 186.4	99.0	1		
$\begin{array}{ccccc} Co(NO_{8})_{2} & \cdot & \cdot \\ FeSO_{4} & \cdot & \cdot \\ H_{8}BO_{3} & \cdot & \cdot \\ H_{8}PO_{4} & \cdot & \cdot \\ H_{8}AsO_{4} & \cdot & \cdot \end{array}$		17.3 5.8 6.0 6.6 7.3	39.2 10.7 12.3 14.0 15.0	89.0 24.0 25.1 28.6 30.2	1 52.0 42.4 38.0 45.2 46.4	218.7 51.0 62.0 64.9	282.0 81.5	332.0 103.0	146.9	189.5
H ₂ SO ₄ KH ₂ PO ₄ KNO ₃ KClO ₃ KBrO ₈	· · ·	12.9 10.2 10.3 10.6 10.9	26.5 19.5 21.1 21.6 22.4	62.8 33.3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2 126.3	148.0
KHSO4 · · · KNO2 · · · KClO4 · · · KCl · · ·	· ·	10.9 11.1 11.5 12.2	21.9 22.8 22.3 24.4	43·3 44.8 48.8	65.3 67.0 74.1	85.5 90.0 100.9	107.8 110.5 128.5	129.2 130.7 152.2	170.0 167.0	198.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 	11.6 12.5 13.9 13.9 14.4	23.6 25.3 28.3 33.0 31.0	59.0 52.2 59.8 75.0 68.3	77.6 82.6 94.2 123.8 105.5	104.2 112.2 131.0 175.4 152.0	132.0 141.5 226.4 209.0	160.0 171.8 258.5	210.0 225.5 350.0	255.0 278.5
$\begin{array}{cccc} KOH & \cdot & \cdot \\ K_2CrO_4 & \cdot & \cdot \\ LiNO_8 & \cdot & \cdot \\ LiCl & \cdot & \cdot \\ LiBr & \cdot & \cdot \\ LiSc & \cdot & LiSc & \cdot \\ LiSc &$	• • • • • •	15.0 16.2 12.2 12.1 12.2	29.5 29.5 25.9 25.5 26.2	64.0 60.0 55.7 57.1 60.0	99.2 88.9 95.0 97.0	140.0 122.2 132.5 140.0	181.8 155.1 175.5 186.3	223.0 188.0 219.5 241.5	309.5 253.4 311.5 341.5	387.8 309.2 393.5 438.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·	13.3 12.8 13.6 15.4 15.9 16.4	28.1 27.0 28.6 34.0 37.4 32.6	56.8 57.0 64.7 70.0 78.1 74.0	89.0 93.0 105.2 106.0		168.0 206.0	264.0	357.0	445.0

- Compiled from a table by Tammano, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886. SMITHSONIAN TABLES.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MgCl ₂ Mg(NO ₈) ₂ MgBr ₂	17.6 17.9	39.0 42.0 44.0	100.5 101.0 115.8	183.3 174.8		377.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnCl ₂ NaH ₂ PO ₄ NaHSO ₄	1 5.0 10.5 10.9	34.0 20.0 22.1	76.0 36.5 47.3	51.7 75.0	66,8 100.2	82.0 126.1	148.5	189.7	231.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			23.0	48.4	73-5	98.5	123.3	147.5	196.5	223.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NaOH NaNO ₂	11.8 11.6	24.4	50.0	75.0	98.2	122.5	146.5	243.3 189.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						102.2	127.8	152.0	198.0	239.4
Nall12.023.937.009.114.10.1.521.571.5Nal12.125.660.299.5136.7177.5221.0301.5370.0Na2C0314.327.353.580.2111.011111Na2C0414.430.065.8105.8146.0111<	NaCl NaBrO ₈	12.3 12.1	25.2 25.0	52.1 54.1	81.3	108.8	136.0		a69 a	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Na_4P_2O_7$	1 3.2	22.0				177.5	221.0	301.5	370.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ Na_2C_2O_4 \cdot \cdot \cdot$	14.5	30.0	65.8 71.6	105.8	146.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				52.5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\dot{N}H_4NO_8$	12.8	22.0		62.7	82.9	103.8	121.0	1 52.2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					69.3	94.2	118.5	1 38.2	179.0	213.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					71.0				181.2	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH4Br NH4I	11.9 12.9	23.9 25.1	48.8 49.8	74.1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ni(NO_8)_2 \cdot \cdot \cdot$	16.1	37.3	91.3	1 56.2	_				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Sr(SO_8)_2$ · · ·	7.2	20.3	47.0		131.4				
$\begin{bmatrix} 2n304 & . & . & . & . & . & . & . & . & . & $	SrBr ₂	17.8	42.0	101.1	179.0	267.0	281.5			
	$ZnSO_4$	9.2	18.7	46.2	75.0	107.0	153.0	195.0		

TABLES 144-146.

PRESSURE OF SATURATED AQUEOUS VAPOR.

TABLE 144. - At Low Temperature. Over Ice.

[0	1	2	3	4	5	6	7	8	9
60	mm. 0.008	mm. 0.007	mm. 0.005	mm. 0.004	mm. 0.003	mm. 0.003	mm.	mm.	mm.	mm.
50	.029	.026	.023	.021 .066	.018	.01Ğ	0.014	0.012 .042	0.010	0.009
40 30	.094 .280	.083 .252	.074 .226	.203	.059 .182	.052 .163	.047 .146	.131	.037 .117	.033 .105
-20 -10	0.770 1.947	0.699 1.780	0.633 1.627	0.574 1.486	0.519 1.356	0.469 1.237	0.424 1.127	0.383 1.026	·345 0.933	.311 0.848
0	4.579	4.215	3.879	3.566	3.277	3.009	2.762	2.533	2.322	2.127

Temperatures Centigrade.

Taken from Landolt-Börnstein, Physikalisch-Chemische Tabellen, 1912.

TABLE 145. - At Low Temperature. Over Water.

	0	l	2	3	4	5	6	7	8	9
-10	mm. 2.144	mm. 1.979	mm. 1.826	mm. 1.684	mm. 1.551	mm. 1.429	nm. 1.315	mm.	mm.	mm.
0 + 0	4·579 4·579	4.255 4.926	3.952 5.294	3.669 5.685	3.404 6.101	3.158 6.543	2.928 7.014	2.712 7.514	2.509 8.046	2.321 8.610

Taken from Landolt-Börnstein, Physikalisch-Chemische Tabellen, 1912.

TABLE 146. -0° to 50° C. Hydrogen Scale.

Values interpolated between those given by Scheel and Heuse for every degree between 0° and 50° C. Annalen der Physik. (4), 31, p. 731, 1910.

0° 4. 1. 4. 2. 5. 3. 5. 4. 6. 5. 6. 5. 6. 7. 7. 7. 7. 8. 8. 9. 8. 10. 9.	4.579 4.926 4.625 5.685 5.5. 5.101 6.543 6.7.014 7.014 7.0	m. mm. 513 4.647 962 4.998 332 5.370 725 5.766 6.187	.3 mm. 4.681 5.034 5.408 5.807 6.230	.4 mm. 4.715 5.071 5.447 5.848	.5 mm. 4.7 50 5.107 5.486	.6 mm. 4.785 5.144	.7 mm. 4.820 5.181	.8 mm. 4.855	.9 mm. 4.890
0° 4. 1. 4. 2. 5. 3. 5. 4. 6. 5. 6. 7. 7. 8. 8. 9. 8. 10. 9.	4.579 4.4 .926 4.4 .294 5. .685 5. .101 6. 5.543 6.	613 4.647 962 4.998 332 5.370 725 5.766 144 6.187	4.681 5.034 5.408 5.807	4.715 5.071 5.447 5.848	4.750 5.107	4.785 5.144	4.820	4.855	
1. 4.4 2. 5.5 3. 5.4 5. 6. 7. 7. 8. 8.6 9. 8.4 10. 9.3	1.926 4. 2.294 5. 5.685 5. 5.101 6. 5.543 6. 7.014 7.	962 4.998 332 5.370 725 5.766 144 6.187	5.034 5.408 5.807	5.07 I 5.447 5.848	5.107	5.144		4.855	4.890
2. 5. 3. 5. 4. 6. 5. 6. 7. 7. 8. 8. 9. 8. 10. 9.3	.294 5. .685 5. .101 6. .543 6.	332 5.370 725 5.766 144 6.187	5.408 5.807	5.447 5.848			5.181		
3. 5.1 4. 6. 5. 6. 7. 7. 8. 8.0 9. 8.1	.685 5. .101 6. .543 6.	725 5.766 144 6.187	5.807	5.848	5.480			5.218	5.256
4. 6. 5. 6. 7. 7. 8. 8. 9. 8.	5.101 6. 5.543 6. 7.014 7.0	6.187			- 00-	5.525	5.564	5.604	5.644
5. 6. 6. 7. 7. 7. 8. 8. 9. 8.	5.543 6. 7.014 7.0		0.230	6	5.889	5.931	5.973	6.015	6.058
7. 7. 8. 8. 9. 8.	.014 7.0	66.	1	6.274	6.318	6.363	6.408	6.453	6.498
7. 7. 8. 8. 9. 8.		589 6.635	6.681	6.728	6.775	6.822	6.870	6.918	6.966
9. 8.0 10. 9.1		7.112	7.171	7.210	7.260	7.310	7.361	6.412	7.463
9. 8.0 10. 9.1	-514 7.	566 7.618	7.670	7.723	7.776	7.829	7.883	7.937	7.991
10. 9.:	.046 8.	8.156	8.212	8.268	8.324	8.381	8.438	8.495	8.552
	0.009 0.0	668 8.727	8.786	8.845	8.905	8.965	9.026	9.087	9.148
	.210 9.:	272 9.334	9.396	9.459	9.522	9.586	9.650	9.715	9.780
9.0		9.977	10.043	10.110	10.177	10.245	10.313	10.381	10.450
	.519 10.		10.729	10.800	10.871	10.943	11.01 š	11.087	11.160
	.233 11.		11.455	11.530	11.605	11.681	11.757	11.834	11.912
14. 11.9	.989 12.0	12.146	12.225	12.304	12.384	12.464	12.545	12.626	12.708
	.790 12.8	373 12.956	13.039	13.123	13.207	1 3.292	13.378	13.464	13.550
	.637 13.		13.900	13.989	14.078	14.168	14.258	14.350	14.441
	.533 14.6		14.811	14.905	14.999	15.094	15.190	15.286	15.383
	.480 15.		I 5.775	15.874	15.974	16.074	16.175	16.276	16.378
19. 16.4	.481 16.	34 16.688	16.792	16.897	17.003	17.109	17.216	17.323	17.430
20. 17.9	.539 17.6		17.867	17.977	18.088	18.200	18.313	18.426	18.540
21. 18.6	.655 18.7		19.002	19.119	19.236	19.354	19.473	19.592	10.540
	.832 19.9		20.197	20.320	20.444	20.569	20.694	20.820	20.947
	.074 21.2		21.459	21.589	21.720	21.851	21.983	22.116	22.249
24. 22.3	.383 22.9	18 22.654	22.790	22.927	23.065	23.203	23.342	23.482	23.622
25. 23.7	-6	05 24.048	24.192	24.336	24.481	24.627	24.773	24.920	25.068

TABLES 146-147 (continued).

PRESSURE OF SATURATED AQUEOUS VAPOR.

TABLE 146 (continued). -0° to 50° C. Hydrogen Scale.

	.0	.1	.2	.3	.4	.5	.0	.7	.8	.9
	mm.	mm.	ກາ m .	mm.	mm.	mm.	nım.	mm.	m m.	 mm.
26 ⁰	25.217	25.367	25.517	25.668	25.820	25.972	26.125	26.279	26.434	26.590
27. 28.	26.747	26.904	27.062	27.221	27.381	27.542	27.704	27.866	28.029	28.19
	28.358	28.524	28.690	28.857	29.025	29.194	29.364	29.535	29.707	29.87
29.	30.052	30.226	30.401	30.577	30.754	30.932	31.111	31.291	31.471	31.65
30.	31.834	32.017	32.201	32.386	32.572	32.759	32.947	33.135	33.324	33.51
31.	33.706	33.899	34.093	34.288	34.483	34.679	34.876	35.074	35.273	35-47
32.	35.674	35.876	36.079	36.283	36.488	36.694	36.901	37.109	37.318	37.52
33-	37.741	37-953	38.166	38.380	38.595	38.812	39.030	39.249	39.469	39.68
34.	39.911	40.134	40.358	40.583	40.809	41.036	41.264	41.493	41.723	41.95
35.	42.188	42.422	42.657	42.893	43.130	43.368	43.607	43.847	44.089	44.33
36.	44-577	44.8z	45.06	45.30	45-55	45.80	46.05	46.30	46.56	46.82
37.	47.082	47.34	47.60	47.86	48.12	48.38	48.64	48.90	49.17	49.44
38.	49.708	49.98	50.25	50.52	50.79	51.06	51.33	51.60	51.88	52.16
39.	52.459	52.74	53.02	53.30	53.58	53.87	54.16	54.45	54.75	55.05
40.	55.341	55.63	55-93	56.23	56.53	56.83	57.13	57.43	57.74	58.05
41.	58.36	58.67	58.98	59.29	59.60	59+92	60.24	60.56	60.88	61.20
42.	61.52	61.84	62.16	62.49	62.82	63.15	63.48	63.Šr	64.14	64.48
43-	64.82	65.16	65.50	65.84	66.18	66.53	66.88	67.23	67.58	67.93
44.	68.28	68.63	68.99	69.35	69.71	70.07	70.43	70.79	71.16	71.53
4 5-	71.90	72.27	72.64	73.01	73.38	73.76	74.14	74.52	74.90	75.28
46.	75.67	76.06	76.45	76.84	77.23	77.62	78.02	78.42	78.82	79.22
47. 48.	79.62	80.03	80.43	80.84	81.25	81.66	82.07	82.48	82.90	83.32
48.	83.74	84.16	84.59	85.02	85.45	85.88	86.31	86.74	87.17	87.61
49.	88.05	88.49	88.93	89.37	89.82	90.27	90.72	91.17	91.62	92.08

TABLE 147. 50° to 374° C. Hydrogen Scale.

	0	1	2	3	4	5	6	7	8	9
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
50 ⁰	92.54	97.24	102.13	107.24	112.56	118.11	123.89	129.90	136.16	142.68
6o.	149.46	156.52	163.85	171.47	179.40	187.64	196.19	205.07	214.29	223.86
70.	233.79	244.11	254.82	265.91	277.41	289.32	301.65	314.42	327.64	341.32
80.	355.47	370.11	385.25	400.90	417.08	433.79	451.07	468.91	487.33	506.36
90,	526.00	546.27	567.19	588.77	611.04	634.01	657.69	682.11	707.29	733-24
100.	760.00	787.57	815.9	845-1	875.1	906.1	937.9	970.6	1004.3	1038.8
110.	1074.5	1111.1	1148.7	1187.4	1227.1	1267.9	1309.8	1352.8	1397.0	1442.4
120.	1488.9	1536.6	1585.7	1636.0	1687.5	1740.5	1794.7	1850.3	1907.3	1965.8
130.	2025.6	2086.9	2149.8	2214.0	2280.0	2347.5	2416.5	2487.3	2559.7	2633.8
140.	2709.5	2787.1	2866.4	2947.7	3030.5	3115.3	3202.1	3290.8	3381.3	3474.0
150.	3568.7	3665.3	3764.1	3864.9	3968.	4073.	4181.	4290.	4402.	4517.
150.	4'33	4752	4874	4998	5124	5253	5384	5518	5655	5794
170.	5937	6081	6229	6379	6533	6689	6848	7010	7175	7343
180.	7514	7688	7866	8046	8230	8417	8608	8802	8999	9200
190.	9404	9612	9823	10038	10256	10479	10705	10934	11168	11406
200.	11647	11893	12143	12397	12654	12916	13183	13453	13728	14007
210.	14291	14578	14871	15167	15469	15774	16085	16401	16721	17046
220.	17376	17710	18049	18394	18743	19098	19458	19823	20193	20570
230.	20950	21336	21728	22125	22528	22936	23350	23770	24195	24626
240.	25064	25506	2 5 9 5 6	26412	26873	27341	27815	28294	28780	29272
250.	29771	30276	30788	31308	31833	32364	32903	33448	34001	34561
260.	35127	35700	36280	36868	37463	38065	38675	39291	39915	40547
270.	41186	41832	42487	43150	43820	44498	45184	45879	46580	47290
280.	48011	48738	49474	50219	50972	51734	52506	53288 61610	54079	54878
290.	55680	56500	57330	58170	59010	59860	60730		62490	63390
300.	64290	65200	66120	67060	68000	68950	69910	70890 81180	71870 82270	72860 83370
310.	73860	74880	75900	76940	77980	79040	80110	92600	93820	95040
320.	84480	85610	86750	87900	89050	90220	91400	105250	106580	107930
330.	96270	97510	98770	100040	101320	102610	103930	119210	120680	122160
340.	109300	110670	112050	113450	114870	116300	117750			I II
350.	123660	125170	126690	128230	129790	131370	132960	134560	136180 153500	137820
360.	139480	141150	142850	144560	146300	148100	149900	151700	133300	-33300
370.	157200	159100	161000	163000	164900					

Taken from Landolt-Börnstein Tables and based upon the following data: 50-70⁷, Nernst, Verh. d. D. Phys. Ges. 12, p. 565, 1910: 70-100⁰, Regnault, computed by Broch, 1881, improved by Wiebe, ZS. fur Instrum. 13, p. 329, 1803, also Tafeln für die Spannkraft des Wasserdampfes, Braunschweig, 1903; 100-374⁰, Holborn, Henning, Baumann, Annalen der Physik, 26, p. 833, 1908, 31, p. 945, 1910.

Temp. ° F.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	6.0	9.0
10	0.285	0.270	0.257	0.243	0.231	0.218	0.207	0.196	0.184	0.174
0	0.481	0.457	0.434	0.411	0.389	0.370	0.350	0.332	0.316	0.300
+ 0	0.481	0.505	0.529	0.554	0.582	0.610	0.639	0.671	0.704	0.739
10	0.776	0.816	0.856	0.898	0.941	0.985	1.032	1.079	1.128	1.181
20	1.235	1.294	1.355	1.418	1.483	1.551	1.623	1.697	1.773	1.853
30	1.935	2.022	2.113	2.194	2.279	2.366	2.457	2.550	2.646	2.746
40	2.849	2.955	3.064	3.177	3.294	3.414	3.539	3.667	3.800	3.936
50	4.076	4.222	4.372	4.526	4.685	4.849	5.018	5.191	5.370	5.555
, 60	5.745	5.941	6.142	6.349	6.563	6.782	7.009	7.241	7.480	7.726
, 70	7.980	8.240	8.508	8.782	9.066	9.356	9.655	9.962	10.277	10.601
80	10.934	11.275	11.626	11.987	12.356	12.736	13.127	13.526	13.937	14.359
, 90	14.790	15.234	15.689	16.155	16.634	17.124	17.626	18.142	18.671	19.212
100	19.766	20.335	20.917	21.514	2 2. 125	22.7 50	23.392	24.048	24.720	25.408
110	26.112	26.832	27.570	28.325	29.096	29.887		-	_	-

TABLE 148. - Weight in Grains of the Aqueous Vapor contained in a Oubic Poot of Saturated Air.*

* See "Smithsonian Meteorological Tables," pp 132-133.

TABLE 149. - Weight in Grams of the Aqueous Vapor contained in a Cubic Meter of Saturated Air.

Temp. °C.	0.0	1.0	2.0	3.0	4.0	5.0	8.0	7.0	8.0	9.0
20	0.892	0.810	0.737	0.673	0.613	0.557	0.505	0.457	0.413	0.373
10	2.154	1.978	1.811	1.658	1.519	1.395	1.282	1.177	1.079	0.982
0	4.835	4.468	4.130	3.813	3.518	3.244	2.988	2.752	2.537	2.340
+0	4.835	5.176	5.538	5.922	6.330	6.761	7.219	7.703	8.215	8.757
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118	18.143	19.222	20.355	21.546	22.796	24.109	25.487	26.933	28.450
30	30.039	31.704	33.449	35.275	37.187	39.187	41.279	43.465	45.751	48.138

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference $t - t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The differences $t - t_1$ are given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees and Regnault's vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters, and a correction is given for each centimeter at the top of the columns.^{*} Ventilating velocity of wet thermometer about 3 meters per second.

t ₁	$\begin{vmatrix} t-t_1\\=0 \end{vmatrix}$	2	4	6	8	10	12	14	18	18	20	t1
Correcti B per meter	r centi-	.013	.026	•040	.053	.066	.079	.092	• 106	.119	.132	Difference I $\frac{1}{2}^{0}$ of $t-t_{1}$
-10 -98 -76 -15 -4 -13 -1 -1	1.96 2.14 2.33 2.53 2.76 3.01 3.28 3.57 3.88 4.22	0.96 1.14 1.33 1.53 1.76 2.01 2.28 2.57 2.88 3.22	0.14 0.33 0.53 0.76 1.00 1.27 1.56 1.87 2.21	0.27 0.56 0.87 1.21	0.21	Tab Co	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100					
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	4.22 4.60 4.94 5.69 6.10 6.53 7.00 7.49 8.02 8.57 9.17 9.79 10.46 11.16 11.91 12.70 13.54 14.42 15.36 16.35 17.39 18.50 19.66	3.22 3.60 3.93 4.29 4.68 5.09 5.52 5.90 6.48 7.01 7.56 8.16 8.77 9.44 10.14 10.89 11.68 12.52 13.40 14.34 15.33 16.37 17.47 18.63	2.59 3.29 3.68 4.98 5.47 5.99 6.54 7.14 8.43 9.12 9.87 10.66 11.50 12.37 13.31 14.30 15.34 16.45 17.60	1.59 1.92 2.28 2.67 3.08 3.50 3.97 4.45 4.98 5.53 6.12 6.74 7.41 8.10 8.85 9.64 10.47 11.35 12.29 13.27 14.31 15.32 16.57	0.59 0.92 1.28 1.66 2.07 2.49 2.96 3.44 3.97 4.51 5.73 6.39 7.09 7.83 8.62 9.455 10.33 11.26 12.25 13.28 14.39 15.54	0.27 0.66 1.06 1.48 1.95 2.43 2.96 3.50 4.09 4.71 5.37 6.81 7.60 8.43 9.31 10.24 11.22 12.26 13.36 14.51	0.05 0.48 0.94 1.42 1.94 2.49 3.08 3.69 4.36 5.05 5.79 6.58 7.41 8.28 9.21 10.20 11.23 13.48	0.41 0.93 1.48 2.07 2.68 3.34 4.03 4.77 5.56 6.39 7.20 8.19 9.17 10.21 11.31 12.46	we get ≠ 0.46 1.66 2.32 3.01 3.71 4.537 6.24 7.17 8.15 9.18 10.28 11.43	0.05 0.64 1.30 1.99 2.69 3.52 5.22 6.15 7.13 8.15 9.25 10.40	0.28 0.97 1.67 2.50 3.420 5.13 6.11 7.12 8.22 9.37	0.100 0.100 0.100 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.103 0.103
222 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	19,60 20,89 22,18 23,55 24,99 26,51 28,10 29,78 31,55 33,41 35,36 37,41 35,36 37,41 35,36 37,41 35,36 37,41 39,57 41,83 44,20 46,69 49,30 52,04	10.83 19.86 21.15 22.52 23.96 25.48 27.07 28.75 30.51 32.37 34.32 36.37 38.53 40.79 43.16 45.65 48.26 51.00	17.60 18.83 20.12 21.49 22.92 24.44 26.03 27.71 29.47 31.33 33.28 35.33 37.48 39.74 42.11 44.60 47.21 49.95	10.57 17.80 19.09 20.45 21.89 23.40 24.99 26.67 28.43 30.29 30.24 34.29 36.44 38.70 41.07 43.56 46.17 48.91	16.77 18.05 19.43 20.86 22.37 23.96 25.63 27.40 29.25 31.21 33.25 35.40 37.66 40.03 42.52 45.13 47.86	14-54 15-74 17.02 18.39 19.82 21.34 22.92 24.59 26.36 28.22 30.17 32.22 30.17 32.22 34.36 36.62 38.99 41.48 44.08	13.40 14.71 15.99 17.36 18.79 20.30 21.89 23.56 25.32 27.18 29.13 31.18 33.32 35.58 37.95 40.44 43.04 45.77	13.68 14.96 16.33 17.76 19.27 20.85 22.52 24.29 26.14 28.09 30.14 32.28 34.54 36.90 39.39 41.99 41.99 44.73	12.66 13.94 15.30 16.73 18.24 19.82 21.49 23.25 25.10 31.24 33.50 35.86 38.35 40.95 43.68	11.63 12.91 14.27 15.70 17.21 18.79 20.46 22.22 24.07 26.01 28.06 30.20 32.46 30.20 32.46 34.82 37.31 39.91 42.64	9.57 10.60 11.88 13.24 14.67 16.18 17.76 19.43 21.18 23.03 24.97 27.02 29.16 31.42 33.78 36.27 38.87 41.59	0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.104 0.104 0.104 0.104 0.104 0.104 0.104

* The table was calculated from the formula $p = p_1 - 0.00066 B(t-t_1)(1+0.00115t_1)$ (Ferrel, Annual Report U. S. Chief Signal Officer, 1886, App. 24). † When B is less than 76 the correction is to be added, and when B is greater than 76 it is to be subtracted.

The first column of this table gives the temperatures of the wet-bulb thermometer, and the top live the difference the table. The dew-points were computed for a barometric pressure of 76 centimeters. When the barometer differa and the resulting number added to or subtracted from the tabular number according as the barometer is below or

POINTS.

between the dry and the wet bulb, when the dew-point has the values given at corresponding points in the body of from 76 centimeters the corresponding numbers in the lines marked $\delta T/\delta B$ are to be multiplied by the difference, above 76. See examples. Thermometer ventilated at about 3 meters per sec.

<i>t</i> 1	t-t1=9	10	11	12	13	14	15				
	Dew-points	corresponding wet-l	to the different	ence of tempe eter reading gi	erature given iven in first col	in the above lumo.	line aod the				
			$EXAMPLES.$ (1) Given $B = 72, t_1 = 10, t_{-1} = 5$. Then tabular oumber for $t_1 = 10$ and $t_{-t_1} = 5$ is 5.2 Also $76 - 72 = 4$ and $\delta T/\delta B = .06$. \therefore Correction $= 0.06 \times 4 =$								
$\begin{array}{c} \delta T/\delta B = \\ 0 \end{array}$	•45	.67									
$I = 2$ $3 = 4$ $\delta T/\delta B = 5$ 6 $7 = 5$ $8 = 9$ $\delta T/\delta B = 10$ $II = 12$ $I3 = 14$ $\delta T/\delta B = 15$ $I6 = 17$ $I8 = 15$ $I6 = 17$ $I8 = 15$ $\delta T/\delta B = 20$ $2I = 22$ $23 = 24$ $\delta T/\delta B = 26$ $27 = 25$ $26 = 27$ $28 = 29$ $\delta T/\delta B = 30$ $3I = 32$ $33 = 34$ $\delta T/\delta B = 35$ $36 = 37$ $38 = 39$	$\begin{array}{c} - & 20.0 \\ 15.8 \\ 12.4 \\ .23 \\ - & 19.8 \\ 7.4 \\ 5.3 \\ 3.3 \\ 1.6 \\ .14 \\ 0.0 \\ + & 1.8 \\ 3.5 \\ 5.1 \\ 6.7 \\ .09 \\ 8.2 \\ 9.6 \\ 11.0 \\ 12.4 \\ 13.8 \\ .06 \\ 15.1 \\ 16.4 \\ 17.6 \\ 18.9 \\ 20.1 \\ .045 \\ 21.4 \\ 22.6 \\ 23.7 \\ 24.9 \\ 26.1 \\ .031 \\ 27.2 \\ 28.4 \\ 29.5 \\ 30.7 \\ 31.8 \\ .024 \\ 32.9 \\ 34.0 \\ 35.1 \\ 36.2 \\ 37.3 \\ 37.3 \\ \end{array}$	$\begin{array}{c} -22.2 \\ 16.8 \\ .29 \\ -13.1 \\ 10.1 \\ 7.6 \\ 5.2 \\ 3.2 \\ .17 \\ +0.3 \\ 2.2 \\ 3.9 \\ 5.6 \\ .11 \\ 7.2 \\ 8.7 \\ 10.2 \\ 14.5 \\ 15.8 \\ 17.1 \\ 14.5 \\ 15.8 \\ 17.1 \\ 14.5 \\ 15.8 \\ 17.1 \\ 18.4 \\ 19.6 \\ .05 \\ 20.9 \\ 22.1 \\ 23.4 \\ 24.5 \\ 25.7 \\ .635 \\ 26.9 \\ 28.1 \\ 29.2 \\ 30.4 \\ 31.5 \\ .027 \\ 32.6 \\ 33.7 \\ 34.9 \\ 35.9 \\ 37.1 \end{array}$	$\begin{array}{r} .37\\ -17.7\\ 13.4\\ 10.1\\ 7.4\\ 5.1\\ .20\\ -3.0\\ 1.0\\ +0.8\\ 2.7\\ 4.5\\ .12\\ 6.2\\ 7.8\\ 9.4\\ 10.9\\ 12.4\\ .08\\ 13.8\\ 15.2\\ 16.5\\ 17.9\\ 19.2\\ .06\\ 20.4\\ 21.7\\ 22.9\\ 24.2\\ 25.4\\ .041\\ 26.6\\ 27.8\\ 28.9\\ 30.1\\ 31.2\\ .029\\ 32.4\\ 33.5\\ 34.6\\ 35.7\\ 36.8\end{array}$	$\begin{array}{r} .44 \\ -18.1 \\ 13.5 \\ 10.1 \\ 7.2 \\ .22 \\ -4.7 \\ 2.6 \\ 0.6 \\ +1.3 \\ 3.3 \\ .14 \\ 5.1 \\ 6.8 \\ 8.5 \\ 10.1 \\ 11.6 \\ .09 \\ 13.1 \\ 14.5 \\ 15.9 \\ 17.3 \\ 18.7 \\ .06 \\ 20.0 \\ 21.3 \\ 22.5 \\ 23.8 \\ 25.0 \\ .047 \\ 26.2 \\ 27.4 \\ 28.6 \\ 29.8 \\ 30.9 \\ .032 \\ 32.1 \\ 33.3 \\ 34.4 \\ 35.5 \\ 36.6 \\ \end{array}$	$\begin{array}{r} .54 \\ -18.3 \\ 13.5 \\ 9.9 \\ .25 \\ -6.8 \\ 4.3 \\ 2.1 \\ 0.1 \\ +1.9 \\ 5.8 \\ 7.5 \\ 9.2 \\ 10.8 \\ .10 \\ 12.4 \\ 13.9 \\ 15.3 \\ 10.5 \\ 20.8 \\ 22.1 \\ 23.4 \\ 24.6 \\ .053 \\ 25.9 \\ 27.1 \\ 23.4 \\ 24.6 \\ .053 \\ 25.9 \\ 27.1 \\ 23.4 \\ 24.6 \\ .053 \\ 33.0 \\ 34.2 \\ 35.3 \\ 36.4 \\ \end{array}$	$\begin{array}{r} .66 \\ -18.3 \\ 13.1 \\ .29 \\ -9.4 \\ 6.3 \\ 3.7 \\ 1.6 \\ +0.5 \\ .18 \\ 2.7 \\ 4.7 \\ 6.5 \\ 8.3 \\ 10.0 \\ .11 \\ 11.6 \\ 13.2 \\ 14.7 \\ 16.2 \\ 17.6 \\ .08 \\ 19.0 \\ 20.3 \\ 21.7 \\ 23.0 \\ 24.2 \\ .06 \\ 25.5 \\ 26.8 \\ 28.0 \\ 29.2 \\ 30.4 \\ .037 \\ 31.6 \\ 32.8 \\ 33.9 \\ 35.1 \\ 36.2 \end{array}$	$\begin{array}{r} .72 \\ -17.2 \\ .36 \\ -12.5 \\ 8.8 \\ 5.7 \\ 3.1 \\ 0.9 \\ .20 \\ +1.3 \\ 3.5 \\ 5.5 \\ 7.4 \\ 9.1 \\ 12.5 \\ 14.0 \\ 15.7 \\ 17.0 \\ .99 \\ 18.5 \\ 19.9 \\ 21.2 \\ 22.6 \\ 23.9 \\ .07 \\ 25.2 \\ 26.4 \\ 27.7 \\ 28.9 \\ 30.1 \\ .04 \\ 31.4 \\ 32.5 \\ 33.7 \\ 34.8 \\ 36.0 \end{array}$				

159

TABLE 152.

RELATIVE HUMIDITY.*

This table gives the humidity of the air, for temperature t and dew-point d in Centigrade degrees, expressed in percentages of the saturation value for the temperature t.

Depression of		De	w-point	(đ).		Depression of		Dev	w-point	(đ).	
the dew-point. t-d	- 10	o	+ 10	+ 20	+30	the dew-point. t-d	- 10	o	+ 10	+ 20	+ 30
C. 0°.0 0.2 0.4 0.6 0.8	100 98 97 95 94	100 99 97 96 94	100 99 97 96 95	100 99 98 96 95	100 99 98 97 96	C. 8°.0 8.2 8.4 8.6 8.8	54 54 53 5 ² 51	57 56 55 55 54	60 59 58 57 57	62 61 60 60 59	64 63 63 62 61
1.0 1.2 1.4 1.6 1.8	92 91 90 88 87	93 92 90 89 88	94 92 91 90 89	94 93 92 91 90	94 93 92 91 90	9.0 9.2 9.4 9.6 9.8	51 50 49 48 48	53 53 52 51 51	56 55 55 54 53	5 ⁸ 58 57 56 56	61 60 59 59 58
2.0 2.2 2.4 2.6 2.8	86 84 83 82 80	87 85 84 83 82	88 86 85 84 83	88 87 86 85 84	89 88 87 86 85	10.0 10.5 11.0 11.5 12.0	47 45 44 42 41	50 48 47 45 44	53 51 49 48 47	55 54 52 51 49	57
3.0 3.2 3.4 3.6 3.8	79 78 77 76 75	81 80 79 77 76	82 81 80 79 78	83 82 81 80 79	84 83 82 82 81	12.0 13.0 13.5 14.0 14.5	39 38 37 35 34	42 41 40 3 ⁸ 37	45 44 43 41 40	48 46 45 44 43	
4.0 4.2 4.4 4.6 4.8	73 72 71 70 69	75 74 73 72 71	77 76 75 74 73	78 77 77 76 75	80 79 78 77 76	15.0 15.5 16.0 16.5 17.0	33 32 31 30 29	36 35 34 33 32	39 38 37 36 35	42 40 39 38 37	
5.0 5.2 5.4 5.6 5.8	68 67 66 65 64	70 69 68 67 66	72 71 70 69 69	74 73 72 71 70	75 75 74 73 72	17.5 18.0 18.5 19.0 19.5	28 27 26 25 24	31 30 29 28 27	34 33 32 31 30	36 35 34 33 33	
6.0 6.2 6.4 6.6 6.8	63 62 61 60 60	66 65 64 63 62	68 67 66 65 64	70 69 68 67 66	71 71 70 69 68	20.0 21.0 22.0 23.0 24.0	24 22 21 19 18	26 25 23 22 21	29 27 26 24 23	32	
7.0 7.2 7.4 7.6 7.8	59 58 57 56 55	61 60 60 59 58	63 63 62 61 60	66 65 64 63 63	68 67 66 65 65	25.0 26.0 27.0 28.0 29.0	17 16 15 14 13	19 18 17 16 15	22 21 20 19 18		
8.0	54	57	60	62	64	30.0	12	14	17		

* Abridged from Table 45 of "Smithsonian Meteorological Tables."

TABLE 153.

VALUES OF 0.378e.*

This table gives the humidity term 0.378*e*, which occurs in the equation $\delta = \delta_0 \frac{\hbar}{760} = \delta_0 \frac{B - 0.378e}{760}$ for the calculation of the density of air containing aqueous vapor at pressure e; δ_0 is the density of dry air at normal temperature and barometric pressure, *B* the observed barometric pressure, and $\hbar = B - 0.378e$, the pressure corrected for humidity. For values of $\frac{\hbar}{760}$ see Table 154. Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

Dew Point. °C.	e Vapor Pressure (ice).	0.378e.	Dew Point. °C.	e Vapor Pressure (water).	0.378e.	Dew Point, °C.	e Vapor Pressure (water).	0.378e.
50	0.034	0.01	0	4.579	1.73	+30	31.555	11.93
45	.061	.02	+1	4.921	1.86	31	33.416	12.63
40	.105	.04	2	5.286	2.00	32	35.372	13.37
35	.173	.07	3	5.675	2.15	33	37.427	14.15
30	.292	.11	4	6.0 88	2.30	34	39.586	14.96
-25 24 23 22 21	0.484 •534 •589 .648 .714	0.18 .20 .22 .24 .27	50 78 9	6.528 6.997 7.494 8.023 8.584	2.47 2.65 2.83 3.03 3.24	35 36 37 38 39	41.853 44.23 4 ^{6.} 73 49.35 52.09	15.82 16.72 17.66 18.65 19.69
20	0.787	0.30	10	9.179	3.47	40	54.97	20.78
19	.868	.33	11	9.810	3.71	41	57.98	21.92
18	.955	.36	12	10.479	3.96	42	61.13	23.12
17	1.048	.40	13	11.187	4.23	43	64.43	24.35
16	1.148	.44	14	11.936	4.51	44	67.89	25.66
15	1.257	0.48	15	12.728	4.81	45	71.50	27.02
14	1.375	.52	16	13.565	5.13	46	75.28	28.46
13	1.506	.57	17	14.450	5.46	47	79.23	29.95
12	1.650	.62	18	15.383	5.82	48	83.36	31.51
11	1.806	.68	19	16.367	6.19	49	87.67	33.14
10	1.974	0.75	20	17.406	6.58	50	92.17	34.84
9	2.154	.81	21	18.503	6.99	51	96.87	36.62
8	2.347	.89	22	19.661	7.43	52	101.77	38.47
7	2.557	.97	23	20.883	7.90	53	106.88	40.40
6	2.785	1.05	24	22.178	8.38	54	112.21	42.42
5	3.032	1.15	25	23.546	8.90	55	117.77	44.52
4	3.299	1.25	26	24.987	9.45	56	123.56	46.71
3	3.586	1.36	27	26.505	10.02	57	129.59	48.98
2	3.894	1.47	28	28.103	10.62	58	135.87	51.36
1	4.223	1.60	29	29.785	11.26	59	142.41	53.83
0	4.579	1.73	30	31.555	11.93	60	149.21	56.40

* This table is quoted from "Smithsonian Meteorological Tables," p. 225.

TABLES 154-155.

RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 154. - Values of $\frac{\hbar}{760}$, from $\hbar = 1$ to $\hbar = 9$, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of moist air at pressure k in terms of the density of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: $k = B \longrightarrow 0.378_e$, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of $e \mod 2$ taken from Table 150, and then 0.378 from Table 153.

λ 1 2 3 4 5 6 7 8	ħ 760 0.0013158 .0026316 .0039474 0.0052632 .0065789 .0078947 0.0092105 .0105263	EXAMPLES OF USE OF THE TABLE. To find the value of $\frac{h}{760}$ when $k = 7543$ k = 700 gives $.9210550$ " $$
7 8	0.0092105 .0105263	.7 ⁴⁴ .0009210 .03 ⁴⁴ .0000395
, 9	.0118421	5.73

TABLE 155. — Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

					Values of	$\log \frac{h}{760}$.				-
h	0	1	2	3	4	5	8	7	8	9
80	ī.02228	ī.02767	ī.03300	ī.03826	ī.04347	ī.04861	ī.05368	ī.05871	ī.06367	ī.06858
90	.07343	.07823	.08297	.08767	.09231	.09691	.10146	.10596	.11041	.11482
100	Ī.11919	ī.12351	1.12779	ī.13202	1.13622	ī.14038	1.14449	ī.14857	ī.15261	1.15661
110	.16058	.16451	.16840	.17226	.17609	.17988	.18364	.18737	.19107	.19473
120	.19837	.20197	.20555	.20909	.21261	.21611	.21956	.22299	.22640	.22978
130	.23313	.23646	.23976	.24304	.24629	.24952	.25273	.25591	.25907	.26220
140	.26531	.26841	.27147	.27452	.27755	.28055	.28354	.28650	.28945	.29237
150	ī.29528	ī.29816	1.30103	ī.30388	1.30671	1.30952	1.31231	1.31 509	1.31784	ī.32058
160	.32331	.32601	.32870	.33137	.33403	.33667	.33929	.34190	.34450	•34707
170	.34964	.35218	.35471	.35723	.35974	.36222	.36470	.36716	.36961	•37204
180	.37446	.37686	.37926	.38164	.38400	.38636	.38870	.39128	.39334	•39565
190	.39794	.40022	.40249	.40474	.40699	.40922	.41144	.41365	.41585	•41804
200	1.42022	1.42238	1.42454	1.42668	1.42882	1.43094	1.43305	1.43516	1.43725	1.43933
210	.44141	.44347	.44552	•447 57	.44960	.45162	.45364	.45565	.45764	.45963
220	.46161	.46358	.46554	•46749	.46943	.47137	.47329	.47521	.47712	.47902
230	.48091	.48280	.48467	•486 54	.48840	.49025	.49210	.49393	.49576	.49758
240	.49940	.50120	.50300	•50479	.50658	.50835	.51012	.51188	.51364	.51539
250	1.51713	1.51886	1.52059	ī .52231	1.52402	ī.52573	ī.52743	1.52912	1.53081 .54732 .56323 .57858 .59340	ī.53249
260	.53416	.53583	·53749	.53914	.54079	.54243	.54407	.54570		.54894
270	.55055	.55216	·55376	.55535	.55694	.55852	.56010	.56167		.56479
280	.56634	.56789	·56944	.57097	.57250	.57403	.57555	.57707		.58008
290	.58158	.58308	·5 ⁸ 457	.58605	.5 ⁸ 753	.58901	.59048	.59194		.59486
300	1.59631	1.59775	1.59919	ī.60063	1 .60206	ī.60349	1.60491	1.60632	1.60774	1.60914
310	.61055	.61195	.61334	.61473	.61611	.61750	.61887	.62025	.62161	.62298
320	.62434	.62569	.62704	.62839	.62973	.63107	.63240	.63373	.63506	.63638
330	.63770	.63901	.64032	.64163	.64293	.64423	.64553	.64682	.64810	.64939
340	.65067	.65194	.65321	.65448	.65574	.65701	.65826	.65952	.66077	.66201

DENSITY OF AIR.

Values of logarithms of $\frac{h}{760}$ for values of h between 350 and 800.

					Values o	tlog h				
h	-					760				
	0	1	2	3	4	5	6	7	8	8
350	1.66325	ī.66449	1.66573	ī.66696	1.66819	1.66941	1.67064	1.67185	ĩ .67307	1.67428
360	.67549	.67669	.67790	.67909	.68029	.68148	.68267	.68385	.68503	.68621
370	.68739	.68856	.68973	.69090	.69206	.69322	.69437	.69553	.69668	.69783
380	.69897	.70011	.70125	. 7 0239	.70352	.70465	.70577	.70690	.70802	.70914
390	.71025	.71136	.71247	. 7 1 35 8	.71468	.71578	.71688	.71798	.71907	.72016
400	1.72125	1. 72233	1.72341	1.72449	1.72557	1.72664	1.72771	1.72878	ī.72985	1 .73091
410	.73197	.73303	.73408	.73514	.73619	.73723	.73828	.73932	.74036	.74140
420	.74244	.74347	.74450	.74553	.74655	.74758	.74860	.74961	.75063	.75164
430	.75265	.75366	.75467	.75567	.75668	.75768	.75867	.75967	.76066	.76165
440	.76264	.76362	.76461	.76559	.76657	.76755	.76852	.76949	.77046	.77143
450	1.77240	1.77336	1.77432	1.77528	1.77624	1.77720	1.77815	ī.77910	ī.78005	1.78100
460	.78194	.78289	.78383	.78477	.78570	.78664	.78757	.78850	.78943	.79036
470	.79128	.79221	.79313	.79405	.79496	.79588	.79679	.79770	.79861	.79952
480	.80043	.80133	.80223	.80313	.80403	.80493	.80582	.80672	.80761	.80850
490	.80938	.81027	.81115	.81203	.81291	.81379	.81467	.81554	.81642	.81729
500	T.81816	1.81902	1.81989	1.82075	1.82162	1.82248	1.82334	1.82419	1.82505	1.82590
510	.82676	.82761	.82846	.82930	.83015	.83099	.83184	.83268	.83352	.83435
520	.83519	.83602	.83686	.83769	.83852	.83935	.84017	.84100	.84182	.84264
530	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
540	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	1.85955	1.86034	ī.86113	1.86191	1.86270	1.86348	1.86426	1.86504	1.86582	ī.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87582	.87658	.87734	.87810	.87885	.87961	.88036	.88111	.88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	.89589	.89661
600	1.89734	1.89806	1.89878	1.89950	1.90022	1.90094	1.90166	ī.90238	1.90309	1.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	.91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91507	.91576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	ī.93210	1.93277	1.93343	1.93410	1.93476	1.93543	1.93609	1.93675	1.93741	ī.93807
660	.93873	.93939	.94004	.94070	.94135	.94201	.94266	.94331	.94396	.94461
670	.94526	.94591	.94656	.94720	.94785	.94849	.94913	.94978	.95042	.95106
680	.95170	.95233	.95297	.95361	.95424	.95488	.95551	.95614	.95677	.95741
690	.95804	.95866	.95929	.95992	.96055	.96117	.96180	.96242	.96304	.96366
700	1.96428	1.96490	1.96552	1.96614	1.96676	ī.96738	1.96799	1.96861	1.96922	1.96983
710	.97044	.97106	.97167	.97228	.97288	.97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	.97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	.98547	· .98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	.99134	.99193	.99251	.99309	.99367
750	1.99425	1.99483	1.99540	1.99598	7.99656	1.99713	1.99771	1.99828	ī.99886	1.99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	.00568	.00624	.00680	.00737	.00793	.00849	.00905	.00961	.01017	.01072
780	.01128	.01184	.01239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173

TABLE 156.

VOLUME OF CASES.

Values of 1 + .00367 t.

- The quantity 1 + .00367 t gives for a gas the volume at t^0 when the pressure is kept constant, or the pressure at t^0 when the volume is kept constant, in terms of the volume or the pressure at 0^0 .
- (a) This part of the table gives the values of 1+.00367t for values of t between 0° and 10° C. by tenths of a degree.
- (b) This part gives the values of 1 + .00367 t for values of t between 90° and + 1990° C. by 10° steps.
- These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows: In the (δ) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (α) table which corresponds to the difference between the nearest temperature in the (δ) table and the actual temperature. For example, let the temperature be $632^\circ.2$:

We have for 680 in table (δ) the number	•	•	•	•	3.49560
And for 2.2 in table (a) the decimal .	•			•	.00807
Hence the number for 682.2 is .	•	•	•	•	3.50367

- (0) This part gives the logarithms of 1 + .00367t for values of t between -49° and $+399^{\circ}$ C. by degrees.
- (d) This part gives the logarithms of 1 + .00367t for values of t between 400° and 1990°
 C. by 10° steps.

(a)	Values of	1+.00387t for	Values of	t between	0° and	10° C	. by	Tenths
			of a Deg	3100.				

TABLE 156 (continued).

VOLUME OF GASES.

00	10	20	30	40
1.00000	0.96330	0.92660	0.88990	0.85320
1.00000	1.03670	1.07340	1.11010	1.14680
1.36700				1.51380
1.73400			1.84410	1.88080
2.10100			2.21110	2.24780
2.46800	2.50470	2.54140	2.57810	2.61480
2.83500	2.87170	2.90840	2.04510	2.98180
3.20200	3.23870		3.31210	3.34880
3.56900	3.60570	3.64240	3.67910	3.71580
3.93600	3.97270			4.08280
4.30300	4.33970	4.37640	4.41310	4.44980
4.67000	4.70670	4.74340	4.78010	4.81680
5.03700	5.07370	5.11040	5.14710	5.18380
		5.47740	5.51410	5.55080
		5.84440	5.88110	5.91780
6.13800	6.17470	6.21140	6.24810	6.28480
6.50500	6.54170	6.57840	6.61510	6.65180
			6.08210	7.01880
				7.38580
7.60600				7.75280
7.97300	8.00970	8.04640	8.08310	8.11980
8.34000	8.37670	8.41340	8.45010	8.48680
50	80	70	80	80
0.81650	0.77980	0.74310	0.70640	0.66970
1 18250	T 22020	1.25600	1.20360	1.33030
				1.69730
			-	
	L L05420	I I.00000	2.02760	2.06430
1.91750	1.95420	1.99090 2.35790	2.02760 2.39460	2.06430 2.43130
	1.95420 2.32120 2.68820	2.35790 2.72490	2.02760 2.39460 2.76160	2.06430 2.43130 2.79830
1.917 50 2.284 50 2.651 50	2.32120 2.68820	2.35790 2.72490	2.39460 2.76160 3.12860	2.43130 2.79830
1.917 50 2.284 50 2.651 50 3.018 50	2.32120 2.68820 3.05520	2.35790 2.72490 3.09190	2.39460 2.76160 3.12860	2.43130 2.79830 3.16530 3.53230
1.917 50 2.284 50 2.651 50 3.018 50 3.38 550	2.32120 2.68820 3.05520 3.42220	2.35790 2.72490 3.09190 3.45890	2.39460 2.76160 3.12860	2.43130 2.79830 3.16530 3.53230
1.917 50 2.284 50 2.651 50 3.018 50 3.38 550 3.7 52 50	2.32120 2.68820 3.05520 3.42220 3.78920	2.35790 2.72490 3.09190 3.45890 3.82590	2.39460 2.76160 3.12860 3.49560 3.86260	2.43130 2.79830 3.16530
1.917 50 2.284 50 2.651 50 3.018 50 3.38 550	2.32120 2.68820 3.05520 3.42220	2.35790 2.72490 3.09190 3.45890	2.39460 2.76160 3.12860	2.43130 2.79830 3.16530 3.53230 3.89930
1.917 50 2.284 50 2.651 50 3.38550 3.38550 3.75250 4.11950 4.48650	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360	2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030
1.917 50 2.284 50 2.651 50 3.018 50 3.38 550 3.7 52 50 4.119 50 4.486 50 4.85 350	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360	2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
1.917 50 2.284 50 2.651 50 3.018 50 3.38 550 3.7 52 50 4.119 50 4.486 50 4.85 350 5.220 50	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	2.35790 2.72490 3.00190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760	2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
1.917 50 2.284 50 2.651 50 3.38550 3.38550 3.752 50 4.11950 4.486 50 4.853 50 5.220 50 5.587 50	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020	2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.69760 5.69760 6.06460	2.43130 2.79830 3.16530 3.53230 4.26630 4.63330 5.00030 5.70330 5.73430 6.10130
1.917 50 2.284 50 2.651 50 3.018 50 3.38 550 3.7 52 50 4.119 50 4.486 50 4.85 350 5.220 50	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	2.35790 2.72490 3.00190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760	2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
1.917 50 2.284 50 2.651 50 3.38550 3.38550 3.722 50 4.11950 4.486 50 4.486 50 4.853 50 5.220 50 5.587 50 5.954 50 6.321 50	2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.52320 4.80020 5.25720 5.62420 5.99120 6.35820	2.35790 2.72490 3.45890 3.45890 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790 6.39490	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	2.43130 2.79830 3.16530 3.53230 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830
1.917 50 2.284 50 2.651 50 3.38550 3.38550 4.11950 4.486 50 4.485 350 5.220 50 5.587 50 5.954 50 6.321 50 6.688 50	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.80020 5.62420 5.62420 5.99120 6.35820 6.72520	2.35790 2.72490 3.45890 3.45890 4.19290 4.55990 4.92690 5.20390 5.66090 6.02790 6.39490 6.76190	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560	2.43130 2.79830 3.16530 3.53230 4.26630 4.63330 5.00030 5.7030 5.73430 6.10130
1.917 50 2.28450 2.651 50 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.62420 5.62420 5.99120 6.35820 6.72520 7.09220	2.35790 2.72490 3.45890 3.45890 4.19290 4.55990 4.92690 5.20390 5.66090 6.02790 6.39490 6.76190 7.12890	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560	2.43130 2.79830 3.16530 3.53230 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.50930
1.917 50 2.284 50 2.651 50 3.018 50 3.752 50 4.119 50 4.486 50 4.853 50 5.220 50 5.587 50 5.954 50 6.321 50 6.688 50 7.055 50 7.422 50	2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.52320 4.80020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920	2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890 7.49590	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560	2.43130 2.79830 3.16530 3.53230 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.50930
1.917 50 2.28450 2.651 50 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550	2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.62420 5.62420 5.99120 6.35820 6.72520 7.09220	2.35790 2.72490 3.45890 3.45890 4.19290 4.55990 4.92690 5.20390 5.66090 6.02790 6.39490 6.76190 7.12890	2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33660 5.69760 6.06460 6.43160 6.79860	2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.753430 6.10130 6.46830 6.83530 7.20230
	I.00000 I.36700 I.73400 2.10100 2.46800 2.83500 3.20200 3.56900 3.93600 4.30300 4.67000 5.40400 5.77100 6.13800 6.50500 6.87200 7.23900 7.97300 8.34000 50 0.81650 I.18350 I.55050	I.00000 0.96330 I.00000 I.03670 I.36700 I.40370 I.73400 I.77070 2.10100 2.13770 2.46800 2.50470 2.83500 3.60570 3.23870 3.60570 3.20200 3.23870 3.56900 3.60570 3.93000 4.33970 4.67000 4.70670 5.40400 5.4470 5.77100 5.80770 6.13800 6.17470 6.50500 6.54170 6.87200 6.90870 7.27570 7.60600 7.64270 8.00970 8.34000 8.37670 50 80 0.81650 0.77980 1.18350 1.22020 1.58050 1.58720	I.00000 0.96330 0.92660 I.00000 I.03670 I.07340 I.36700 I.40370 I.44040 I.73400 I.77070 I.80740 2.10100 2.13770 2.17440 2.46800 2.50470 2.54140 2.83500 2.87170 2.90840 3.20200 3.23870 3.27540 3.56900 3.60570 3.64240 3.93000 3.97270 4.00940 4.30300 4.33970 4.37640 4.67000 4.70670 5.4740 5.03700 5.07370 5.11040 5.40400 5.4470 5.47740 5.77100 5.80770 5.84440 6.13800 6.17470 6.21140 6.50500 6.54170 6.57840 6.87200 6.90870 7.64270 7.60600 7.64270 7.67940 7.97300 8.00970 8.41340 8.34000 8.37670 8.41340 50 80 70	I.00000 0.96330 0.92660 0.88990 I.00000 I.03670 I.07340 I.11010 I.36700 I.40370 I.44040 I.47710 I.73400 I.77070 I.80740 I.84410 2.10100 2.13770 2.17440 I.84410 2.46800 2.50470 2.54140 2.21110 2.46800 2.50470 2.54140 2.57810 2.83500 3.287170 2.90840 2.94510 3.20200 3.23870 3.27540 3.31210 3.56900 3.60570 3.64240 3.67910 3.93000 3.97270 4.00940 4.04610 4.30300 4.73870 5.11040 5.14710 5.03700 5.07370 5.11040 5.14710 5.40400 5.44070 5.47740 5.88110 6.13800 6.17470 6.21440 5.88110 6.13800 6.54170 6.57840 6.61510 6.87200 6.90870 7.31240 7.34910 <td< td=""></td<>

(b) Values of 1 + .00387t for Values of t between -90° and $+1990^{\circ}$ C. by 10° Steps.

VOLUME OF

(c) Logarithms of 1 + .00367 t for Values

t	0	1	2	3	4	Mean diff. per degree.
40	ī 931051	1.929179	ī.927299	1.925410	1.923513	1884
30	.949341	.947 546	•945744	.943934	.942117	1805
20	.966892	.96 5169	•963438	.961701	.959957	1733
10	.983762	.982104	•980440	.978769	.977092	1667
0	0.000000	.998403	•996801	.995192	.993577	1605
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	.01 5653	.017188	.018717	.020241	.021760	1526
20	.030762	.032244	.033721	.035193	.036661	1474
30	.045362	.046796	.048224	.049648	.051068	1426
40	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.07 58 53	0.077190	0.078522	1335
60	.086431	.087735	.089036	.090332	.091624	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.147274	.248408	.149539	.150667	.151793	1129
120	.158483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150	0.190472	0.191498	0.192523	0.193545	0.194564	1023
160	.200632	.201635	.202635	.203634	.204630	1000
170	.210559	.211540	.212518	.213494	.214468	976
180	.220265	.221224	.222180	.223135	.224087	956
190	.229759	.230697	.231633	.232567	.233499	935
200	0.239049	0.239967	0.240884	0.241798	0.2427 10	915
210	.248145	.249044	.249942	.250837	.251731	897
220	.257054	.257935	.258814	.259692	.260567	878
230	.265784	.266648	.267510	.268370	.269228	861
240	.274343	.275189	.276034	.276877	.2777 19	844
250	0.282735	0.283566	0.284395	0.285222	0.286048	828
260	.290969	.291784	.292597	.293409	.294219	813
270	.299049	.299849	.300648	.301445	.302240	798
280	.306982	.307768	.308552	.309334	.310115	784
290	.314773	.315544	.316314	.317083	.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	•329947	.330692	-331435	.332178	.332919	743
320	•337339	.338072	-338803	.339533	.340262	730
330	•344608	.345329	-346048	.346766	.347482	719
340	•351758	.352466	-353174	.353880	.354585	707
350	0.358791	0.359488	0.360184	0.360879	0.361573	696
360	.365713	.366399	.367084	.367768	.368451	684
370	.372525	.373201	.373875	.374549	.375221	674
380	.379233	.379898	.380562	.381225	.381887	664
390	.385439	.386494	.387148	.387801	.388453	6 ₅ 4

CASES.

of t between -49° and $+399^{\circ}$ C. by Degrees.

t	5	6	7	8	9	Mean diff. per degree.
40	1.921608	1.919695	1.917773	1.915843	1.913904	1 925
30	.940292	.938460	.936619	.934771	.932915	184 5
20	.958205	.956447	.954681	.952909	.951129	1771
10	.975409	.973719	.972022	.970319	.968609	1699
0	.991957	.990330	.988697	.987058	.985413	1636
+0	0.007897	0.009459	0.011016	0.012567	0.014113	1554
10	.023273	.024781	.026284	.027782	.029274	1 500
20	.038123	.039581	.041034	.042481	.043924	14 50
30	.052482	.053893	.055298	.056699	.058096	1402
40	.066382	.067748	.069109	.070466	.071819	1 359
50	.0.079847	0.081174	0.082495	0.083811	0.085123	1315
60	.092914	.094198	.095486	.09676 5	.098031	1281 ·
70	.105595	.106843	.108088	.109329	.110566	1243
80	.117917	.119130	.120340	.121547	.122750	1210
90	.129899	.131079	.132256	.133430	.134601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.152915	.154034	.155151	.156264	.157375	1115
120	.163981	.164072	.166161	.167246	.168330	1087
130	.174772	.175836	.176898	.177958	.179014	1060
140	.185301	.186340	.187377	.188411	.189443	1035
150	0.195581	0.196596	0.197608	0.198619	0.199626	1011
160	.205624	.206615	.207605	.208592	.209577	988
170	.215439	.216409	.217376	.218341	.219304	966
180	.225038	.225986	.226932	.227876	.228819	946
190	.234429	.235357	.236283	.237207	.238129	925
200	0.243621	0.244529	0.245436	0.246341	0.247244	906
210	.252623	.253512	.254400	.255287	.256172	887
220	.261441	.262313	.263184	.264052	.264919	870
230	.270085	.270940	.271793	.272644	.273494	853
240	.278559	.279398	.280234	.281070	.281903	836
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	.295835	.296640	.297445	.298248	805
270	.303034	.303827	.304618	.305407	.306196	790
280	.310895	.311673	.312450	.313226	.314000	776
290	.318616	.319381	.320144	.320906	.321667	763
300	0.326203	0.326954	0.327704	0.328453	c. 329201	750
310	.333659	•334397	.335135	.335871	.336606	737
320	.340989	•341715	.342441	.343164	.343887	724
330	.348198	•348912	.349624	.350337	.351048	713
340	.355289	•355991	.356693	.357394	.35 ⁸⁰ 93	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.369132	.369813	.370493	.371171	.371849	678
370	.375892	.376562	.377232	.377900	.378567	668
380	.382548	.383208	.383868	.384525	.385183	658
390	.389104	.389754	.390403	.391052	.391699	648

TABLE 156 (continued).

VOLUME OF GASES.

(d) Logarithms of 1 + .00367 t for Values of t between 400° and 1990° C. by 10° Steps.

t	00	10	20	30	40	
400	0.392345	0.398756	0.405073	0.411300	0.417439	
500	0.452553	0.458139	0.463654	0.469100	0.474479	
600	.505421	.510371	.51 5264	.520103	.524889	
700	.552547	.556990	.561388	.565742	.570052	
800	.595055	.599086	.603079	.607037	.610958	
900	.633771	.637460	.641117	.644744	.648341	
1000	0.669317	0.672717	0.676090	0.679437	0.6827.59	
1100	.702172	.705325	.708455	.711563	.714648	
1200	.732715	.735655	.738575	.741475	.744356	
1300	.761251	.764004	.738575 .766740	.769459	.772160	
1400	.788027	.790616	.793190	.795748	.798292	
1500	0.81 3247	0.81 5691	0.818120	0.820536	0.822939	
1600	.837083	.839396	.841697	.843986	.846263	
1700	.859679	.861875	.864060	.866234	.868398	
1800	.881156	.883247	.885327	.887398	.000390	
1900	.901622	.903616	.005327	.00/390	.889459	
1900	.901022	.903010	.905602	.907578	.909545	
t	50	60	70	80	90	
400	0.423492	0.429462	0.435351	0.441161	0.446894	
	0.423492	0.429402			0.440094	
500						
500 600	0.479791	0.485040	0.490225	0.495350	0.500415	
	0.479791 .529623	0.485040	0.490225 .538938	0.495350 .543522	0.500415 .548058	
600	0.479791 .529623 .574321	0.485040 .534305 .578548	0.490225 .538938 .582734	0.495350 .543522 .586880	0.500415 .548058 .590987	
600 700	0.479791 .529623	0.485040	0.490225 .538938	0.495350 .543522	0.500415 .548058	
600 700 800	0.479791 .529623 .574321 .614845 .651908	0.485040 •534305 •578548 •618696 •655446	0.490225 .538938 .582734 .622515 .658955	0.495350 .543522 .586880 .626299 .662437	0.500415 .548058 .590987 .630051 .665890	
600 700 800 900	0.479791 .529623 .574321 .614845 .651908 0.686055	0.485040 •534305 •578548 •618696 •655446 0.689327	0.490225 .538938 .582734 .622515 .658955 0.692574	0.495350 -543522 -586880 .626299 .662437 0.695797	0.500415 .548058 .590987 .630051 .665890 0.698996	
600 700 800 900 1000	0.479791 .529623 .574321 .614845 .651908 0.686055 .717712	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776	0.495350 .543522 .586880 .626299 .662437 0.695797 .726776	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756	
600 700 800 900 1000 1100 1200	0.479791 .529623 .574321 .614845 .651908 0.686655 .717712 .747218	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886	0.495350 .543522 .586880 .626299 .662437 0.695797 .726776	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756	
600 700 800 900 1000 1100	0.479791 .529623 .574321 .614845 .651908 0.686055 .717712	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776	0.495350 -543522 -586880 .626299 .662437 0.695797	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422	
600 700 800 900 1000 1100 1200 1300	0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834	0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790	
600 700 800 900 1000 1100 1200 1300 1400 1500	0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .75061 .777514 .803334 0.827705	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752386 .780166 .805834 0.830069	0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758	
600 700 800 900 1000 1200 1300 1400 1500 1600	0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .723866 .780166 .805834 0.830069 .853023	0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471	
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .75061 .777514 .803334 0.827705 .850781 .872692	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .76066 .805834 0.830069 .853023 .874824	0.495350 .543522 .56880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056	
600 700 800 900 1000 1200 1300 1400 1500 1600	0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528	0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781	0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .723866 .780166 .805834 0.830069 .853023	0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253	0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471	

DETERMINATION OF HEICHTS BY THE BAROMETER.

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.
 $C \text{ (in feet)} = 52494 \left[x + \frac{t_0 + t - 64}{900} \right]$ English measures.
 $C \text{ (in meters)} = 16000 \left[x + \frac{2(t_0 + t)}{1000} \right]$ metric measures.

In which Z = difference of height of two stations in feet or metera. $B_0, B =$ barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

Enc	SLISH MEAS	SURES.	METRIC MEASURES.				
$\frac{1}{2}(t_0+t).$	с	Log C	$\frac{1}{2}(t_0+t).$	с	Log C		
Fahr. 10° 15 20 25 30 35 40 45 50 55 60 65	Feet. 49928 50511 51094 51677 52261 52844 53428 54011 54595 55178 55761 56344	4.69834 .70339 4.70837 .71330 4.71818 .72300 4.72777 .73248 4.73715 .74177 4.74633 .75085	$\begin{array}{c} \text{Cent.} \\ -10^{\circ} \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ +2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \end{array}$	Meters. 1 5360 1 5488 1 5616 1 5744 1 5872 16000 16128 16285 16384 16512 16640 16768 16896 17024 17152	4.18639 .19000 .19357 .19712 .20063 4.20412 .20758 .21101 .21442 .21780 4.22115 .22448 .22778 .23106 .23431		
70 75 80 85 90 95 100	56927 57511 58094 58677 59260 59844 60427	4.7 5532 .7 597 5 4.7 64 1 3 .7 68 47 4.7 7 2 7 6 .7 7 7 0 2 4.7 8 1 2 3	20 22 24 26 28 30 32 34 36	17280 17408 17536 17664 17792 17920 18048 18176 18304	4.237 54 .2407 5 .24393 .24709 .25022 4.25334 .25043 .25950 .26255		

Values o	t C	
----------	-----	--

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables, 3 revised ed. 1906-SMITHSONIAN TABLES.

BAROMETRIC

Barometric pressures corresponding to different This table is useful when a boiling-point apparatus is used

	1		1 .		1	1	1 •	1		
Temp. ^o F.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
185	17.06	17.09	17.13	17.17	17.20	17.24	17.28	17.32	17.35	17.39
186	17.42	17.47	17.51	17.54	17.58	17.62	17.66	17.70	17.74	17.77
187	17.81	17.85	17.89	17.93	17.97	18.01	18.05	18.08	18.12	18.16
188	18.20	18.24	18.28	18.32	18.36	18.40	18.44	18.48	18.52	18.56
189	18.60	18.64	18.68	18.72	18.76	18.80	18.84	18.88	18.92	18.96
190	19.00	19.04	19.08	19.12	19.16	19.21	19.25	19.29	19.33	19.37
191	19.41	19.45	19.49	19.54	19.58	19.62	19.66	19.70	19.75	19.7 9
192	19.83	19.87	19.91	19.96	20.00	20.04	20.08	20.13	20.17	20.21
193	20.26	20.30	20.34	20.38	20.43	20.47	20.51	20.56	20.60	20.64
194	20.68	20.73	20.78	20.82	20.86	20.91	20.95	20.99	21.04	21.08
195	21.13	21.17	21.22	21.2б	21.31	21.35	21.40	21.44	21.48	21.53
196	21.58	21.62	21.67	21.71	21.76	21.80	21.85	21.90	21.94	21.9 9
197	22.03	22.08	22.13	22.17	22.22	22.27	22.31	22.36	22.41	22.45
198	22.50	22.55	22.59	22.64	22.69	22.73	22.78	22.83	22.88	22.92
199	22.97	23.02	23.07	23.12	23.16	23.21	23.26	23.31	23.36	23.40
200	23.45	23.50	23.55	23.60	23.65	23.70	23.75	23.79	23.84	23.89
201	23.94	23.99	24.04	24.09	24.14	24.19	24.24	24.29	24.34	24. 39
202	24.44	24.49	24.54	24.59	24.64	24.69	24.74	24.79	24.85	24.90
203	24.95	2 5.00	25.05	25.10	25.15	25.20	25.26	25.31	25.36	25.41
204	25.46	2 5. 52	25.57	25.62	25.67	25.72	25.78	25.83	25.88	25.94
205	25.99	26.04	26.09	26.15	26.20	26.25	26.31	26.36	26.41	26.47
206	26.52	26.58	26.63	26.68	26.74	26.79	26.85	26.90	26.96	27.01
207	27.06	27.12	27.17	27.23	27.28	27•34	27.39	27.45	27.51	27.56
208	27.62	27.67	27.73	27 . 78	27.84	27.90	27 95	28.01	28 .0 7	28.12
209	28.18	28.24	28.29	28.35	28.41	28.46	28.52	28.58	28.63	28.69
210	28.75	28.81	28.87	28.92	28.98	29.04	29.10	29.16	29.21	29.27
211	29.33	29.39	29.45	29.51	29.57	29.63	29.68	2 9. 74	29.80	29.86
212	29.92	29.98	30.04	30.10	30.16	30.22	30.28	30.34	30.40	30.46

(a) Common Measure.*

* Pressures in inches of mercury.

The values at the lower temperatures are perhaps $\frac{1}{2}\%$ too low. Table (b) is based on more recent data (1913). SMITHSONIAN TABLES.

PRESSURES.

temperatures of the boiling-point of water.

in place of the barometer for the determination of heights.

Temp. ⁰ C.	.0	.1	.2	.3	.4	.5	.8	.7	.8	.9
80 °	355-5	356.9	358.4	359.8	361.3	362.7	364.2	365.7	367.1	368.6
81	370.1	371.6	373.1	374.6	376.1	377.6	379.1	380.6	382.2	383.7
82	385.2	386.8	388.3	389.9	391.4	393.0	394.6	396.2	397.7	399.3
83	400.9	402.5	404.I	405.7	407.3	408.9	410.5	412.2	413.8	415.4
84	417.1	418.7	420.4	422.0	423.7	425.4	427.0	428.7	430.4	432.1
85	433.8	435·5	437.2	438.9	440.6	442.4	444.1	445.8	447.6	449.3
86	451.1	452.8	454.6	456.4	458.1	459-9	461.7	463.5	465.3	467.1
87	468.9	470.7	472.5	474.4	476.2	478.0	479.9	481.7	483.6	485.5
88	487.3	489.2	491. 1	493.0	494.9	496.8	498.7	500.6	502.5	504.4
* 89	506.4	508.3	510.2	512.2	514.1	516.1	518.1	520.0	522.0	524.0
90	526.0	528.0	530.0	532.0	534.0	536.0	538.1	540.1	542.2	544.2
91	546.3	548.3	550.4	552.5	554.6	556.6	558.7	560.8	563.0	565.1
92	567.2	569.3	571.4	573.6	575.7	577.9'	580.1	582.2	584.4	586.6
93	588.8	591.0	593.2	595.4	597.6	599.8	602.0	604.3	606.5	608.8
94	611.0	613.3	615.6	617.8	620.1	622.4	624.7	627.0	629.4	631.7
95	634.0	636.3	638.7	641.0	643.4	645.8	648.1	650.5	652.9	655.3
96	657.7	660.1	662.5	664.9	667.4	669.8	672.2	674.7	677.2	679.6
97	682.1	684.6	687.1	689.6	692.1	694.6	697.1	699.6	702.2	704.7
98	707.3	709.8	712.4	71 5.0	717.6	720.2	722.8	725.4	728.0	730.6
99	733.2	735.9	7 38.5	741.2	743.8	746.5	749.2	751.9	754.6	757.3
100	760.0	762.7	765.4	768.2	770.9	77 3.7	776.4	779.2	782.0	784.8

(b) Metric Measure.*

* Pressure in millimeters of mercury.

STANDARD WAVE-LENGTHS.

TABLE 159. -- Absolute Wave-length of Red Cadmium Line in Air, 760 mm. Pressure, 15° C.

6438.4722	Michelson, Travaux et Mém. du Bur. intern. des Poids et Mesures, 11, 1895.
6498 4000	Michalson corrected by Benoit, Fabry, Perot. C. R. 144, 1082, 1907.
6438.4696	(accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

TABLE 160. - International Secondary Standards. Iron Arc Lines.

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard = Cd. line, $\lambda = 6438.4696$ Ångströms (serving to define an Ångström). 760 mm., 15° C. Iron rods, 7 mm. diam. length of arc, 6 mm; 6 amp. for λ greater than 4000 Ångströms, 4 amp. for lesser wave-lengths; continuous current, + pole above the -, 220 volts; source of light, 2 mm. at arc's center. Lines adopted in 1910.

| Wave-length. |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 4282.408 | 4547.853 | 4789.657 | 5083.344 | 5405.780 | 5615,661 | 6230.734 |
| 4315.089 | 4592.658 | 4878.225 | 5110.415 | 5434-527 | 5658,836 | 6265.145 |
| 4375.934 | 4602.947 | 4903.325 | 5167.492 | 5455.614 | 5763,013 | 6318.028 |
| 4427.314 | 4647.439 | 4919.007 | 5192.363 | 5497.522 | 6027,059 | 6335.341 |
| 4466.556 | 4691.417 | 501.881 | 5232.957 | 5506.784 | 6065,492 | 6393.612 |
| 4494.572 | 4707.288 | 5012.073 | 5266.569 | 5569.633 | 6137,701 | 6430.859 |
| 4531.155 | 4736.786 | 5049.827 | 5371.495 | 5586.772 | 6191,568 | 6494.993 |

TABLE 161. - International Secondary Standarde. Iron Arc Lines.

Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
3370.789 3399.337 3485.345 351.3821 3556.881	3606.682 3640.392 3676.31 3 3677.629 3724.380	37 53.61 5 3805.346 3843.261 3850.820 3865.527	3906.482 3907.937 3935.818 3977.746 4021.872	4076.642 4118.552 4134.685 4147.676 4191.443	4233.615 5709.396 6546.250 6592.928 6678.004	67 50.250 58 57.7 59 Ni 5892.882 Ni

(1) Astrophysical Journal, 28, p. 169, 1908;
 (2) Ditto, 28, p. 197, 1908;
 (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, *ibid.* 36, p. 1071, 1911; Buisson et Fabry, *ibid.* 38, p. 245, 1912;
 (4) Astrophysical Journal, 39, p. 93, 1914.

TABLE 162. - Some of the Stronger Lines of Some of the Elements.

Barium . 5535-7 Cæsium . 4555-4 " . 4593-3 Calcium . 5589.0 Cadmium 4799-9 " . 5085.8 " . 6438.5 Lithium	. 5875.8 . 5876.2 n 4101.8 . 4340.7 . 4861.5 . 6563.0 . 6708.2	Magnesium " Mercury Potassium Rubidium	5167.5 5172.9 5183.8 5461.0 7668.5 7701.9 6298.7	Sodium . "Strontium " Thallium.	5890.2 5896.2 4607.5 5481.2 6408.6 5350.6
---	--	--	--	--	--

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Ångström units (10^{-7} mm.) , in air at 20° C and 76 cm. of mercury pressure. The intensities run from 1, just clearly visible on the map, to 1000 for the H and K lines; below I in order of faintness to 0000 as the lines are more and more difficult to see. This table contains only the lines above 5.

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appear-Indicates a line not clearly defined, probably an undissolved multiple line; s, a laded appeal-ing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indicates atmospheric lines, (wv), due to water vapor, (O), due to Oxygen.

Wave- leogth.	Substance.	Inten- sity.	Wave-leogth.	Substance.	Intea- sity.	Wave- length.	Sub- stauce.	Inten- sity.
3037.5108 3047.7258 3053.5308 3054.429 3057.528 3059.2128 3067.3698 3073.091 3078.7698 3088.1458 3134.2308 3134.2308 3134.2308 3236.7038 3239.170 3242.125 3243.189 3247.6888 3256.021 3267.8348 3271.129 3274.068 3277.482 3286.898 329.9518 3302.5108 3315.807 3318.1608 3320.391 3336.820 3349.597 3361.327 3365.908 3366.311 3369.713	Fe Fe Fe Fe Fe Fe Fe Ti, - Ti Ti, - Ti Ti, - Ti Ti, - Ti Ti, - Ti Ti, - Fe Ti Cu Co-Fe Fe, Mn Ni Ti Ni Se Fe, Ni Ti Fe, Fe Ti Ti Fe Fe Ti Ti Fe Fe Ti Ti Fe Fe Ti Ti Fe Fe Ti Ti Fe Fe Ti Ti Ti Fe Fe Ti Ti Ti Ti Fe Fe Ti Ti Ti Ti Fe Fe Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti	10 N 20 N 7 d? 10 20 20 8 d? 7 d? 8 d? 7 d? 8 d? 7 d? 6 6 d? 6 7 d? 6 7 d? 6 7 d? 6 7 d? 6 7 d? 5 8 d? 7 d? 7 8 6 7 d? 7 8 6 7 7 8 7 8 7 6 7 6 7 6 7 6 7 6 7 6	3372-947 3380.722 3414.911 3423.848 3433.715 3440.7628 0 3441.1558 0 3442.118 3444.0208 3444.0208 3444.0208 3444.0208 3444.0208 3444.0208 3444.0208 3444.0208 3445.039 3458.601 3462.950 3466.0158 3466.0158 3475.5948 3475.5948 3483.923 3483.923 3483.923 3483.923 3495.7338 3493.7338 3493.7338 3493.7338 3493.7338 3493.7338 3493.7338 3493.7338 3500.9968 3512.9658 3513.9658 3513.9658 3514.088 3524.677 3526.183 3526.088 3529.964 3533.156	Ti-Pd Ni Ni Ni, Cr Fe Fe Ni Co Fe Fe Ni Co Fe Fe Ni Fe Ni Co Fe Ni Fe Ni Fe Ni Co Fe Fe Fe Ni Co Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe	aiy. 10 d? 6 N 15 7 8 d? 20 15 6 d? 8 8 6 d? 8 8 6 d? 8 6 6 d? 8 6 6 d? 8 6 6 d? 8 6 6 d? 8 6 6 d? 6 d? 8 6 6 6 6 7 12 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6 7 8 6 6 6 6 6 6 7 8 6 6 6 6 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3533.345 3536.709 3541.237 3542.232 3555.079 3558.6728 3505.5358 3505.5358 3505.522 3570.2738 3572.014 3572.712 3578.832 3581.3498 3584.800 3585.105 3385.479 3575.479 3585.479 3575.4797.47975.	Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe F	$\begin{array}{c} \text{sity.} \\ 6 \\ 7 \\ 7 \\ 6 \\ 9 \\ 8 \\ 20 \\ 10 \\ 20 \\ 6 \\ 9 \\ 6 \\ 7 \\ 6 \\ 8 \\ 7 \\ 6 \\ 9 \\ 6 \\ 8 \\ 7 \\ 6 \\ 9 \\ 6 \\ 8 \\ 7 \\ 6 \\ 20 \\ 8 \\ 6 \\ 6 \\ 15 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $

Corrections to reduce Rowland's wave-lengths to standards of Table 160 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm. The differences "(Fabry-Buisson-arc-iron) - (Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and

the following values obtained :

w ave-length	3000.	3100.	3200.	3300.	3400	3500.	3000.	3/00.	
Correction	106	115	124	137	148	154	155	140	

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, 1-6, 1895-1897. SMITHSONIAN TABLES.

TABLE 163 (continued).

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.
3647.988s	Fe	12	3826.027s	Fe	20	404 5.97 5s	Fe	30
3651.247	Fe,-	6	3827.980	Fe	8	4055.701s	Mn	6
3651.614	Fe		3829.5015	Mg	10	4057.668	-	7
3676.457	Fe, Cr	7 6	3831.837	Ni	6	4063.759s	Fe	20
3680.069s	Fe	9	3832.450s	Mg	15	4068.137	Fe-Mn	6
3684.258s	Fe	7₫?	3834.364	Fe	10	4071.908s	Fe	
3685.339	Ťi	rod?	3838.435s	Mg-C		4077.8855	Ŝr	15 8
3686.141	Ti-Fe	6	3840.580s	Fe-C	25 8	4102.000H8	H, In	40N
3687.610s	Fe	Ğ	3841.195	Fe-Mn	10	4121.4778	Cr-Co	6d?
3689.614	Fe	ě	3845.606	C-Co	8d ?	4128.251	Ce-V	6d
3701.234	Fe	8	3850.118	Fe-Cr	10	4132.235	Fe-Co	10
3705.708s	Fe		3856.5248	Fe	8	4137.156	Fe	6
3706.175	Ca, Mn	9 6d?	3857.805	Cr–C	6d ?	4140.089	Fe	6
3709.3898	Fe	8	3858.442	Ni	7	4144.038	Fe	
3716.5918	Fe	7	3860.055s	Fe-C	20	4167.438	ге -	15 8
3720.0848	Fe	40	3865.674	Fe-C		4187.204	Fe	6
3722.6928	Ni	10	3872.639	Fe	7 6		Fe	6
3724.526	Fe	6	3878.152	Fe-C	8	4191.595	Fe	8
3732.5458	Co-Fe	6	3878.720	Fe	7Nd?	4202.198s	Ca	20 d?
3733.469s	Fe-	7d?	3886.434s	Fe			Fe Ca	
3735.0148	Fe	40	3887.196	Fe	15	4233.772	Fe	6 8
3737.2818	Fe	30	3894.211	re	7 8d	4236.112	Fe	0
37 38.466	10	6	3895.803	Fe		4250.2878	ге Fe	8
3743.508	Fe-Ti	6	3899.850	Fe	78	4250.945s	Cr	8 8
3745.7178	Fe	8		Cr, Fe, Mo	10	4254.505s	Fe	
3746.058s	Fe	6	3903.090 3904.023	CI, FE, MO	8d	4260.640s	Fe	10
3748.408s	Fe	10	3905.660s	Si	12	4271.9345	Cr	15 7d?
3749.6318	Fe	20	3906.628	Fe	10	4274.958s 4308.081sG	Fe	
37 53.732	Fe-Ti	6d?	3920.410	Fe	10		Fe	6 8
37 58.37 5s	Fe		3923.054	Fe	12d?	4325.939s 4340.634Hy	H	20N
37 59 447	Ťi	15 12d?	3923.034 3928.075s	Fe	8	4376.107s	Fe	^{20IN} 6
3760.196	Fe	5	3930.450	Fe	8	4383.720s	Fe	
3761.464	Ťi	7		-	8N	4404.9278	Fe	15
3763.945s	Fe	10	3933.523 3933.825sK	Ca	1000	4415.2938	Fe	10 8
3765.689	Fe	Ğ	3934.108	Co, V-Cr	8N	4442.510	Fe	6
3767.3418	Fe	8	3944.160s	Al		4447.8928	Fe	6
3775.717	Ni		3956.819	Fe	15 6	4494.7.38s	Fe	6
3783.6748	Ni	76	3957.177s	Fe-Ca	7d ?	4528.798	Fe	8
3788.046s	Fe		3961.6748	Al	20	4534.139	Ti-Čo	6
3795.147s	Fe	8	3968.350	-, Zr	6N	4549.808	Ti-Co	64?
3798.655s	Fe	6	3968.62 5sH	Ca	700	4554.2118	Ba	8
3799.693s	Fe		3968.886	-	6N	4572.156s	Ti-	6
3805.486s	Fe	7 6	3969.413	Fe	10	45/2.1505	Fe	° 6
3806.865	Mn-Fe	8d ?	3974.904	Co-Fe	6d ?	4629.5215	Ti-Co	6
3807.293	Ni	6	3977.89 IS	Fe	6	4679.0278	Fe	6
3807.681	V-Fe	6	3986.903s	_	6	4703.177S	Mg	10
3814.698	-	8	400 5.408	Fe	7	4714.599s	Ni	6
3815.987s	Fe	15	4030.918s	Mn	rod?	4736.963	Fe	6
3820.586sL	Fe–C		4033.2248	Mn	8d?	47 54.22 5s	Mn	
3824.591	Fe	25 6	4034.644s	Mn	6d	4783.613s	Mn	7
		[7, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		· ·

Corrections to reduce Rowland's wave-lengths to standards of Table 160 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

Correction	1 3600. 155	3700. 140	3800. — 1 14 1	3900. — .144	4000. 148	4100. 152	4200. — . 156	4300. 161	4400. 167	4500.	4600. 176	4700.	4800.	
------------	----------------	--------------	-------------------	-----------------	--------------	--------------	------------------	--------------	--------------	-------	--------------	-------	-------	--

TABLE 163 (continued).

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave-length.	Sub- stance.	Inten- sity.
$\begin{array}{r} 4861.527\$F\\ 4890.9488\\ 4891.683\\ 4919.1748\\ 4920.685\\ 4919.1748\\ 4920.685\\ 4957.7858\\ 5050.0088\\ 5171.7788\\ 5172.8568b_2\\ 5171.7788\\ 5172.8568b_2\\ 5173.7918b_1\\ 5233.1228\\ 5260.7238\\ 5260.7238\\ 5260.7238\\ 5324.3738\\ 5326.7238\\ 5324.3738\\ 5326.7238\\ 5324.3738\\ 5326.738\\ 5370.1668\\ 5370.1668\\ 5370.1668\\ 5370.1668\\ 5373.718\\ 5429.908\\ 5424.2908\\ 5426.2188\\ 5569.848\\ 5573.075\\ 5588.9858\\ 5561.85778\\ 5688.4368\\ 5711.3138\\ 5763.2188\\ 587.6748\\ 5862.5828\\ 5891.4308\\ 5914.4308\\ 5919.8008\\ 5930.4068\\ \end{array}$	H Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe	$\begin{array}{c} 30\\ 6\\ 8\\ 6\\ 10\\ 8\\ 6\\ 15\\ 6\\ 20\\ 30\\ 7\\ 6\\ 8\\ 6\\ 7\\ 6\\ 6\\ 7\\ 6\\ 6\\ 6\\ 7\\ 6\\ 6\\ 6\\ 7\\ 6\\ 6\\ 6\\ 6\\ 7\\ 6\\ 6\\ 6\\ 6\\ 7\\ 6\\ 6\\ 6\\ 7\\ 6\\ 6\\ 6\\ 7\\ 6\\ 6\\ 7\\ 6\\ 6\\ 7\\ 6\\ 6\\ 7\\ 6\\ 6\\ 7\\ 6\\ 6\\ 7\\ 6\\ 6\\ 7\\ 6\\ $	5948.7658 5983.0408 6003.2398 6008.7858 6013.7158 6013.7158 6022.0168 6022.0168 6022.0168 6022.0168 6102.3928 6102.3928 6102.3928 6102.3938 6122.4348 6132.4348 6132.4348 6132.4348 6132.4348 6132.4348 6132.4348 6132.4348 6152.43908 6169.7788 6191.7798 6235.5785 6335.554 6337.6488 6338.8088 6393.82088 6439.2938 6449.02178 6449.02188 6495.213 6494.0048 6495.213 6364.4798	Si Fe Fe Fe Mn Mn Fe Fe Fe Ca Ca Ca Fe-Ni Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe	66666667769618777567669668876766767877866886	6563.0458C 6593.1618 6864.336 { 6868.336 { 6868.336 { 6868.338 6869.1428 6869.1428 6869.1338 6870.116 { 6870.249 { 6871.1805 6871.5328 6874.0378 6886.0908 6886.0908 6886.0908 6886.0908 6886.0908 6886.0908 6886.0908 6886.0908 6886.2898 6897.2088 6900.1998 6901.1178 6904.3628 6905.2718 6906.7838 6909.6768 6913.4488 6914.1378 6914.4378 6914.4378 6914.4378 6914.4378 6914.4378 6914.4378 6914.4378 6914.4378 6914.4378 6914.4378 6914.4278 7191.755 7206.692	H Fe A(O) A(O) A(O) A(O) A(O) A(O) A(O) A(O)	sity. 40 6 6 7 6 7 6 7 8 10 11 12 13 13 12 13 13 12 13 14 15 14 15 14 13 13 11 9 9 9 9 6 6 7 6 6 7 6 7 8 10 11 12 13 13 14 15 14 15 14 15 14 15 16 6 7 6 7 6 7 8 10 11 12 13 13 12 13 13 12 13 13 14 15 14 15 14 15 16 16 16 17 16 10 11 12 13 13 12 13 13 14 15 14 15 14 15 14 15 16 16 16 17 17 16 16 17 17 16 16 17 17 17 17 17 17 17 17 17 17

Currections to reduce Rowland's wave-lengths to standards of Table 160 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

Wave-length Correction	4800. — .179	4900. 	5000. 173	5100. ,170	5200. — .166		5400. — .212	5500. —.217	5600. 218	213	5800. — .209
Wave-length Correction		5900. 209	6000. — .213	6100. — .214	6200. 213	6300. ,210	6400. — .209	6500. — ,210.	6600.	6700.	6800.

TERTIARY STANDARD WAVE-LENGTHS. IRON ARC LINES.

For arc conditions see Table 160, p. 172. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten- sity.
*2781.840 *2806.985 *2831.559 *2858.341 *2901.382 *2926.584 *2926.584 *3053.070 *3100.838 *3154.202 *3217.389 *3257.603 *3307.238 *3347.932 *3389.748 *3476.705 *359.521 *359.741 *3617.789 *365.9567 *3749.487 *3859.913 *3922.917 *3956.682 *4009.718 *4062.451 †4132.063 †4175.639 †4202.031	bı b bı bz	4 7 3 3 4 5 3 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4337.052 4369.777 4415.128 4443.198 4461.658 4489.746 4528.620 4619.297 4786.811 4871.331 4890.769 4924.773 4939.685 4973.113 5041.076 5041.760 5051.641 5079.227 5079.743 5098.702 5123.729 5222.341 5216.279 5227.350 5328.043 5328.537	b3 b3 b3 b3 a3 a3 c4 c4 c5 c5 a a a a a a a a a a a a a a a a a	5 38r 3 4 3 7 4 38 7 3 3 2 3 3 4 4 3 3 4 4 3 5 5 5 8 38 7 4	$\begin{array}{c} 5332.909\\ 5331.032\\ 5365.404\\ 5405.780\\ 5434.528\\ 5473.913\\ 5497.521\\ 5505.419\\ 5505.784\\ 15535.419\\ 5563.612\\ 5975.352\\ 6027.059\\ 605.495\\ 6136.624\\ 6157.734\\ 6165.370\\ 6173.345\\ 6220.323\\ 6213.441\\ 6219.290\\ 6252.567\\ 6254.269\\ 6255.145\\ 6297.802\\ 6335.342\\ 6430.859\\ 6494.992\end{array}$	a4 a1 a a a a a a a a b b b b b b b b b b b b	2 5 2 6 6 4 4 4 3 2 3 2 3 4 5 4 3 4 4 5 5 6 4 5 4 6 5 6 5 6 5 6 5 6 6 4 4 4 5 2 6 6 6 4 4 4 5 2 6 6 6 4 4 4 5 2 6 6 6 7 8 2 8 7 8 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8

* Measures of Burns. † Means of St. John and Burns.

* Measures of Burns. I Means of SL John and Burns. t Means of SL John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpub-lished data; Goos, Astrophysical Journal, 35, 1912; 37, 1913. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes a and b.

For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a: "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, 24, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Ångström per atmosphere in the arc." Class b: "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines in the region λ 5975-6678 according to Gale and Adams. Group c contains lines showing much larger displacements. The numbers in the class column have the following meaning: 1, symmetrically reversed; 2, unsymmetrically reversed; 3, remain bright and fairly narrow under pressure; 4, remain bright and symmetrical under pressure but become wide and diffuse; 5, remain bright and are widened very unsymmetrically toward the red under pressure."

For further measures in International units see Kayser, Bericht über den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Coöperation in Solar Research, 1913. For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the D line value is 5896.155. The table is for the most part taken from Rowland's table of standard wave-lengths. lengths.

Index Letter.	Line due to —	Wave-length in ceotimeters $\times 10^8$.	Index Letter.	Line due to—	Wave-length in centimeters \times 10 ⁸ .
A	{0 {0	7621.28* 7594.06*	G	{Fe Ca	4308.081 4307.907
a	-	7164.725	g	Ca	4226.904
В	о	6870.182†	h or H _δ	н	4102.000
C or H _a	н	6563.045	н	Ca	3968.625
a	о	6278.303 ‡	к	Ca	3933.825
D1	Na	5896.1 55	L	Fe	3820.586
D_2	Na	5890.186	м	Fe	3727.778
D_8	He	5875.985	N	Fe	3581.349
	(Fe	5270.558	о	Fe	3441.155
E ₁	(Ca	5270.438	Р	Fe	3361.327
E ₂	Fe	5269.723	Q	Fe	3286.898
b1	Mg	5183.791	R	∫ ^{Ca}	3181.387
b2	Mg	5172.856	K	(Ca	3179-453
	(Fe	5169.220	S1)	Fe	3100.787
ba	(Fe	5169.069	$\left \begin{array}{c} S_1 \\ S_2 \end{array} \right $	Fe	3100.430
	(Fe	5167.678	527	Fe	3100.046
b4	(Mg	5167.497	s	Fe	3047.725
F or H _β	н	4861.527	Т	Fe	3020.76
d	Fe	4383.721	t	Fe	2994.53
G' or H _y	н	4340.634	U	Fe	2947.99 [.]
f	Fe	4325.939			

The two lines here given for A are stated by Rowland to be : the first, a line "beginning at the head of A, outside edge;" the second, a "single line beginning at the tail of A."
The principal line in the head of B.
Chief line in the a group.
See Table 165, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 160.

TABLE 166. - Photometric Standards.

No primary photometric standard has been generally adopted by the various governments. In Germany the Herner lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The "International candle" is the name recently employed to designate the value of the candle as maintained by coöperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

- I International Candle = I Pentane Candle.
- 1 International Candle == 1 Bougie Decimale.
- 1 International Candle = 1 American Candle.
- I International Candle = 1.11 Hefner Unit.
- 1 International Candle = 0.104 Carcel Unit.

Therefore r Hefner Unit = 0.90 International Candle. The values of the flame standards most commonly used are as follows:

1. Standard Pentane Lamp, burning pentane .	•					10.0 candles.
2. Standard Hefner Lamp, burning amyl acetate	•	•	•			0.9 candles.
3. Standard Carcel Lamp, burning colza oil	•			•	•	9.6 candles.
4. Standard English Sperm Candle, approximately	y					1.0 candles.

Slight differences in candle power are found in different lamps, even when made as accurately as possible to the same specifications. Hence these so-called primary standards should be themselves standardized.

	Barrows.	Ives & Luckies	h.	National Electric Lamp Association.
	C. P. per Sq. In. of surface of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of sur- face of light.	C. P. per Sq. In. of aurface of light.
Sun at Zenith . Crater, carbon arc . Open carbon arc . Magnetite arc . Tungsten incandescent, 1.15 w. p. c- Tungsten incandescent, 1.15 w. p. c- Tungsten incandescent, 1.15 w. p. c- Tungsten incandescent, 1.15 w. p. c- Carbon incandescent, 3.1 w. p. c. Carbon incandescent, 3.5 w. p. c. Carbon incandescent, 3.5 w. p. c. Carbon incandescent, 4.0 w. p. c. Inclosed carbon arc (d. c.) Inclosed carbon arc (d. c.) Acetylene flame (χ_i ft. burner) Welsbach mantle Welsbach methe Cooper Hewitt mercury vapor lamp	600,000 200,000 10,000-50,000 5,000 800-1,000 750 625 480 375 300 100-500 - - 20-25 -	of light. 84,000 - (115V.6 amp. d.c.) 3,010 - 1,000 580 750 485 400 325 - 53.0 33.0 31.9 56.0 14.9	face of light. 130. - - 6.2 4.7 - 1.64 0.9 1.2 0.75 0.63 0.50 - - 0.082 0.052 0.052 0.048 0.048 0.048 0.048 0.048 0.048 0.052	of light. 600,000 200,000 10,000-50,000 5,000 (1.5 W.p.C.) 2,200 875 750 625 480 375 100-500 75-200 75-200 75-200 75-200 17
Kerosene flame	4-8 3-4	9.0	0.014	3-8 3-4
Gas flame (fish tail)	3-8 4-8 0.6	2.7	0.004	3-8 2-5 0.3-1.75

TABLE 167. - Intrinsic Brightness of Various Light Sources.

Taken from Data, 1911.

TABLE 168 - Visibility of White Lights.

Range.	Candle Power.						
Range.	1	2					
1 sea-mile = 1855 metera	0.47	0.41					
2 " "	1.9	1.6					
5	11.8	10.					

¹ Paterson and Dudding. ² Deutsche Seewarte. The energy falling on 1 sq. cm. at 1m. from a candle is about 4 ergs per sec. (Rayleigh, about 8 according to Ångström.)

TABLE 169.

EFFICIENCY OF VARIOUS ELECTRIC LIGHTS.

	Amperes.	Terminal Watts.	Lumens.	Kw-hours for 100,000 Lumen- hours.	Total cost per 100,000 Lumen-hours at 10 cts. per Kw-hour.
Regenerative dc., series arc Regenerative dc., multiple arc Magnetite dc., series arc Flame arc, dc., inclined electrodes Mercury arc, dc., multiple Flame arc, dc., inclined electrodes Luminous arc, dc., series Magnetite arc, dc., series Flame arc, ac., series Flame arc, ac., series Flame arc, ac., vertical electrodes Open arc, dc., series Flame arc, ac., inclined electrodes Flame arc, ac., series Flame arc, ac., series Flame arc, ac., series Inclosed arc, dc., series Luminous arc, dc., series Luminous arc, dc., series Inclosed arc, ac., series Inclosed arc, ac., series Inclosed arc, ac., series Inclosed arc, ac., series Tantalum, dc., multiple Tantalum, dc., multiple Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., multiple Inclosed arc, dc., multiple Inclosed arc, ac., multiple Inclosed arc, ac., multiple Inclosed arc, ac., multiple Inclosed arc, ac., multiple	$\begin{array}{c} 5.5\\ 5.5\\ 5.5\\ 5.5\\ 8.0\\ 6.6\\ 9.6\\ 4.0\\ 10.0\\ 6.6\\ 8.0\\ 6.6\\ 4.0\\ 1.0\\ 7.5\\ 6.6\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	385 605 5250 385 440 726 480 320 467 325 75 374 475 440 414 475 440 414 414 480 414 414 480 410 550 385 385 385 430 285	11,670 11,670 11,670 8,640 4,400 6,140 7,370 5,025 2,870 2,920 2,920 2,920 2,920 2,920 2,920 2,920 2,920 2,160 2,170 2,025 2,170 2,170 2,025 2,170 2,170 2,025 2,170 2,170 2,025 2,170 2,170 2,025 2,170 2,170 2,025 2,170 2,025 2,170 2,025 2,170 2,025 2,170 2,025 2,170 2,025 2,170 2,025 2,170 2,025 2,170 2,025 2,170 2,025 2,0	3.3 5.18 7.16 6.37 15.92 7.16 9.85 9.55 11.15 8.75 8.75 14.32 15.32 15.32 19.2 19.2 19.9 21.3 21.1 21.1 21.1 21.9 33.6 33.7 35.8 37.4 38.3 41.4	0.339 0.527 0.729 0.837 0.89 0.966 0.988 1.079 1.13 1.275 1.305 1.384 1.405 1.459 1.547 1.55 1.388 1.90 2.05 2.193 2.31 2.504 3.47 3.50 3.66 3.84 3.94 4.265

Paper by Prof. J. M. Bryant and Mr. H. G. Hake, Engineering Experiment Station, University of Illinois. SMITHSONIAN TABLES.

TABLES 170-172.

SENSITIVENESS OF THE EYE TO RADIATION.

(Compiled from Nutting, Bulletin of the Bureau of Standards.)

Radiation is easily visible to most eyes from 0.330μ in the violet to 0.770μ in the red. At low intensities approaching threshold values (rcd vision) the maximum of spectral sensibility lies in the green at about 0.510μ for 90% of all persons. At higher intensities with the establishment of cone vision the maximum shifts towards the yellow at least as far as 0.560μ .

TABLE 170. — Variation of the Sensitiveness of the Eye with the Wave-length at Low Intensities (near Threshold Values). König.

λ	.410	.430	-450	.470	.490	•510	.530	.550	.570	•590	.610
Mean sensitiveness	0.02	0 .0 6	0.23	0.49	0.81	1.00	0.81	0.49	0.22	0.077	0.026

TABLE 171. - Variation of Sensitiveness to Rediction of Greeter Intensities.

The sensibility is approximately proportional to the intensity over a wide range. The ratio of optical- to radiation-intensity increases more rapidly for the red than for the blue or green (Purkinje phenomenon).

Intensity (metre-candles) = Ratio to preceding step =	.00024	.00225 9.38	.0360 16	•575 16	2.30 4	9.22 4	36.9 4	147.6 4	590.4 4
Wave-length, λ .		 		Se	nsitivenes	 SS.	1		
0.430µ	.081	.093	.127	.128	.114	.114	-		-
.450	·33 .63	.30	.29	.31	.23	.175	.16		-
.470		.59	•54	.58	.51 (.83)	.29	.26	.23	
.490	.96	(.89)	(.76)	(.89)	(.83)	.50	•45	.23 .38	-35
.505	1.00	1.00	1.00	1.00	.99	(.76)	.66	.61	
.520	.88	.86	.86	.94	-99	(.85)	.85	.85	.54 .82
·535	.61	.62	63 .	.72	.91	(.98)	.98	.99	.98
-555	.26	.30	•34	.4I	.62	.84	.93	.97	.98
·575	.074	.102	.122	.168	(.39)	(.63)	(.76)	(.82)	(.84)
.590	.025	.034	.054	.091	.27	-49	.61	.68	.69
.605	.008	.012	.024	.056	.173	.35	(.45)	•54	.55
.625	.004	.004	.011	.027	.098	.20	.27	.35	.35
.650	.000	.000	.003	.007	.025	.060	.085	.122	.133
.670	.000	.000	.001	.002	.007	.017	.025	.030	.030
λ , maximum sensitiveness	.503	. 504	.504	.508	·5 ¹ 3	.530	.541	·543	.544

The intensity is given for the spectrum at 0.535μ (green).

TABLE 172. - Sensibility to Small Differences in Intensity measured as a Fraction of the Whole.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(_			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.670 0.060	.605 0.0056	.575 0.0029	.505 0.00017	.470 0.00012	.430 0.00012	White 0.00072
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	÷1δ	I Köoi	ig's dat	ta, meas person	ures fro only.	m one r	ormal
0.01 .271 .289 .249 -	200,000 100,000 20,000 20,000 2,000 2,000 10,000 2,000 100 500 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100,000 50 100,000 50 100,000 50,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 2,000 50,000 5,0000 5,000 5,000 5,0000 5,0000 5,0000 5,0000 5,0000 5,0000 5,00000000	.016 .016 .018 .017 .020 .022 .029 .038 .065 .092 .258	.024 .025 .018 .016 .016 .018 .020 .021 .022 .028 .038 .061 .103 .212	.026 .020 .018 .017 .018 .018 .018 .022 .027 .032 .058 .089 .170 .21	.018 .016 .017 .018 .019 .022 .024 .025 .036 .049 .080 .091 .133	.017 .018 .021 .022 .025 .037 .046 .088 .096 .138	.021 .024 .025 .027 .040 .049 .074 .097 .137 .154	.027 .019 .017 .018 .018 .018 .018 .018 .018 .022 .030 .032 .032 .048 .059 .123 .188 .377

- The sensibility to small differences in intensity is independent of the intensity (Fechner's law). About 0.016 for moderate intensities. Greater for extreme values.
- It is independent of wave-length, extremes excepted (König's law).
- Sensibility to slight differences in wavelength has two pronounced maxima (one in the yellow, one in the green) and two slight maxima (extreme blue, extreme red).
- The visual sensation as a function of the time approaches a constant value with the lapse of time. With blue light there seems to be a pronounced maximum at 0.07 sec., with red a slight one at 0.12 seconds, with green the sensation rises steadily to its final value. For lower intensities these max. occur later.
- An intensity of 500 metre-candles is about that on a horizontal plane on a cloudy day.

TABLES 173-176.-SOLAR ENERGY.

TABLE 173. - The Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.932 calories = mean 696 determinations 1902-12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute; from $\lambda max. = 2930$ and max. = 0.470 μ , 6230°; from total radiation, J = 76.8x10⁻¹² × T⁴, 5830°.

TABLE 174. - Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from $e_m = e_0 a^m$, where e_m is the intensity of solar energy after transmission through a mass of air m; m is unity when the sun is in the zenith, and approximately = sec. zenith distance for other positions (see table 180); e_0 = the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

gth.	Т	ransmis ficien	sion co nts, a.	ef-				Inten	sity Sol	ar Ene	rgy. A	rbitrar Units.	y			
Wave-length µ	Wash- ington.	Mount Wilsoa.	Mount Whitney.	One mile nearer earth.		Mount Whitaey.		Mount Wilson. m = 1 2 4 6 m				Washington.				
	<u> </u>	M	ЙÅ	ō	<u>m=</u> 0	m = 1	m = 1	2	4	6	m = 1	2	_ 3	4	6	
0.30 .32 .34 .36 .38 .40 .50 .60 .70 .60 .70 .80 I.00 I.50 2.00	(.380) .560 .690 .733 .779 .858 .886 .922 .938 .912	(.460) .520 .520 .635 .676 .729 .832 .862 .920 .950 .950 .970 .980 .970 .970 .970	(.550) .615 .625 .741 .784 .809 .887 .919 .940 .976 .975 .965 .932		54 111 232 302 354 414 618 606 504 364 364 266 166 63 25	30 68 160 224 278 335 548 557 474 351 260 162 61 23	25 58 135 192 239 302 514 522 454 346 258 163 61* 24*	11 30 78 122 162 220 428 450 409 329 250 160 60* 23*	2 8 26 74 117 296 334 331 297 235 154 57* 21*	I 2 9 20 34 62 205 248 268 268 268 268 221 I47 55* 19*	134 232 426 441 393 312 236 153 59 23					

Transmission coefficients are for period when there was apparently no volcanic dust in the air. *Possibly too high because of increased humidity towards noon.

TABLE 175 The intensity of Sol	ar Radiation in d	lifferent sections	of the	apectrum,	ultra-violet, visual
	infra-red.	Calories.			

Wa	Wave-length. Mount Whitney. μ $m \equiv 0$ $m \equiv 1$ 2 3 4					Mount Wilson. Washington.								
μ	μ	m=o	m = 1	2	3	_4	$m \equiv \tau$	2		4		2	3	4
0.00 to 0.45 to 0.70 to 0.00 to	0.70	.31 .71 .91 1.93	.25 .67 .87 1.78	.19 .62 .85 1.66	•16 •58 •82 1.56	.13 .54 .80 1.47	.23 .65 .69 1.57	. 16 .57 .68 1.42	.12 .51 .66 1.28	.09 .45 .63 I.17	.13 •53 .69 1.35	.06 .40 .62 1.08	.04 .30 .57 .90	.02 .24 .53 .79

TABLE 176. — Distribution of brightness (Radiation) over the Solar Disk. (These observations extend over only a small portion of a sun-spot cycle.)

Wave-	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	µ.	μ	μ	μ	μ
iength.	D.323	0.386	0.433	0.456	0.481	0.501	0.534	0.604	0.670	0.699	0.866	1.031	1.225	1.655	2.097
Fraction Radius. Fraction Radius. 6.0.0 52.80.0 52.80.0 5.60.0000000000	144 128 120 112 99 86 76 64 49	338 312 289 267 240 214 188 163 141	456 423 395 368 333 296 266 233 205	515 486 455 428 390 351 317 277 242	511 483 456 430 394 358 324 290 255	489 463 437 414 380 347 323 286 254	463 440 417 396 366 337 312 281 254	399 382 365 348 326 304 284 259 237	333 320 308 295 281 262 247 227 210	307 295 284 273 258 243 229 212 195	174 169 163 159 152 145 138 130 122	111 108 105.5 J03 99 94.5 90.5 86 81	77.6 75.7 73.8 72.2 69.8 67.1 64.7 61.6 58.7	39.5 38.9 38.2 37.6 36.7 35.7 34.7 33.6 32.3	14.0 13.8 13.6 13.4 13.1 12.8 12.5 12.2 11.7

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906. SMITHSONIAN TABLES.

ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

TABLE 177 .- Transmission of Radiation Through Moiat and Dry Air.

This table gives the wave-length, λ ; a the transmission of radiation by dry air above Mount Wilson (altitude == 1730 m. barometer, 620 mm.) for a body in the zenith; finally a correction factor, a_w , due to such a quantity of aqueous vapor in the air that if condensed it would form a layer I cm. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering. a_w is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e. g. for altitudes greater than 1000 meters. If B ==

the barometric pressure in mm., w, the amount of precipitable water in cm., then $a_B = a^{\overline{e}D} a_W^{\overline{w}}$. w is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p. 359, 1913) other-

wise by formula derived from Hann, $w = 2.3e_w 10^{-22000}$, e_w being the vapor pressure in cm. at the station, h, the altitude in meters.

$\begin{array}{c ccccc} \lambda \ (\mu) & .360 & .384 & .413 \\ a & (.660) & .713 & .783 \\ a_w & .950 & .960 & .965 \end{array}$.840 .885 .898	.574 .624 .653 .905 .929 .938 .974 .978 .985	.720 .986 1.74 .970 .986 .990 .988 .990 .990
---	----------------	--	--

Fowle, Astrophysical Journal, 38, 1913.

TABLE 178.—Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Flint Island (see level).

Zenith dist. of zone 10 ⁸ × meau ratio sky/sun Mt. Wilson Flint Island Ditto × area of zone """"""""""""""""""""""""""""""""""""	•	. ^r	-15 ⁰ 1500* 115 51.0 3.9	5-35 ⁰ 400 122 58.8 17.9	35-50 ⁰ 520 128 91.5 22.5	50-60 ⁰ 610 150 87.2 21.4	60-70 ⁰ 660 185 104.3 29.2	70-80 ⁰ 700 210 117.6 35·3	80-90 ⁰ 720 460 125.3 80.0	-	Sun. - 636 210
Altitude of sun Sun's brightness, cal. per cm. ² per min Ditto on horizontal surface Mean hrightness on normal surface sky J Total sky radiation on horizontal cal. pe per m. Total sun + sky, ditto	K 10 ⁸ /9	: un : :	-	-	5 ⁰ .533 .046 423 .056 .J02	15 ⁰ .900 .233 403 .110 .343	25 ⁰ 1.233 .524 .385 .162 .686	35 ⁰ 1.358 .780 365 .189 .969	47 ¹⁰ 1.413 1.041 346 .205 1.246	65 ⁰ 1.496 1.355 326 .226 1.581	8220 1.521 1.507 310 .240 1.747

* Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the islaud and on the mountain, respectively, were 636×10^{-8} and 210×10^{-8} , on a horizontal surface, 305×10^{-8} and 77×10^{-8} ; for the whole sky, at normal incidence, 0.57 and 0.20; on a horizontal surface, 0.27 and 0.07. Annals of the Astrophysical Observatory of the Smithsonian Institution, vols. II and III, and unpublished researches (Abbot).

TABLE 179.—Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson. Zenith distance about 50°.

	μ	μ	μ	μ	۴	μ	С	D	b	F
Place in Spectrum Intensity Sunlight Intensity Sky-light Ratio at Mt. Wilson Ratio computed by Rayleigh Ratio observed by Rayleigh	0.422 186 1194 642	0.457 232 986 425 -	0.491 227 701 309 -	0.566 211 395 187 -	0.614 191 231 121 -	0.660 166 174 105 -	102 102 102	143 164 168	246 258 291	316 328 369

TABLE 180. - Air Masses.

See Table 174 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	0 0	200	40 ⁰	60 ⁰	70 ⁰	75 ⁰	80 ⁰	85 ⁰	88 ⁰
Secant Forbes Bouguer Laplace Bemporad	1.00 1.00 1.00 1.00 1.00	1.064 1.065 1.064 -	1.305 1.306 1.305 - -	2.000 1.995 1.990 1.993 1.995	2.924 2.902 2.900 2.899 2.904	3.864 3.809 3.805 -	5.76 5.57 5.56 5.56 5.60	11.47 10.22 10.20 10.20 10.39	28.7 18.9 19.0 18.8 19.8

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913; the others, Radau's Actinometric, 1877.

TABLES 181-182.

RELATIVE INTENSITY OF SOLAR RADIATION.

TABLE 181. — Mean intensity \mathcal{J} for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation \mathcal{A} , in terms of the solar radiation, \mathcal{A}_0 , at earth's mean distance from the sun.

	Motion of			Relati	ve Mea	N VERT	ICAL IN	TENSITY	$\left(\frac{J}{A_{o}}\right)$	•		
Date.	the sun in longi-				1	ATITUD	E NORT	н.				$\frac{A}{A_0}$
	tude.	0 °	10 °	20 °	30 °	40 °	50 °	80 °	70 °	80 °	80°	
Jan. 1 Feb. 1 Mar. 1 Apr. 1 June 1 June 1 July 1 Aug. 1 Sept. 1 Oct. 1 Nov. 1 Dec. 1	0.99 31.54 59.14 89.70 119.29 149.82 179.39 209.94 240.50 270.07 300.63 330.19	0.303 .312 .320 .317 .303 .287 .283 .294 .310 .317 .312 .304	0.265 .282 .303 .319 .318 .315 .312 .316 .318 .308 .286 .267	0.220 .244 .279 .312 .330 .334 .333 .330 .316 .289 .251 .224	0.169 .200 .245 .295 .329 .345 .347 .334 .305 .261 .211 .175	0.117 .150 .204 .320 .349 .352 .330 .285 .225 .164 .124	0.066 .100 .158 .235 .302 .345 .351 .318 .256 .183 .114 .072	0.018 .048 .108 .195 .278 .337 .345 .300 .220 .135 .063 .024	0.006 .056 .148 .253 .344 .356 .282 .180 .084 .018	0.013 .101 .255 .300 .373 .295 .139 .065	0.082 .259 .366 .379 .300 .140	1.0335 1.0288 1.0173 1.0009 0.9841 0.9714 0.9666 0.9709 0.9828 0.9995 1.0164 1.0288
Year		0.305	0.301	0.289	0.268	0.241	0.209	0.173	0.144	0.133	0.126	

TABLE 182. - Mean Monthly and Yearly Temperatures.

Mean temperatures of a few selected American stations, also of a station of very high, one of very low and one of very small, range of temperature.

	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
3 Montreal 4 Boston 5 Chicago 6 Denver 7 Washington 8 Pikes Peak 0 St. Louis 10 San Francisco 11 Yuma 12 New Orleaas 13 Massaua 14 Ft. Conger (Greenl'd) 17 Werchoransk	$\begin{array}{r} -21.6 \\ -10.9 \\ -2.8 \\ -4.8 \\ -2.1 \\ +0.7 \\ -16.4 \\ -0.8 \\ +10.1 \\ +12.3 \\ +12.1 \\ +25.6 \end{array}$	-18.8 9.1 2.2 0.1 15.6 1.7 1.5 1.7 1.7 1.4 9.1 2.1 1.5 0.1 1.7 1.7 1.7 1.4 9.1 2.2 2.9 1.7 1.5 0.1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1	-11.0 -4.3 1.2 3.8 -1.2 3.8 -1.2	+ 1.9 + 4.8 + 7.3 + 7.9 + 8.3 + 11.7 - 10.4 + 12.6 + 21.0 + 20.0 - 25.3 - 13.7	+10.9 +12.6 +13.6 +13.4 +13.6 +17.7 -5.3 +18.8 +13.7 +25.1 +23.7 +23.7 +0.0 +2.0	+17.1 + 18.3 + 19.1 + 19.7 + 19.7 + 19.7 + 19.7 + 22.9 + 0.4 + 24.0 + 14.7 + 20.4 + 20.4 + 20.4 + 20.4 + 12.3 + 0.4 + 12.3	+18.9 +20.5 +21.8 +22.2 +22.1 +24.9 +4.5 +26.0 +14.6 +33.1 +27.9	+17.6 +19.3 +20.6 +21.6 +21.2 +23.7 +3.6 +24.9 +32.6 +32.6 +32.7 +32.7 +3.7 +3.7 +3.7 +3.7 +3.7 +3.7 +3.7 +3	+11.6 + 14.7 + 16.9 + 17.9 + 16.6 + 19.9 + 20.8 + 20.8 + 20.8 + 20.8 + 15.8 + 125.7 + 25.7 + 2.5 + 2.5	+ 4.1+ 7.8+ 11.1+ 10.3+ 13.4- 5.8+ 14.2+ 15.2+ 15.2+ 22.8+ 22.8+ 21.7- 22.7- 15.0	$-7.6 \\ -0.2 \\ +4.8 \\ +3.6 \\ +3.3 \\ +6.9 \\ +13.5 \\ +15.9 \\ +15.9 \\ +29.0 \\ -30.9 \\ -37.8 \\ -37.8 \\ -7.6 \\ -7.6 \\ -7.6 \\ -7.6 \\ -7.6 \\ -7.6 \\ -7.6 \\ -7.8 \\ $	-15.7 - 7.1 - 0.5 - 1.5 - 0.0 + 2.3 - 14.4 + 2.08 + 13.3 - 14.3 + 13.1 + 27.0 - 33.4 - 47.0	$\begin{array}{c} + & 0.6 \\ + & 5.5 \\ + & 9.2 \\ + & 9.1 \\ + & 9.7 \\ + & 12.6 \\ - & 7.1 \\ + & 13.2 \\ + & 22.3 \\ + & 20.4 \\ + & 30.3 \\ - & 20.0 \\ - & 16.7 \end{array}$

Lat., Long., Alt. respectively: (1) +58°,5,63°,0 W, -; (2) +49.9,97.1 W, 233m.; (3) +45.5, 73.6 W, 57m.; (4) +42.3, 71.1 W, 38m.; (3) +41.9, 87.6 W, 251m.; (6) +39.7, 105.0 W, 1613m.; (7) +38.9, 77.0 W, 34m.; (8) +38.8, 105.0 W, 4308m.; (0) +38.6, 90.2 W, 173m.; (10) +37.8, 122.9 W, 47m.; (11) +32.7, 114.6 W, 43m.; (12) +30.0, 90.1 W, 16m.; (13) +15.6, 37.5 E, 9m.; (14) +81.7, 64.7 W., -; (15) +67.6, 133.8 E, 140m.; (16) -6.2, 106.8 E, 7m.

Taken from Hann's Lehrbuch der Meteorologie, z'nd editiou, which see for further data.

TABLES 183-185. INDEX OF REFRACTION FOR GLASS. 184

TABLE 183. - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena: n_A , n_C , n_D , n_F , n_G , are the indices of refraction in air for $A = 0.7682\mu$, $C = 0.6563\mu$, D = 0.5893, F = 0.4861, G' = 0.4341. $v = (n_D - 1)/(n_F - n_C)$. Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena Glass."

Catalogue Type = Designatioo = Meltiog Number= v =	O 546 Zinc-Crown, 1092 60.7	O 381 Higher Dis- persion Crown. 1151 51.8	O 184 Light Silicate Flint. 451 41.1	O 102 Heavy Silicate Flint. 469 33.7	O 165 Heavy Silicate Flint. 500 27.6	S 57 Heaviest Sili- cate Flipt. 163 22.2
Cd 0.2763µ Cd .2930 Cd .2930 Cd .32930 Cd .3403 Cd .3610 -Але ма ри Н. 4340µ H. 43651 Na .5803 H6563 K7682 Ула ма лабор лабор ла ла ла ла ла ла ла ла ла ла ла ла ла	1.56759 1.56372 1.55723 1.54369 1.53897 1.52288 1.52299 1.51468 1.51443 1.5048 1.504	1.57093 1.55262 1.54664 1.53312 1.52715 1.52002 1.51712 1.51368 1.5131 7.5069 1.5024 1.4973	- 1.65397 1.63320 1.61388 1.50355 1.57524 1.57119 1.55669 1.5585 1.5535 1.5535 1.5535 1.5547 1.5549 1.5559 1.5549 1.5559 1.5559 1.5549 1.5559 1.5559 1.5549 1.55	- 1.71968 1.70536 1.67561 1.66367 1.64345 1.64440 1.63820 1.6373 1.6277 1.6217 1.6217 1.6131	- - 1.85487 1.83263 1.78800 1.77091 1.75130 1.74368 1.73530 1.73530 1.73530 1.73530 1.73530 1.7215 1.7151 1.7104	1.94493 1.91890 1.88995 1.87893 1.8650 1.8481 1.8396 1.8316 1.8316 1.8286
Be	65.4; K ₂ O,	15.0; Na2Ö,	5.0; BaO, 9.0		Mn ₂ O ₃ , 0.1 ; 1	

TABLE	184.	Jena	Glasses.
-------	------	------	----------

No. and Type of Jena Glass.	$n_{\rm D}$ for D	$n_{\rm F} - n_{\rm C}$	$v = \frac{n_0 - 1}{n_F - n_C}$	$n_{\rm D} - n_{\rm A}$	$n_{\rm F} - n_{\rm D}$	$n_{0'} - n_{F}$	Specific Weight.
O 225 Light phosphate crown	1.5159	.00737	70.0	.00485	.00515	.00407	2.58
O 802 Boro-silicate crown	1.4967	0765	64.9	0504	0534	0423	2.38
UV 3199 Ultra-violet crown	1.5035	0781	64.4	0514	0546	0432	2.41
O 227 Barium-silicate crown	1.5399	0909	59-4	0582	0639	0514	2.73
O 114 Soft-silicate crown .	1.5151	0910	56.6	0577	0642	0521	2.55
O 608 High-dispersion crown	1.5149	0943	54.6	0595	0666	0543	2.60
UV 3248 Ultra-violet flint	1.5332	0964	55-4	0611	0680	0553	2.75
O 381 High-dispersion crown	1.5262	1026	51.3	0644	0727	0596	2.70
O 602 Baryt light flint	1.5676	1072	53.0	0675	0759	0618	3.12
S 389 Borate fint	1.5686	1102	51.6	0712	0775	0629	2.83
O 726 Extra light flint	1.5398	1142	47-3	0711	0810	0669	2.87
O 154 Ordinary light flint	1.5710	1327	43.0	0819	0943	0791	3.16
	1.5900	1438	41.1	0882	1022	0861	3.28
O 748 Baryt fligt	1.6235	1599	39.1	9965	1142	0965	3.67
O 102 Heavy flint	1.6489	1919	33.8	1152	1372	1180	3.87
	1.7174	2434	29.5	1439	1749	1521	4.49
O 165 " " · · · · · · · ·	I.754 I	2743	27.5	1607	1974	1730	4.78
S 386 Heavy fligt	1.9170	4289	21.4	2451	3109	2808	6.01
S 57 Heaviest flipt	1.9626	4882	19.7	2767	3547	32 52	6.33

TABLE 185. — Change of Indices of Refraction for 1°C in Units of the Fifth Decimai Place.

No. and Designation.	Meao Temp.	С	D	F	Gʻ	$\frac{-\Delta n}{n}$ 100
S 57 Heavy silicate flint	58.80	1.204	1.447	2.090	2.810	0.0166
O 154 Light silicate flint	58.4	0.225	0.261	0.334	0.407	0.0078
O 327 Barvt flint light	58.3	0.008	0.014	0.080	0.137	0.0079
O 225 Light phosphate crown	58.1	0.202	0.190	0.168	0.142	0.0049

TABLES 186-188. INDEX OF REFRACTION.

TABLE 188 Index of	Refraction	of Rock Salt in A	Air.
--------------------	------------	-------------------	------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - k\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - \frac{M_{3}}{\lambda_{3}^{2} - \lambda_{2}^{2}}$$
where $a^{2} = 2.330165$ $\lambda_{2}^{2} = 0.02547414$ $b^{2} = 5.680137$
 $M_{1} = 0.01278685$ $k = 0.000285837$ $M_{8} = 12059.95$
 $\lambda_{1}^{2} = 0.0148500$ $h = 0.00002856866$ $\lambda_{3}^{2} = 3600.$ (P)

$$M_1^* = 0.0148500$$

 $M_2 = 0.005343924$

TABLE 187.- Change of Index of Refraction for 1º C in Unite of the 5th Decimal Place.

$ \begin{array}{c ccccccc} 0.202\mu & +3.134 & Mi \\ .210 & +1.570 & " \\ .224 & -0.187 & " \\ .298 & -2.727 & " \\ \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C line -3.749 D " -3.739 F " -3.648 G' " -3.585	Pl 0.760µ -3.73 " 1.368 -3.88 " 1.88 -3.85 " 4.3 -3.82	
--	--	---	--

L Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900.
 M Martens, Ann. d. Phys. 6, 1901, 8, 1902.
 Mi Micheli, Ann. d. Phys. 7, 1902.

TABLE 188. - Index of Refrection of Silvine (Potessium Chloride) in Air.

λ(μ).	n	Obser- ver.	λ(μ).	#.	Obser- ver.	λ(μ).	<i>n</i> .	Obser- ver.
0.185409 .200090 .21946 .257317 .251640 .308227 .358702 .304415 .467832 .508606 .58933 .67082 .78576 .88398 .98220	1.82710 1.71870 1.64745 1.58125 1.54136 1.52115 1.51219 1.50044 1.49620 1.49044 1.48669 1.483282 1.483282 1.481422 1.480084	M " " " " " " " " " " " "	1.1786 1.7680 2.35728 2.9466 3.5359 4.7146 5.3039 5.8932	1.478311 1.47824 1.475890 1.47589 1.474751 1.473834 1.47394 1.47304 1.47304 1.471122 1.47129 1.47001 1.468804 1.46880	P W P W P W P W P W P W P W	8.2505 8.8398 10.0184 11.786 12.965 14.144 15.912 17.680 20.60 22.5	1.462726 1.46276 1.460828 1.45672 1.45673 1.44919 1.44941 1.44385 1.44385 1.42722 1.42617 1.41403 1.3882 1.369	P W P W P W P W P W R N "
n^2	$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - \lambda\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{M_{3}}{\lambda^{3} - \lambda^{2}}$							

 $M_2 = 0.00090_{302}$ W Weller, see Paschen's article. Other references as under Table 187, above. BMITHSONIAN TABLES.

TABLES 189-192. INDEX OF REFRACTION. TABLE 189. - Index of Refraction of Fluorite in Air.

λ (μ)	n	Obser- ver	λ (μ)	n	Obser- ver	λ (μ)	n	Obser- ver.
0.1856 .19881 .21441 .22645 .25713 .32525 .33681 .48607 .58930 .65618 .68671 .71836 .76040 .8840 1.1786 1.3756 1.4733	1.50940 1.49629 1.48462 1.47762 1.46476 1.44987 1.44697 1.44214 1.43713 1.43393 1.43257 1.43200 1.43157 1.43101 1.42982 1.42787 1.42690 1.42641	S " " " " " " " " " " " " " " " " " " "	1.4733 1.5715 1.6206 1.7680 1.9153 1.9644 2.0626 2.1608 2.2100 2.3573 2.5537 2.6519 2.7502 2.9466 3.1430 3.2413 3.5359 3.8306	1.42641 1.42596 1.42582 1.42507 1.42437 1.42437 1.424359 1.42308 1.42288 1.42288 1.42288 1.42288 1.42199 1.42088 1.42016 1.41971 1.41826 1.41707 1.41612 1.41379 1.41120	P	4.1252 4.4199 4.7146 5.0092 5.3036 5.5985 5.8932 6.4825 7.0718 7.6612 8.2505 8.8398 9.4291 51.2 61.1 ∞	1.40855 1.40559 1.40238 1.39898 1.39529 1.39142 1.37819 1.36805 1.34444 1.33079 1.31612 3.47 2.66 2.63	P " " " " " " " " " " " " " " " " " " "

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{r}^{2}}$$

where $a^{2} = 2.03882$ $f = 0.00002916$ $M_{3} = 5114.65$
 $M_{1} = 0.0062183$ $b^{2} = 6.09651$ $\lambda_{r}^{2} = 1260.56$
 $\lambda_{1}^{2} = 0.007766$ $M_{2} = 0.0061386$ $\lambda_{v} = 0.0940\mu$
 $e = 0.0031999$ $\lambda_{v}^{2} = 0.00884$ $\lambda_{r} = 35.5\mu$

TABLE 190. - Change of Index of Refraction for 1º C in Units of the 5th Decimal Place. C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

λ (μ)	no	n _e	Obser- ver.	λ(μ)	no	no	Obser- ver.	λ (μ)	n _o	n	Obser- ver.
0.198 .200 .208 .226 .298 .340 .361 .410 .434 .486	1.9028 1.8673 1.8130 1.7230 1.7008 1.6032 1.6802 1.6755 1.6678	1.5780 1.5765 1.5664 1.5492 1.5151 1.5056 1.5022 1.4964 1.4943 1.4907	M " " - C M C - M "	0.508 .533 .589 .643 .656 .670 .760 .768 .801 .905	1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6537 1.6500 1.6497 1.6487 1.6458	I.4896 I.4884 I.4864 I.4849 I.4843 I.4843 I.4826 I.4826 I.4822 I.4810	M * * * * - MC *	0.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324	1.6438 1.6393 1.6379 1.6346 1.6313 1.6280 - 1.6210	1.4802 1.4787 1.4783 1.4774 1.4764 1.4764 1.4757 1.4739	"

TABLE 191 Index of Refraction of Io	eland Spar (CaCO ₃) in	Air.
-------------------------------------	------------------------------------	------

C Carvallo, J. de Phys. (3), 9, 1900. M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902. P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899. S Starke, Wied. Ann. 60, 1897.

(P)

TABLE 192 Index of Refraction	l of	Nitroso-dimethyl-aniline.	(Wood.)
-------------------------------	------	---------------------------	---------

λ	n	λ	n	λ	71	λ	72	λ	n
0.497 .500 .506 .508 .516	2.140 2.114 2.074 2.025 1.985	0.525 .536 .546 .557 .569	1.945 1.909 1.879 1.857 1.834	0.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.778 1.769	0.6 36 .647 .659 .669 .696	1.647 1.758 1.750 1.743 1.723	0.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood, Phil. Mag 1903.

186

TABLES 193-194. INDEX OF REFRACTION.

Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera- ture ° C.	Wave- leogth.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera- ture ° C.
0.185 .193 .206 .214 .219 .231 .257 .274 .340 .396 .410 .486 0.598	$\begin{array}{c} 1.67582\\ .65997\\ .65090\\ .64038\\ .63041\\ .62494\\ .61399\\ .59622\\ .58752\\ .56748\\ .55815\\ .55650\\ .54968\\ 1.54424 \end{array}$	1.68999 .67343 .66397 .65300 .64264 .63698 .62560 .60712 .59811 .57738 .56771 .56600 .55896 1.55334	18 " " " " " "	0.656 .686 .760 1.160 .969 2.327 .84 .63 .96 4.20 5.0 6.45 7.0	1.54189 .54099 .5329 .5216 .5156 .5039 .4944 .4799 .4679 .4679 .474 1.167	I.55091 .54998 .54811 Rubens.	18 " - - - - - - -

TABLE 193. - Index of Refraction of Quartz (SiO2).

Except Ruhens' values, - means from various authorities.

TABLE 194 In	dices of Refracti	on for various	Alums.*
---------------------	-------------------	----------------	---------

	ty.	. C.º		I	adex of rei	raction for	the Fraun	hofer lines		
R	Density.	Temp.	8	в	0	ם	E	b	P	Ģ
Aluminium Alums. $RAl(SO_4)_2 + 12H_2O.\dagger$										
Na NH ₅ (CH ₅) K Rb Cs NH4 Tl	1.667 1.568 1.735 1.852 1.961 1.631 2.329	7-17 14-15 7-21 15-25 15-20	.45013 .45226 .45232 .45437	1.43563 .45062 .45303 .45328 .45517 .45599 .49317	.45177 .45398 .45417 .45618	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 .45749 .45996 .45999 .46203 .46288 .50209	.45941 .46181 .46192	1.44804 .46363 .46609 .46618 .46821 .46923 .51076
			Ch	rome Alur	ns. RCr(S	504)2+12H				
Cs K Rb NH4 Tl	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808
			1	ron Alums	. RFe(SC	D ₄) ₂ +12H ₂ (0.†			
K Rb Cs NH4 Tl	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112

* According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
 † R stands for the different bases given in the first column.
 For other alums see reference on Landolt-Börostein-Roth Tabellen.

TABLE 195.

INDEX OF REFRACTION.

Various Monorefringent or Optically Isotropic Solids.

Subs	tance	÷.				Line of Spectrum.	Index of Refraction	Authority.
						Spectrum.	Refraction.	
Agate (light color)						red	1.5374	De Senarmont.
Albite glass	•	•		•	•	D	1.4890	Larsen, 1909.
Ammonium chloride	•	•	•	•	٠	D	1.6422	Grailich.
Anorthite glass . Arsenite	•	•	•	•	•		1.5755	Larsen, 1909. DesCloiseaux.
Barium nitrate	•	•	•	•	:	D	1.755 1.5716	Fock.
Bell metal	÷				÷	D	1.0052	Beer.
						(Li	2.34165)	
Blende			•	•	•	{ Na	2.36923	Ramsay.
							2.40069)	
Boric acid .						∫ C D	1.46245 1.46303	
Doric acid .	•	•	•	•	•) F	1.40303	Bedson and
						1 c	1.51222	Carleton Williams.
Borax (vitrified)						{D	1.51484	
, ,					-	(F	1.52068	
Camphor		-				D	§ 1.532	Kohlrausch.
-	•	·	•	•	·	_	1.5462	Mulheims.
Diamond (colorless)				•		{ red } green	2.414 }	DesCloiseaux.
						(B	2.46062	
Diamond (brown)						} _D	2.46986	Schrauf.
				-		(E	2.47902)	
Ebonite	•		•	-	•	D	1.6	Ayrton & Perry.
						A	2.03	
Fuchsin						B C	2.19	Maana
rucusii	•	•	•	•	•		2.33	Means.
						H	1.97 1.32	
Garnet (different var	iatio	e 1				D	§ 1.74 to }	Various
	ICUIC	5)	•	•	•	-	{1.90 }	Various.
Gum arabic .	•	٠	•	•	•	red	1.480	Jamin.
Lime CaO .	•	•	•	•	•	D	1.514 1.832	Wollaston.
Magnesium oxide	•	•	•	•	•	D	1.832	Wright, 1909. Wright, 1909.
-	•	•	•	•	•		{ 1.482 to }	
Obsidian	•	•	•	•	•	D	1.496	Various.
Opal						D	\$1.406	"
-	•	•	•	•	•	_	1.450 \$	
Pitch Potassium bromide	•	•	•	•	•	red	1.531	Wollaston.
" chlorstann		•	·	•	٠	D "	1.5593	Topsöe and
		:	•	:	:	66	1.6574	Christiansen.
Phosphorus .			:	:	:	**	2.1442	Gladstone & Dale.
Resins : Aloes .				•		red	1.619	Jamin.
Canada bals		•			•	**	1.528	Wollaston.
Colophony	•	•	•	•	•	**	1.548	Jamin.
Copal . Mastic .	•	•	•	•	•	"	1.528	
Peru balsam	•	•	•	·	•	D	1.535	Wollaston.
i cin Dalsalli		•	•	•	•	ſA	1.593 2.612	Baden Powell.
Colonium uitrocu-						B	2.680	
Selenium, vitreous	•	•	•	•	•	1ĉ	2.729	Wood.
						D	2.93	1
Silver { bromide chloride .	•	•	•	•	•	`D	2.253	
Silver { chloride .	•	•	•	•	·	"	2.06ī }	Wernicke.
Sodium chlorate	•	•	•	•	•	"	2.182	D 1
Spinel	•	•	•	•	·	"	1.5150	Dussaud. DesCloiseaux.
Strontium nitrate	•	:	:	:	:	"	1.7155 1.5667	DesCloiseaux. Fock.
	-	•	•	-	•			I VUR.
								!

TABLE 196. INDEX OF REFRACTION. Uniaxial Orystals.

	Line of	Index of r	efraction.	
Substance.	spectrum.	Ordinary ray.	Extraordin- ary ray.	Authority.
Alunite (alum stone) Ammonium arseniate Anatase Apatite Benzil Beryl Brucite Calomel Cinnabar Corundum (ruby, sapphire, etc.) Dioptase Dolomite Emerald (pure) Gehlenite Ice at — 8° C. Idocrase Ivory Magnesite Silver (red ore) Sodium arseniate " mitrate " Strychnine sulphate Tin stone " (different colors) Wurtzite " "	D red D D D D T d green D T d green D D D D D D D D T ed T d D D D D D C D D C C C C D D D C C D D D D C D D D D D C D D D D D C D D D D D D D D D D D C D D D C D D D D D D D D C D D D D C D D D C C D D D C C D D D C C D D D C C C C D D D C C C D D D C C C D D D C C C C D D D C C C C D D D C C C C D D D C C C C D D D C C C C D D D C	1.573 1.577 2.5354 1.6390 1.6588 1.589 to 1.570 1.560 1.9732 2.854 1.767 to 1.769 1.667 to 1.667 to 1.666 1.584 1.666 2.506 1.309 1.719 to 1.722 1.539 1.717 to 1.564 1.493 2.6158 3.084 1.459 1.587 1.446 1.637 1.637 1.633 to 1.632 1.924 1.924	1.592 1.524 2.4959 1.6784 1.582 to 1.566 1.581 2.6559 3.199 1.759 1.752 1.723 1.506 to 1.512 1.578 1.661 2.529 1.313 1.717 to 1.515 1.512 2.881 1.467 1.336 2.452 2.881 1.467 1.316 1.519 2.093 1.619 1.619 1.619 1.619 1.625 2.378 1.97 1.968	Levy & Lacroix. De Senarmont. Schrauf. DesCloiseaux. Various. Kohlrausch. Dufet. DesCloiseaux " Various. DesCloiseaux. Wright, 1908. Merwin, 1912. Meyer. DesCloiseaux. Kohlrausch. Mallard. Bowen, 1912. DesCloiseaux. De Senarmont. Bärwald. Fizeau. Baker. Schrauf. Dufet. Martin. Grubenman. Heusser. Jeroféjew. Merwin, 1912. De Senarmont. Sanger.

SMITHSONIAN TABLES.

*

TABLE 197.

		· · · · · · · · · · · · · · · · · · ·			
Substance.	Line of	Ind	ex of Refract	ion.	Authority.
Substance.	spec- trum.	Minimum.	Interme- diate.	Maximum.	
Amphibole . Andalusite . Andalusite . Anglesite . Anglesite . Anglesite . Anorthite . Anorthite . Anorthite . Anagonite . Aragonite . Aragonite . Aragonite . Aragonite . Aragonite . Aragonite . Axinite . Borax . Carnegeite . Copper sulphate . Gypsum . Hillebrandite . Magnesium Carbonate . Magnesium Sulphate . Olivine . Olivine . Orthoclase . Potassium bichromate . "nitrate . Sulphate . Sulphate . Sulphur (rhombic) . Topaz (different kinds) <td>red D D D D D D D D D D D D D D D D D D D</td> <td>1.633 1.632 1.5549 1.8771 1.5693 1.576 1.5697 1.5301 1.6720 1.636 1.4467 1.509 1.5140 1.5208 1.605 1.495 1.432 1.5001 1.5190 1.7502 1.3346 1.4932 1.661 1.5190 1.7202 1.3346 1.4932 1.640 1.5397 1.9505 1.6294 1.638 to 1.613</td> <td>1.642 1.638 1.5587 1.8823 1.5752 1.583 1.635 1.637 1.4694 1.5368 1.5228 1.501 1.455 1.5036 1.6778 1.5237 1.7380 1.5237 1.7380 1.5237 1.7380 1.674 1.674 1.674 1.604 1.674 1.631 to 1.616</td> <td>1.657 1.643 1.5634 1.8936 1.6130 1.7324 1.6859 1.6859 1.6859 1.6859 1.6859 1.648 1.4724 1.514 1.5433 1.526 1.460 1.5977 1.5260 1.5064 1.4980 1.679 1.5064 1.4980 1.679 1.5716 2.2405 1.637 to 1.623</td> <td>Lévy-Lacroix. Lévy-Lacroix. Wright 1910. Arzruni. Mülheims. Bowen 1912 Liweh. Rudberg. DesCloiseaux. Various. Dufet. Bowen 1912. Kohlrausch. Mülheims. Wright 1908. Genth, Penfield. Means. Pulfrich. DesCloiseaux. " Duftet. Schrauf. Topsöe & Christiansen. Wright 1908. Calderon Schrauf. Mülheims. Various.</td>	red D D D D D D D D D D D D D D D D D D D	1.633 1.632 1.5549 1.8771 1.5693 1.576 1.5697 1.5301 1.6720 1.636 1.4467 1.509 1.5140 1.5208 1.605 1.495 1.432 1.5001 1.5190 1.7502 1.3346 1.4932 1.661 1.5190 1.7202 1.3346 1.4932 1.640 1.5397 1.9505 1.6294 1.638 to 1.613	1.642 1.638 1.5587 1.8823 1.5752 1.583 1.635 1.637 1.4694 1.5368 1.5228 1.501 1.455 1.5036 1.6778 1.5237 1.7380 1.5237 1.7380 1.5237 1.7380 1.674 1.674 1.674 1.604 1.674 1.631 to 1.616	1.657 1.643 1.5634 1.8936 1.6130 1.7324 1.6859 1.6859 1.6859 1.6859 1.6859 1.648 1.4724 1.514 1.5433 1.526 1.460 1.5977 1.5260 1.5064 1.4980 1.679 1.5064 1.4980 1.679 1.5716 2.2405 1.637 to 1.623	Lévy-Lacroix. Lévy-Lacroix. Wright 1910. Arzruni. Mülheims. Bowen 1912 Liweh. Rudberg. DesCloiseaux. Various. Dufet. Bowen 1912. Kohlrausch. Mülheims. Wright 1908. Genth, Penfield. Means. Pulfrich. DesCloiseaux. " Duftet. Schrauf. Topsöe & Christiansen. Wright 1908. Calderon Schrauf. Mülheims. Various.
Wallastonite Zinc sulphate	D D	1.620 1.4568	1,632 1,4801	1.634 1.4836	Means. Topsöe & Christiansen.

BIAXIAL CRYSTALS.

INDEX OF REFRACTION.

Indices of Refraction relative to Air for Solutions of Salts and Acids.

Substance.	Density			ces of re	fraction	for s	pectrum	lines.			
	Density.	Temp. C.	C	D	F	,	Ηγ		н Н	A	uthority.
		(a) S	OLUTION	S IN WA	TER.						
Ammonium chloride "Calcium chloride . """	1.067 .025 .398 .215 .143	27 ⁰ .05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	.4427 .3965	0 .35 9 .44 2 .40	473 515 938 206 876		.36 .46 .41	0243 001 078		ligen. " "
Hydrochloric acid . Nitric acid Potash (caustic) Potassium chloride . """ Soda (caustic) Sodium chloride	1.166 •359 •416 normal double	20.75 18.75 11.0 solution normal normal 21.6 18.07	1.40817 .39893 .40052 .34087 .34982 .35831	I.4110 .4018 .4028 .3427 .3517 .36020 I.4133	9 1.41 1 .40 1 .40 3 .34 9 .35 9 .35 9 .35 4 1.41	774 857 808 719 545 512	- - - - - - - - - - - - - - - - - - -	I.42 .41 .41 	961 637 -	Fra Ben	, igen.
Sodium nitrate	.109 .035 1.358	18.07 18.07 22.8	.35751 .34000 1.38283	.35959 .3419 1.3853	9 .362 1 .346 5 1.391	442 528 134	.36823 .34969 	1.40	121	6	"
Sulphuric acid	.811 .632 .221 .028	18.3 18.3 18.3 18.3	.43444 .42227 .36793 .33663	.43669 .42466 .37009 .33862	5 .429 9 .374 2 .344	967 468 285	-	•43 •38 •34	883 694 158 938		« «
Zinc chloride ""····	1.359 .209	26.6 26.4	1.39977 •37292	1.40222 •3751			-	1.41 .38	738 845		а а У
		(b) Solut	TIONS IN	Етнуі. А	LCOHO	L.					
Ethyl alcohol ""Fuchsin (nearly sat-	0.789 ´.932	25.5 27.6	1.35791 •35372	1.35971 .35556	.359	986	н	1.37 .36	094 662		ligen.
urated) Cyanin (saturated) .	Ξ	16.0 16.0	.3918 .3831	.398 -	.361 .370	r >5	-	•37 •38	59 21	Kun	idt.
NOTE. — Cyanin a 4.5 per cent. solut For a 9.9 per cent. s	ion $\mu_A =$	1.4593, µ	$_{B} = 1.46$	695, μ _F (green)) == 1	.4514,	µa (l	olue) = 1	··4554·
(0) Solutio	NS OF POT	ASSTUM I	ERMANG	ANATE	in V	VATER.*				
Wave- length in cms. × 10 ⁶ . Spec- trum line. I dex for 1 % sol.	Index for 2 % sol.	Index for 3% sol.	for	Wave- length n cms. X 10 ⁶ .	Spec- trum line.	Ind for 1 %	r l 1	dex or 5 sol.	f	dex or sol.	Index for 4 % sol.
	1.3342 .3348 .3365 .3373 .3372 .3387 .3395	1.3365 .3381 .3393 .3412 .3417	1.3382 .3391 .3410 .3426 .3426 .3445 .3438	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	- F - -	1.33 -33 -33 -33 -33 -34 -34 -34	74 ·3 77 81 ·3 97 ·3 97 ·3 97 ·3	3 ⁸ 5 383 395 402 421 442	•3: •3: •3:	386 398 414 426	- 1.3404 .3408 .3413 .3423 .3439 .3452 .3468
52.7 E .3363 52.2 - .3362	•3377	.3388	-	-	-		· ·			-	-

SMITHSONIAN TABLES.

* According to Christiansen.

TABLE 199.

INDEX OF REFRACTION.

Indices of Refraction of Liquids relative to Air.

G 1 .	Temp.	In	dex of refr	action for s	spectrum li	nes.	Authority.
Substance.	C. 1	σ	D	F	Ηγ	н	
Acetone Almond oil Analin * Aniseed oil "	10 ⁰ 0 20 21.4 15.1	1.3626 -4755 -5993 -5410 -5508	1.3646 .4782 .5863 .5475 .5572	1.3694 .4847 .6041 .5647 .5743	1.3732 .6204 _	- - - 1.6084	Korten. Olds. Weegmann. Willigen. Baden Powell.
Benzene† Bitter almond oil . Bromnaphtalin	10 21.5 20 20	1.4983 •4934 •5391 •6495	1.5029 •4979 .6582	1.5148 .5095 .5623 .6819	- - - 5775 .7041	1.5355 .5304 .7289	Gladstone. " Landolt. Walter.
Carbon disulphide ‡ """ Cassia oil ""	0 20 10 19 10 22.5	1.6336 .6182 .6250 .6189 .6007 .5930	1.6433 .6276 .6344 .6284 .6104 .6026	1.6688 .6523 .6592 .6352 .6389 .6314	1.6920 .6748 _	I.7175 .6994 .7078 .7010 .7039 .6985	Ketteler. "Gladstone.' Dufet. Baden Powell. ""
Chinolin Chloroform " · · · Cinnamon oil	20 10 30 20 23.5	1.6094 .4466 - .4437 .6077	1.6171 .4490 .4397 .4462 .6188	1.6361 •4555 .4525 .6508	1.6497 - -	.4661 .4561 -	Gladstone. Gladstone & Dale. " Lorenz. Willigen.
Ether Ethyl alcohol " " " "	15 15 10 20 15	1.3554 .3573 .3677 .3636 .3596 .3621	1.3566 .3594 .3695 .3654 .3614 .3638	1.3606 .3641 .3739 .3698 .3657 .3683	- - - - - - - - - - - - - - - - - -	1.3683 .3713 - - .3751	Gladstone & Dale. Kundt. Korten. " Gladstone & Dale.
Glycerine Methyl alcohol Olive oil Rock oil	20 15 0 0	1.4706 .3308 .4738 .4345	1.3326 .4763 .4573	1.4784 .3362 .4825 .4644	1.4828 - - -	-3421 -	Landolt. Baden Powell. Olds. "
Turpentine oil """". Toluene Water §	10.6 20.7 20 20	1.4715 .4692 .4911 .3312	1.4744 .4721 .4955 .3330	1.4817 .4793 .5070 .3372	- - 5170 -3404	1.4939 .4913 - • 3 435	Fraunhofer. Willigen. Bruhl. Means.

* Weegmann gives $\mu_D = 1.59668 - .000518 t$. Knops gives $\mu_F = 1.61500 - .00056 t$.

† Weegmann gives $\mu_D = 1.51474 - .000665 t$. Knops gives $\mu_D = 1.51399 - .000644 t$.

‡ Wüllner gives $\mu_C = 1.63407 - .00078t$; $\mu_F = 1.66908 - .00082t$; $\mu_h = 1.69215 - .00085t$.

\$ Dufet gives $\mu_D = 1.33377 - 10^{-7} (125t + 20.6t^2 - .000435t^3 - .00115t^4)$ between 0° and 50° ; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_D = 1.33373 - 10^{-7} (20.14t^2 + .000494t^4)$.

TABLE 200.

INDEX OF REFRACTION.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - 1 = \frac{n_0 - 1}{1 + at} \frac{p}{760}$, where n_t is the index of refraction for temperature *t*, n_0 for temperature zero, *a* the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimeters of mercury.

			(a) Indice	es of refraction	on.			
Spectrum line.	103 (u-1)	Spectrum	102 (U-1)	Wave-		(n-1) 108.	
une.	Air.	¹ line.	Air.	length.	Air.	0.	N.	н.
A B C D E F G II K L	.2905 .2911 .2914 .2922 .2933 .2943 .2962 .2978 .2980 .2987	MN O P Q R S T U	.2993 .3003 .3015 3023 .3031 .3043 .3053 .3064 .3075	4861 -5461 -5790 -553 -4360 -5462 -6709 6.709 8.678 First 4,	.2951 .2936 .2930 .2919 .2971 .2937 .2918 .2881 .2888 Cuthbert	.2734 .2717 .2710 .2698 .2743 .2704 .2683 .2643 .2643 .2650 sons ; the	.3012 .2998 .2982 .2982 .2982 .022 .4506 .4471 .4804 .4579 rest, Koo	.1406 .1397 .1393 .1387 .1418 .1397 .1385 .1361 .1361 ch, 1909.

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Loreoz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm. pressure.

	1	F			
Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia " Argon Benzoi	D white D D D	1.001079–1.001100 1.000381–1.000385 1.000373–1.000379 1.000281 Rayleigh. 1.001700–1.001823	Hydrogen " . Hydrogen sul-{ phide { Methane	white D D white	1.000138–1.000143 1.000132 Burton. 1.000644 Dulong. 1.000623 Mascart. 1.000443 Dulong.
Bromine Carbon dioxide "Carbon disul- phide . }	D white D white D	1.001132 Mascart. 1.000449–1.000450 1.000448–1.000454 1.001500 Dulong. 1.001478–1.001485	" Methyl alcohol. Methyl ether Nitric oxide " "	D D white D	1.000444 Mascart. 1.000549-1.000623 1.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.
Carbon mon- oxide { Chlorine . " Chloroform	white white white D D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436–1.001464	Nitrogen Nitrous oxide . Oxygen	white D white D white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen " Ethyl alcohol Ethyl ether Helium	white D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036 Ramsay.	" Pentane Sulphur dioxide " Water	D D white D white	1.000271-1.000272 1.001711 Mascart. 1.000665 Dulong. 1.000586 Ketteler. 1.000261 Jamin.
Hydrochloric { acid {	white D	1.000449 Mascart. 1.000447 "	"	D	1.000249–1.000259

TABLES 201-203.

MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE.

TABLE 201. - Liquids, $n_D (0.589\mu) = 1.74$ to 1.87.

In 100 parts of methylene iodide at 20° C. the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to give intermediate refractions. Commercial iodoform (CHI_s) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the SnI₄ will prevent discoloration.

	12		1.764
	12	6	1.764 1.783 1.800 1.820
13 16	7		1.826 1.842
14 16	8 8	10 10	1.826 1.842 1.853 1.868
	13 16 14	12 13 7 16 14 8	12 13 16 14 8 10

TABLE 202. — Resin-like Substances, $u_D (0.589\mu) = 1.68$ to 2.10.

Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony iodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm. grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	00.	10.	20.	30.	40.	50.	60.	70.	80.
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 203. - Permanent Standard Resinous Media, np (0.589µ) = 1.548 to 1.682.

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antinony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

Per cent Rosin.	00.	10.	20.	30.	40.	50.	6o.	70.	80.	<u>9</u> 0.	100.
Index of refraction	1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

TABLEB 204-205. OPTICAL CONSTANTS OF METALS.

TABLE 204.

Two constants are required to characterize a metal optically, the refractive index, *n*, and the absorption index, *k*, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length, λ^1 measured in the metal, is reduced in the ratio¹ 1: $e^{-2\pi k}$ or for any distance *d*, 1: $e^{-\frac{2\pi d k}{\lambda 1}}$, for the same wave-length measured in air this ratio becomes 1: $e^{-\frac{2\pi d n k}{\lambda 1}}$, *nk* is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, ϕ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\overline{\psi}$ (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p. 546, 1889),

k = tan
$$2\overline{\psi}$$
 (I - cot $2\overline{\phi}$) and n = $\frac{\sin \overline{\phi} \tan \overline{\phi}}{(1+k^2)^{\frac{1}{2}}}$ (I + $\frac{1}{2} \cot^2 \overline{\phi}$).

For rougher approximations the factor in parentheses may be omitted. R = computed percentage reflection.

TABLE 205.

(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

			1		Compu	ited.	- <u>.</u>	
Metal.	λ	ō	Ψ				<u> </u>	Authority.
					k	nk	R	-
	μ						%	
Cobalt	0.231	64 ⁰ 31'	29 ⁰ 39	1.10	1.30	1.43	32.	Minor.
	.275	70 22	29 59	1.41	1.52	2.14	46.	"
	.500	77 5	31 53	1.93	1.93	3.72	66.	1 . 1
	.650	79 0	31 25 20 6	2.35	1.87	4.40	69.	Ingersoll.
	1.00 1.50	81 45 83 21	29 6 26 18	3.63 5.22	1.58 1.29	5.73 6.73	73. 75.	**
	2.25	83 48	26 5	5.65	1.27	7.18	76.	"
Copper	.231	65 57	26 14	1.39	1.05	1.45	29.	Minor.
	.347	65 6	28 16	1.19	1.23	1.47	32.	"
	.500	70 44	33 46	1.10	2.13	2.34	56. 86.	
	.650 .870	74 16 78 40	41 30	0.44	7.4 11.0	3.26 3.85	91.	Ingersoll.
	.070 1.75	78 40 84 4	42 30 42 30	0.35	11.4	9.46	96.	"
	2.25	85 13	42 30	1.03	11.4	11.7	97.	¢4
	4.00	87 20	42 30	1.87	11.4	21.3		Först. Fréed.
	5.50	88 00	41 50	3.16	9.0	28.4		44
Gold	1.00	81 45	44 00	0.24	28.0	6.7		
	2.00	85 30 87 05	43 56	0.47	26.7 24.5	12.5 19.6		ci ii
	3.00 5.00	88 15	43 50 43 25	1.81	18.1	33.		44 A4
Iridium	1.00	82 10	29 15	3.85	1.60	6.2	1	66 66
	2.00	83 10	29 40	4.30	1.66	7.I		66 68 66 66
	3.00	81 40	30 40	3.33	1.79	6.0		
	5.00	79 00	32 20	2 27	2.03	4.6		Tool.
NickeI	0.420	72 20	31 42	1.41	1.79 1.86	2.53	54. 62.	Drude.
	0.589	76 I 7845	31 41 32 6	1.79	1.00	3.33 4.36	70.	Ingersoll.
	1.00	80 33	32 2	2.63	2.00	5.26	74.	- "
{	2.25	84 21	33 30	3.95	2.33	9.20	85.	
Platinum	1.00	75 30	37 00	1.14	3.25	3.7		FörstFréed.
	2.00	74 30	39 50	0.70	5.06	3.5		44 44
	3.00	73 50	41 00	0.52	6.52 9.01	3.4 3.1		46 64
Silver	5.00 0.226	72 00 62 41	42 IO 22 IÓ	1.41	0.75	1.11	18.	Minor.
Ditter	.293	63 14	18 56	1.57	0.62	0.97	17.	"
	.316	52 28	15 38	1.13	0.38	0.43	4.	сі 11
	.332	52 I	37 2	0.41	1.61	0.65	32.	"
	•395	66 36	43 6	0.16	12.32	1.91	87.	
	.500	72 3I	43 29	0.17	17.1 20.6	3.64	95.	"
	.589 .750	75 35 79 26	43 47 44 6	0.17	30.7	5.16	97.	Ingersoll.
	1,00	82 0	44 2	0.24	29.0	6.96	98.	- 4
	1.50	84 42	43 48	0.45	23.7	10.7	98.	
	2.25	86 18	43 34	0.77	19.9	15.4	99.	FörstFréed
	3.00	87 10	42 40	1.65	12.2	20.1		4 4 4
Steel	4.50	88 20 66 51	41 10 28 17	4.49 1.30	7.42 1.26	33.3 1.64	35.	Minor.
Steel	0.226 .257	68 35	28 45	1.38	1.35	1.86	40.	
1	.257	69 57	30 9	1.37	1.53	2.09	45.	"
	.500	75 47	29 2	2.09	1.50	3.14	57.	
]	.650	77 48	27 9	2.70	1.33	3.59	59.	IngersolI.
	1.50	81 48	28 51	3.71	1.55	5.75 7.41	73· 80.	a a
	2.25	83 22	30 36	4.14	1.79	/.4.		

Drude, Annalen der Physik und Chemie, 39, p. 481, 1890; 42, p. 186, 1891; 64, p. 159, 1898. Minor, Annalen der Physik, 10, p. 581, 1903. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericks2, Annalen der Physik, 40, p. 201, 1913.

TABLES 206-207. OPTICAL CONSTANTS OF METALS. TABLE 206.

Metal.	λ.	п.	k.	R.	Ref.	Metal.	λ.	ш.	k.	R.	Ref.
Al.* Sb.* Bi.†‡ Cd.* Cr.* Cb.* Au.† I. crys. Ir.* Fe.§ Pb.* Mg.* Mn.*	μ 0.589 -589 white -589 -579 -579 -257 -441 -589 -589 -579 -257 -441 -589 -589 -589 -589 -589 -579 -579 -579 -579 -579 -579 -579 -579 -579 -579 -579 -579 -579 -579 -579 -589 -589 -579 -589 -579 -	1.44 3.04 2.26 1.13 2.97 1.80 0.92 1.18 0.47 3.34 2.13 1.01 1.28 1.51 2.01 0.37 2.49	5.32 4.94 	83 70 85 70 41 28 42 82 30 75 16 28 33 62 93 64	I I 2 I 3 3 4 4 4 4 4 4 4 4 4 1 I 3	Rh.* Se.‡ Si.* Na. (liq.) Ta.* Su.* W.* V.* Zn.*	μ 0.579 -400 -589 .760 .589 1.25 2.25 2.589 .579 .589 .579 .589 .579 .589 .579 .589 .579 .589 .579 .589 .579 .589 .579 .589 .579 .589 .579 .589 .589 .579 .589 .589 .579 .589 .589 .579 .579 .579 .589 .579 .589 .579 .579 .579 .579 .579 .579 .579 .579 .568 .579 .579 .579 .579 .579 .568 .579 .579 .579 .579 .579 .568 .579 .579 .579 .568 .579 .579 .579 .568 .579 .579 .568 .579 .568 .579 .568 .579 .568 .579 .568 .579 .568 .579 .568 .579 .568 .579 .568 .579 .568 .568 .579 .568 .568 .568 .568	1.54 2.94 3.12 2.60 2.60 4.18 3.67 3.53 3.004 2.05 1.48 2.76 3.03 0.55 0.93 2.62	4.67 2.31 1.49 0.45 0.06 0.09 0.08 2.61 2.31 5.25 2.71 3.51 0.61 3.19 4.66 5.08	78 44 35 25 20 38 33 31 99 44 82 49 58 20 73 74 73	35555666131334444
Hg. (liq.) Pd.* Pt.† Ni.*	.326 .441 .589 .668 .579 .257 .441 .589 .668 .275 .441 .589	0.68 1.01 1.62 1.72 1.62 1.17 1.94 2.63 2.91 1.09 1.16 1.30	2.26 3.42 4 41 4.70 3.41 1.65 3.16 3.54 3.66 1.16 1.23 1.97	66 74 75 77 65 37 58 59 24 25 43	4 4 4 4 3 4 4 4 4 4 4 4 4 4 4	$\lambda = wave k = absor(1) Drudeused, Ann.36, p. 824,deutsch. PlMeier, Ann(5) Wood,Ingersoll, se* solid, †as film in va$	rption ir c, see Ta der Phys 1889; (nysik. G ales der Phil. M e Table electrol	dex, R ble 205 sik und 3) v. V es. 12, Physi ag. (6) 205.	= refl ; (2) K Chemi Warten p. 10 k, 10, p , 3, 60	ection. Lundt, p e, 34, p berg, V 5, 1910 5, 1910 7, 1902	orism 477, /erh. ; (4) 903; ; (6)

TABLE 207. - Reflecting Power of Metals.

Wave- length	Al.	Sb.	Cd.	Co.	Graph- ite.	Ir.	Mg.	Mo.	Pd.	Rh.	si.	Ta.	Te.	Sn.	M	Va.	Zn.
μ								Pe	er cen	ts.							
.5 .6 .8 1.0 2.0 4.0 7.0 10.0 12.0	71 82 92 96 98 98	- 53 54 55 60 68 71 72 -	72 87 96 98 98 99	- 67 72 81 93 97 97	22 24 25 27 35 48 54 59 -	- - 78 87 94 95 96 96	72 73 74 74 74 77 84 91 –	46 48 52 58 90 93 94 95	- 72 81 88 94 97 97	76 77 81 91 92 94 95 -	34 32 29 28 28 28 28 28 28 28 28	38 45 64 78 90 93 94 - 95	49 48 50 52 57 68 -	- 54 61 72 81 84 85	49 51 56 85 93 95 96 96	57 58 60 61 69 79 88 -	- - 80 92 97 98 98 98 99

Coblentz, Bulletin Bureau of Standards, 2, p. 457, 1906, 7, p. 197, 1911. The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The methods for polishing the various metals are described in the original articles.

TABLES 208-210. - THE REFLECTION OF LIGHT.

According to Fresnel the amount of light reflected by the surface of a transparent medium $= \frac{1}{2} (A + B) = \frac{1}{2} \left\{ \frac{\sin^2 (i - r)}{\sin^2 (i + r)} + \frac{\tan^2 (i - r)}{\tan^2 (i + r)} \right\}; A \text{ is the amount polarized in the plane of incidence; } B \text{ is that polarized perpendicular to this; } i \text{ and } r \text{ are the angles of incidence and refraction.}$

TABLE 208. — Light reflected when $i = 0^{\circ}$ or Incident Light is Normal to Surface.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$). <i>n.</i> I.4	$\frac{1}{2}(A+B).$ 2.78	<i>n</i> . 2.0	$\frac{1}{2}(A+B).$	74.	$\frac{1}{2}(A+B).$
I.00 0.00 I.02 0.01 I.05 0.06 I.1 0.23 I.2 0.83 I.3 I.70	I.4 I.5 I.6 I.7 I.8 I.9	2.78 4.00 5.33 6.72 8.16 9.63	2.0 2.25 2.5 2.75 3. 4.	11.11 14.06 18.37 22.89 25.00 36.00	5. 5.83 10. 100. ∞	44.44 50.00 66.67 96.08 100.00

TABLE 209 Light	reflected whe	1 n	is near	Unity	or	equals	1 + dn	

ż.	A.	В.	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$
0° 5 10 15 20 25 30 35 45 50 55 65 77 50 85 90	1.000 1.015 1.063 1.149 1.282 1.482 1.778 2.221 2.904 4.000 5.857 9.239 16.000 31.346 73.079 222.85 1099.85 17330.64 ∞	1.000 .985 .939 .862 .752 .612 .444 .260 .088 .000 .176 1.081 4.000 12.952 42.884 167.16 971.21 16808.08 .000	1.000 1.000 1.001 1.005 1.017 1.047 1.047 1.047 1.496 2.000 3.016 5.160 10.000 22.149 57.981 195.00 1035.53 17069.36 ∞	A + B 0.0 1.5 6.2 14.3 26.0 41.5 60.0 94.5 100.0 94.5 26.0 41.5 26.0 41.5 26.0 14.3 6.2 1.5 0.0

i.	т.	A.	В.	dA.t	<i>dB</i> .†	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$
2. 0 7 0 5 10 25 30 35 40 45 55 60 65 70 75 80	7. 0 0.0 3 13.4 6 25.9 9 36.7 12 44.8 15 49.3 18 49.1 21 43.1 24 30.0 27 8.5 29 37.1 31 54.2 33 58.1 35 47.0 37 19.1 38 32.9 39 26.8	A. 4.65 4.70 4.84 5.09 5.45 5.95 6.64 7.55 8.77 10.38 12.54 15.43 19.35 24.69 31.99 42.00 55.74	<i>B</i> . 4.65 4.61 4.47 4.24 3.92 3.50 3.00 2.40 1.75 1.08 0.46 0.05 0.12 1.13 4.00 10.38 23.34	0.130 .131 .135 .141 .150 .101 .233 .203 .303 .342 .375 .400 .370	<i>dB</i> .† 0.130 .129 .121 .114 .004 .066 .049 .027 032 032 050 069	$\frac{1}{2} (A + B).$ 4.65 4.65 4.66 4.66 4.66 4.68 4.73 4.82 4.98 5.26 5.73 6.53 6.57 7.74 9.73 12.91 18.00 26.19 39.54	
82 30 85 0 86 0 87 0 88 0 89 0 90 0	39 45.9 39 59.6 40 3.6 40 6.7 40 8.9 40 10.2 40 10.7	64.41 74.52 79.02 83.80 88.88 94.28 100.00	34.04 49.03 56.62 65.32 75.31 86.79 100.00	.320 .250 .209 .163 .118 .063 .000	067 061 055 046 022 000	49.22 61.77 67.82 74.56 82.10 90.54 100.00	30.8 20.6 16.5 12.4 8.3 4.1 0.0

TABLE 210. — Light reflected when n = 1.55.

Angle of total polarization = 57° 10'.3, A = 16.99.

* This column gives the degree of polarization. t Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n ot o.or. Taken from E. C. Pickering's "Applications of Fresoel's Formula for the Reflection of Light." SMITHSONIAN TABLES.

TABLES 211-212. REFLECTION OF METALS. TABLE 211. — Perpendicular Incidence and Reflection.

The numbers give the per cents of the incident radiation reflected.

Wave-leugth, μ.	Silver-backed Glass.	Mercury-backed Glass.	Mach's Magnalium. $6_{9}AI + 3^{1}Mg$.	Brandes-Schünemann Alloy. 32Cu+34Sn+29Ni+5Fe.	Ross' Speculum Metal. 68.2Cu+31.8Su.	Nickel, Electrolytically Deposited.	Copper. Electrolytically Deposited.	Steel. Untempered.	Copper. Commercially Pure.	Platinum. Electrolytically Deposited.	Gold. Electrolytically Deposited.	Brass. (Trowbridge).	Silver. Chemically Deposited.
.251 .288 .305 .316 .326 .338 .357 .385			67.0 70.6 72.2 75.5 81.2 83.9	35.8 37.1 37.2 - 39.3 - 43.3 44.3	29.9 37.7 41.7 - 51.0 53.1	37.8 42.7 44.2 45.2 46.5 48.8 49.6		32.9 35.0 37.2 40.3 - 45.0 47.8	25.9 24.3 25.3 - 24.9 - 27.3 28.6	33.8 38.8 39.8 41.4 43.4 45.4	38.8 34.0 31.8 - 28.6 - 27.9 27.1		34.1 21.2 9.1 4.2 14.6 55.5 74.5 81.4
-420 -450 -500 -550 -650 -700	85.7 86.6 88.2 88.1 89.1 89.6	- 72.8 70.9 71.2 69.9 71.5 72.8	83.3 83.4 83.3 82.7 83.0 82.7 83.3	47.2 49.2 49.3 48.3 47.5 51.5 54.9	56.4 60.0 63.2 64.0 64.3 65.4 66.8	56.6 59.4 60.8 62.6 64.9 66.6 68.8	48.8 53·3 59·5 83·5 89.0 9 ^{0.7}	51.9 54.4 54.8 54.9 55•4 56.4 57.6	32.7 37.0 43.7 47.7 71.8 80.0 83.1	51.8 54.7 58.4 61.1 64.2 66.5 69.0	29.3 33.1 47.0 74.0 84.4 88.9 92.3		86.6 90.5 91.3 92.7 92.6 94.7 95.4
.800 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0 14.0			84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.0 90.6 90.7 92.2	63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2 90.3	- 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2	-	58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 92.9 94.0 96.0	88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 98.4 97.9	70.3 72.9 77.7 80.6 88.8 91.5 93.5 93.5 95.5 95.4 95.6 95.4 95.6	94.9 97.3 96.8 97.0 98.3 98.0 98.3 98.0 98.3 97.9	91.0 93.7 95.7 95.9 97.0 97.8 96.6	96.8 97.0 98.2 97.8 98.1 98.5 98.5 98.7 98.7 98.8 98.3

Based upon the work of Hagen and Rubens, Ann. der Phys. (1) 352, 1900; (8) 1, 1902; (11) 873, 1903. Taken partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

		La	np-bla	cks.			res.	نه			er.			ret.		
Wave- length µ	Paint.	Rosin.	Sperm candle.	Acetylene	Camphor.	Pt. black electrol.	Green leaves.	Lead oxide.	Al. oxide.	Zinc oxide.	White Paper.	Lead carbooate.	Asphalt.	Black velvet.	Black felt.	Red brick.
*.60 *.95 4.4 8.8 24.0	3.2 3.4 3.2 3.8 4.4	1.3 1.3 3.0	1.1 .9 1.3 4.0	0.6 .8 1.2 2.1	1.3 1.2 1.6 5.7	1.1 1.4 2.1 4.2	25.	52. 51. 26. 10.	84. 88. 21. 2. 6.	82. 86. 8. 3. 5.	75. 18. 5.	89. 93. 29. 11. 7.	15.	1.8 3.7 2.7	14. 21.	30. 12.

*Not monochromatic (max.) means from Coblentz, J. Franklin Inst. 1912. Bulletin Bureau of Standards, 9, p. 283, 1912, contains many other materials.

TABLES 213-215.

TRANSMISSIBILITY FOR RADIATION OF JENA GLASSES.

TABLE 213.

Coefficients, a, in the formula $I_t = I_0 a^t$, where I_0 is the Intensity before, and I_t after, transmission through the thickness t, expressed in centimeters. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

Type of Glass.				Coe	fficient of	f transr	nission,	<i>a</i> .			
$\lambda =$	·375 µ	390 µ	.400 µ	• • • • • • • • • • • • • • • • • • • •	μ.436	μ.45	5 # .47	7 H .5	03 µ	.580 µ	.677 µ
O 340, Ord. light flint O 102, H'vy silicate flint O 93, Ord. "" O 203, ""crown O 598, (Crown)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.463	.614 .569 .463 .502 .695 .667		6 .60 4 .80 6 .8	63 .70 07 .8	00 . 09 .8	880 782 871 872 776	.878 .828 .903 .872 .818	.939 .794 .943 .903 .860
$\lambda =$	0.7 µ	0.95 µ	1.1 μ	3.4 µ	1.7 µ	2.0 µ	2.3 µ	2.5 µ	2.7 µ	. 2.9 μ	3.1 H
S 204, Borate crown S 179, Med. phosp. cr. O 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " "	1.00 .98 .99 .98 1.00 1.00 1.00	•99 •98 - .96 - - -	.94 .95 .97 .95 .99 .99 .99 1.00 .98	.90 .90 - .99 .99 - -	.85 .84 .95 .99 .98 .98 .99 I.00 .99	.81 .67 .93 .91 .94 .95 .98 -	.69 .49 .90 .82 .90 .92 .98 I.00 .99	.43 .87 .84 .71 .79 .84 .97 .99	.29 .18 .71 .60 .75 .78 .90 .92 .94	·47 .48 ·45 ·54 .66 ·74	- .27 .29 .32 .34 .50 .53 .60

TABLE 214.

Note: With the following data, t must be expressed in millimeters; i. c. the figures as given give the transmissions for thickness of 1 mm.

			<u> </u>			Wave	-length	inμ.		_			
No. and Type of Glass.			Visibl	e Spec	truma.				Ultr	a-viole	t Spect	rum.	
	.644 µ	.578 µ	.546 µ	.509 µ	.480 µ	.436 µ	.405 µ	.384 µ	.361 µ	.340 µ	.332 µ	.309 H	.280 µ
F 3815 Dark neutral	•35	.35	•37	•35	•34	.30	.15	.06					
F 4512 Red filter F 2745 Copper ruby F 4313 Dark yellow	.94 .72 .98	.05 •39 •97	.47	•47 .83	•45 •09	•43	•43						
F 4351 Yellow F 4037 Bright yellow	.98 1.0	.97 1.0	.93 .96 1.0	.93 .99	•44 •74	.15 .40	.31	.28	.22	.18	.14	.0 6	
F 4930 Green filter F 3873 Blue filter	•17	.50	.64	.62 .18	•44 •50	•73	.69	•59	.36	.10			
F 3654 Cobalt glass, transparent for outer red F 3653 Blue, ultraviolet		-		.15	.44 .11	.85 .65	1.0 1.0	1.0 1.0	1.0 1.0	1.0 1.0	1.0 1.0	.58 .81	.18
F 3728 Didymium, str'g bands	.99	•72	•99	.96	•95	.96	.99	.99	.89	.89	•77	•54	

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909

TABLE 215. - Transmissibility of Jans Ultra-violet Glasses.

No. and Type of Glass.	Thickness.	0.397 µ	0.383 µ	0.361 M	0 . 346 µ	0.325 µ	0.309 µ	0.280 µ
UV 3199 Ultra-violet """ UV 3248" ""	1 mm. 2 mm. 1 dm. 1 mm. 2 mm. 1 dm.	1.00 0.99 0.95 1.00 0.98 0.96	1.00 0.99 0.95 1.00 0.98 0.87	1.00 0.99 0.89 1.00 0.98 0.79	1.00 0.97 0.70 1.00 0.92 0.45	1.00 0.90 0.36 0.98 0.78 0.08	0.95 0.57 0.91 0.38	0.56 0.35

TABLE 216.

TRANSMISSIBILITY FOR RADIATION.

Transmissibility of the Various Substances of Tablas 166 to 175.

Alum : Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05µ and 30 to 40µ.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a 1 cm. thick plate in %:

Į	λ	9	10	I 2	13	14	15	16	17	18	19	20.7	23.7µ
	%	99.5	99.5	99.3	97.6	93.I	84.6	66.1	51.6	27.5	9.6	0.6	о.

Pflüger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness: 280μμ, 95.5%; 231, 86%; 210, 77%; 186, 70%.

Metallic reflection at 0.110µ, 0.156, 51.2, and 87µ.

Sylvine : Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

λ	9	10	11	12	13	14	15	16	17	18	19	20.7	23.7µ
%	100.	98.8	99.0	99.5	99.5	97.5	95.4	93.6	92.	86.	76.	58.	15.

Metallic reflection at 0.114µ, 0.161, 61.1, 100.

Fluorite : Very transparent for the ultra-violet nearly to 0.1 μ .

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

λ	8μ	9	10	11	12μ
%	84.4	54.3	16.4	1.0	0

Metallic reflection at 24µ, 31.6, 40µ.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $i = i_0 e^{-kt}$ (d in cm.):

For the ordinary ray:

λ	1.02	1.45	1.72	2.07	2. I I	2.30	2.44	2.53	2.60	2.65	2.74µ
k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	I.2I	1.74	2.36
L											

	2.83											
k	1.32	0.70	1.80	4.7I	22.7	19.4	9.6	18.6	∞	6.6	14.3	6.1

For the extraordinary ray :

λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	4.67 µ
k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40

λ	4.91	5.04	5.34	5.50µ
k	1.25	2.13	4.41	12.8

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for a plate I cm. thick: at 0.222 μ , 94.2%; 0.214, 92; 0.203, 83.6; 0.186, 67.2%.

Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar) : For the ordinary ray :

λ	2.72	2.83	2.95	3.07	3.17	3 .38	3.67	3.82	3.96	4.12	4.50µ
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray:

λ	2.74	2.89	3.00	3.08	3.26	3.43	3.52	3.59	3.64	3.74	3.91	4.19	4.36µ
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1.88	1.83	1.62	2.22	3.35	8.0

For $\lambda > 7 \mu$, becomes opaque, metallic reflection at 8.50 μ , 9.02, 20.75-24.4 μ , then transparent again.

The above are taken from Kayser's "Haodbuch der Spectroscopie," vol. iii.

SMITHSONIAN TABLES.

200

TABLES 217-218.

TRANSMISSIBILITY OF RADIATION.

TABLE 217. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898. Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

Color.	Thick- ness. mm.	Water solutions of	Grammes of substance in 100 c.cm.	Optical cen- tre of band, µ	Transmission.
Red " Yellow " Green " Bright { blue } Dark { blue {	20 20 15 15 20 20 20 20 20 20	Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, NiSO ₄ ,7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl ₂ .2aq. Potassium monochromate Double-green, SF Copper-sulphate, CuSO ₄ .5aq. Crystal-violet, 5BO Copper sulphate, CuSO ₄ .5aq.	0.005 10. 30. 10. 0.025 60. 10. 0.02 15. 0.005 15.	0. 6659 0.5919 0.5330 0.4885 0.4482	<pre>{ begins about 0.718µ. ends sharp at 0.639µ. 0.614-0.574µ, 0.540-0.505µ { 0.526-0.494 and { 0.494-0.458µ 0.478-0.410µ</pre>

TABLE 218. - Color Screens.

The following list is condensed from Wood's Physical Optics :

- Methyl violet, 4R (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359µ, transmits 0.4047 and 0.4048, also faintly 0.3984.
- Cobalt glass + aesculin solution transmits 0.4359 μ .
- Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916µ.
- Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.
- Chrysoidine + eosine transmits 0.5790µ. The former should be dilute and the eosine added until the green line disappears.
- Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a * are transparent to a more or less degree to the ultra-violet: * Cobalt chloride: solution in water, — absorbs 0.50-.53 μ ; addition of CaCl₂ widens the band to 0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-

- 0.555 and below 0.40µ. Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water, above 0.595 and below 0.37 µ.
- Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-565 and above 0.60µ, the bands very sharp (a useful screen for photographing with a visually corrected objective).
- Praesodymium salts : three strong bands at 0.482, .468, .444. In strong solutions they fuse into a sharp band at 0.435-.485µ. Absorption below 0.34.

Picric acid absorbs 0.36-.42µ, depending on the concentration.

Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23µ.

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet. Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33µ. These limits vary with the concentration.

Aesculin: absorbs below 0.363µ, very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultra-violet.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS2 is opaque to the visible and transparent to the infra-red.

TABLES 219, 219A.

TRANSMISSIBILITY OF RADIATION.

TABLE 219. - Color Soreens. Jena Glaases.

	Kiod of Glass.	Maker's No.	Color.	Region Transmitted.	Thick- ness. mm.
I 1a 2 2a	Copper-ruby Gold-ruby Uranium "	459 ¹¹¹	Red Bright yellow	Only red to 0.6μ . { Red, yellow; in thin layers also blue and violet. { Red, yellow, green to E_b ; in } thin layer also blue	1.7 16.
3 4 4a 4b 5 6 7 8 10 11 " 12 13 14 15 16	Chromium Copper chromium Green-filter "" Copper Blue-violet Cobalt Violet Gray	440 ^{III.} 414 ^{III} 433 ^{III} 432 ^{III} 436 ^{III} 437 ^{III} 438 ^{III} 2742 447 ^{III} " 424 ^{III}	Bright yellow-brown Yellow-green Greenish-yellow . Green Yellow-green . Dark green . "" Blue, as CuSO4 . Blue, as cobalt glass """ Blue . Dark violet . "" Gray, no recog.	<pre>{ Red, yellow, green (weakened), } } blue (very weakened) } Yellowish-green</pre>	11. 10. 5. 2-3 2.5 5. 5. 5. 2-5 4-5 6. 7. 0.1-8 0.1-3

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 1901 (from which the above table is taken), and "Über Jenenser Lichtfilter," by Grebe, same volume.

The following notes are quoted from Everett's translation of the above in the English edition of 'Hovestadt's " Jena Glass.")

Division of the spectrum into complementary colors :

Is by 2728 (deep red) and 2742 (bue, like copper sulphate). 2nd by 454^{III} (bright yellow) and 427^{III} (blue, like cobalt glass). 3rd by 433^{III} (greenish-yellow) and 424^{III} (blue). Thicknesses necessary in above: 2728, 1.6–1.7 mm.; 2742, 5; 454^{III}, 16; 447^{III}, 1.5–2.0; 433^{III}, I hicknesses necessary in above: 2720, 1.0-1.7 min.; 2/42, 5; 434, 10; 44/, 1.5-2.0; 433, 2.5-3.5; 424^{III}, 3 mm. Three-fold division into red, green and blue (with violet): 2728, 1.7 mm.; 414^{III}, 10 mm.; 447^{III}, 1.5 mm., or by 2728, 1.7 mm.; 436^{III}, 2.6 mm.; 447^{III}, 1.8 mm. Grebe found the three following glasses specially suited for the additive methods of three-color

projection :

2745, red; 43811, green; 44711, blue violet;

corresponding closely to Young's three elementary color sensations. Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.

See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.

TABLE 219a. - Water Vapor.

Values of a in $I = I_0 e^{ad}$, d in c. m. I_0 ; I, intensity before and after transmission.

Wave-length μ ,	.186	.193	.200	.210	.220	.230	.240	.260	.300	.415
a	.0688	.0165	.009	.0061	.0057	.0034	.0032	.0025	.0015	.00035
Wave-length μ ,	.430	.450	.487	.500	.550	.600	.650	· 7 79	.865	.945
a	.00023	.0002	1000.	.0002	.0003	.0016	.0025	.272	.296	.538

First 9; Kreusler, Drud. Ann. 6, 1901,; aext Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ana. 55, 1895; last 3, Nichols, Phys. Rev. 1, 1. See Rubens, Ladenburg. Verh. D. Phys. Ges. 1911, for extinction coefs., reflective power and index of refraction, 1 µ

to 18 μ.

TABLES 220, 221. - ROTATION OF PLANE OF POLARIZED LICHT. 203

TABLE 220. - Tartaric Acid ; Camphor ; Santonin ; Santonio Acid; Cane Sugar.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solutioo. The examples are quoted from Laudolt & Börnstein's "Phys. Chem. Tab." The following symbols are used :-

$$\begin{array}{ccc} & & \\ &$$

" " cubic centimeter "

q =active Right-handed rotation is marked +, left-handed -.

Line of spectrum.	Wave-length according to Angström in cms. \times 10 ^g .	Tartaric acid,* CuH_6O_{g} , dissolved in water. q = 50 to 95, temp. $= 24^{\circ}$ C.	Camphor,* $C_{18}H_{16}O$, disselved in alcohol. $q \equiv 50 \text{ to } 95$, temp. $\equiv 22.9^{\circ}$ C.		Santonin,† $C_{15}H_{18}O_3$, dissolved in chloroform. q = 75 to 96.5, temp. = 20° C.		
B C D E b₁ b₂ F e	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$+ 2^{\circ}.748 + 0.09446 q$ + 1.950 + 0.13030 q + 0.153 + 0.17514 q - 0.832 + 0.19147 q - 3.598 + 0.23977 q - 9.657 + 0.31437 q	$38^{\circ}.549 - 0.0852 q$ 51.945 - 0.0964 q 74.931 - 0.1343 q 79.348 - 0.1451 q 99.601 - 0.1912 q 149.696 - 0.2346 q		$-140^{\circ}.1 + -149.3 + -202.7 + -285.6 + -302.38 + -365.55 + -365.55 + -334.98 + -365.55 + -34.98 + -365.55 + $	0.1555 q 0.3086 q 0.5820 q 0.6557 q - 0.8284 q	
		Santonin, $\uparrow C_{16}H_{16}O_{3}$, * dissolved in alcohol. $c \equiv 1.782$. temp. $= 20^{\circ}$ C.	Santonin, dissolved in alcohol. c = 4.046. temp. = 20° C.	$\begin{array}{c} C_{15}H_{18}O_{3},\\ dissolved in\\ chloroform\\ c=3.1-30.5.\\ temp.=\\ 20^{\circ}C. \end{array}$	Santonic acid,† $C_{15}H_{20}O_{4}$, dissolved in chloroform. c = 27.192. temp. $= 20^{\circ}$ C.	Cane sugar, $C_{12}H_{29}O_{11}$, dissolved in water. p = 10 to 30.	
BCDEb¹№F eGg	68.67 65.62 58.92 52.69 51.72 48.61 43.83 43.07 42.26	$- 110.4^{\circ} - 118.8 - 161.0 - 222.6 - 237.1$	442° 504 693 991 1053 - 1323 2011 - 2381	484° 549 754 1088 1148 - 1444 2201 - 2610	$ \begin{array}{r} -49^{\circ} \\ -57 \\ -74 \\ -105 \\ -112 \\ -137 \\ -197 \\ -230 \end{array} $	47°.56 52.70 60.41 84.56 87.88 101.18 131.96	
	* Arndtsen, "Ann. Chim. Phys." (3) 54, 1858. † Narini, "R. Acc. dei Lincei," (3) 13, 1882. ‡ Stefan, "Sitzb. d. Wien. Akad." 52, 1865.						

TABLE 221. - Scdium Chlorate; Quartz.

Sodium	Sodium chlorate (Guye, C. R. 108, 1889).			Quarts	e (Soret & S	arasin, Arch.	de Gen.	1882, or C. R	. 95, 1882).*
Spec- trum line.	Wave- length.	Temp. C.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.
a B C D E F G G H L M N P Q R T C d_{17} C d_{18}	71.769 67.889 65.073 59.085 53.233 48.912 45.532 42.834 40.714 38.412 37.352 35.818 33.931 32.341 30.645 29.918 28.270 25.038	I 5 ⁰ .0 17.4 20.6 18.3 16.0 10.1 14.5 13.3 14.0 10.7 12.9 12.1 11.9 13.1 12.8 12.2 11.6	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 7.654 8.100 8.861 9.801 10.787 11.921 12.424 13.426 14.965	A a B C D ₁ D ₂ E F G h H K L M	76.04 71.836 68.671 58.951 58.891 52.691 48.607 43.072 41.012 39.681 39.333 38.196 37.262	12°.668 14.304 15.746 17.318 21.684 21.727 27.543 32.773 42.604 47.481 51.193 52.155 55.625 58.894	$\begin{array}{c} Cd_9 \\ N \\ Cd_{10} \\ O \\ Cd_{11} \\ P \\ Q \\ Cd_{12} \\ R \\ Cd_{17} \\ Cd_{18} \\ Cd_{28} \\ Cd_{28} \\ Cd_{24} \\ Cd_{25} \\ Cd_{26} \end{array}$	36.090 35.818 34.655 34.406 32.858 32.470 31.798 27.467 25.713 23.125 22.645 21.935 21.431	63°.628 64.459 69.454 70.587 72.448 74.571 78.579 80.459 84.972 121.052 143.266 190.426 201.824 220.731 235.972

* The paper is quoted from a paper by Ketteler in "Wied. Ann." vnl. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines. SMITHSONIAN TABLES.

TABLE 222.

NEWTON'S RINGS.

Newton's Table of Colors.

The following table gives the thickness in millionths of an inch, according to Newton, of a plate of air, water, and glass corresponding to the different colors in successive rings commonly called colors of the first, second, third, etc., orders.

Order.	Color for te-	Color for transmitted	Thickness in millionths of an inch for —		Order.	Color for re-	Color for trans- mitted	milli	ickness onths o ch for –	fan	
Ord	flected light.	light.	Air.	Water.	Glass.	ō	nected light.	light.	Air.	Water.	Glass.
I.	Very black Black Beginning of black . Blue	White	0.5 1.0 2.0	0.4 0.75 1.5	0.2 0.9 1.3		Yellow Red Bluish red	Bluish green	27.I 29.0 32.0	20.3 21.7 24.0	17.5 18.7 20.7
	Blue White Yellow Orange . Red	red . Black . Violet . Blue .	2.4 5.2 7.1 8.0 9.0	1.8 3.9 5.3 6.0 6.7	1.5 3.4 4.6 4.2 5.8	IV.	Bluish green . Green . Yellowish green . Red	Red . 	24.0 35·3 36.0	25.5 26.5 27.0	22.0 22.7 23.2
II.	Violet Indigo Blue Green Yellow Orange .	White . Yellow . Red Violet .	11.2 12.8 14.0 15.1 16.3 17.2	11.3 12.2 13.0	7.2 8.4 9.0 9.7 10.4 11.3	V. VI.	Greenish blue Red	green Red .	40.3 46.0 52.5	30.2 34·5 39·4	26.0 39.7 34.0
III.	Bright red Scarlet Purple	Blue Green .	18.2 19.7 21.0		11.8 12.7 13.5		Greenish blue Red	=	58.7 65.0	46 48.7	38.0 42.0
	Indígo Blue Green	Yellow . Red	21.1 23.2 25.2	17.6 17.5 18.6	14.2 15.1 16.2	VII.	Greenish blue Reddish white .	-	72.0 71.0	53.2 57.7	45.8 49·4

The above table has been several times revised both as to the colors and the numerical values. Professors Reinold and Rucker, in their investigations on the measurement of the thickness of soap films, found it necessary to make new determinations. They give a shorter series of colors, as they found difficulty in distinguishing slight differences of shade, but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band. The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts. For example: $R_{1\,b}$ indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum. The thicknesses are in millionths of a centimeter.

Order.	Color.	Pasi- tion.	Thick- ness.	Order.	Color.	Posi- tion.	Thick- ness.	Order.	Color.	Posi- tion.	Thick- ness.
I.		R _{1 5}	28.4		Red * . Bluish	R _{8 5}	76.5	VI.	Green . Green*	G5 0 G6 5	141.0 147.9
II.	Violet . Blue Green .	$V_{2\ 5} \\ B_{2\ 5} \\ G_{2\ 5}$	30.5 35.3 40.9	IV.	ıed*. Green.	BR _{8 5} G _{4 0}	81.5 84.1	 .	Red Red * .	R ₆₀ R ₆₅	1 54.8 162.7
	Yellow * Orange *	Y ₂₅ O ₂₅	45.4 49.1		". Yellow	G _{4 5}	89.3	VII.	Green . Green*.	G7 0 G7 5	170.5 178.7
III.	Red Purple .	R ₂₅ P ₃₅	52.2 55.9		green* Red*.	YG ₄₅ R ₄₅	96.4 10 5 .2		Red Red * .	R70 R75	186.9 193.6
	Blue Blue * . Green .	B _{8 0}	57.7 60.3 65.6	v .	Green . Green*. Red	G50 G55 R50	111.9 118.8 126.0	VIII.	Green . Red	G ₈₀ R ₈₀	200.4 211.5
	Yellow *	Y85	71.0		Red* .	R5 0 R5 5	1 33.5				

* The colors marked are the same as the corresponding colors in Newton's table.

TABLE 223. CONDUCTIVITY FOR HEAT.

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_0 [1 + \alpha (t - t_0)]$. k_0 is the resistance at t_0 , the lower temperature of the bracketed pairs in the table, k_t that at temperature t and α is a constant.

* Jaeger and Diesselhorst.

† Herschel, Lebour, and Dunn (British Association Committee).

TABLE 224.

THERMAL CONDUCTIVITIES AT HIGH TEMPERATURES.

		a	d'hermel C	anductivity		
Material.	Authority.	Temperature Centigrade	Calories p	onductivity ber sec. per		
		Degrees.	deg. C. pe	r cm. cube.		
Nickel	Angell ¹	300		26		
	- 5	400	.1	17		
		600		88		
		700		069 068		
		800 1000		064		
		1200		58		
Aluminum	Angell ¹	1200		19		
Alummum		200		55		
		300	j.,	94		
		400		6		
-		600	1.0			
Iron	Hering	100 - 727		202 184		
		100 - 912 100 - 1245		104 19 1		
Copper	Hering	100 - 1245	1	043		
Cohher	1101115	100 - 268		69		
			.9	31		
		100 - 370 100 - 541		02		
		100 - 837		358		
Graphite	Hering	100 - 390		338		
(Artificial)		100 - 540		324 306		
		100 - 720 100 - 914		291		
	Hansen ²	30 - 2830		162		
	A LUNCON	2800 - 3200		002		
		J	maximum.	minimum.		
	1	90-110	.55	•45		
		180 - 220	•44	.34		
		350 - 450	-35	.26		
		500 - 700	-31	.22		
Amorphous	Hansen ²	37 - 163	.028	.003		
Carbon	1	170 - 330	.027 .020	.004		
	1	240 - 523 283 - 597	.020	.003		
	Hering	100 - 360		089		
		100-751		124		
		100 - 751 100 - 842		129		
Graphite brick	Wologdine	300 - 700	.024			
Carborundum brick	"	150 - 1200		to .027		
Magnesia brick		50 - 1130 100 - 1125	.0027 1	to .0072		
Gas retort brick Building and terra	1 1	100-1125				
cotta	"	15-1100	.00181	to .0038		
Silica brick	66	100 - 1000	.002 1	to .0033		
Stoneware mixtures	"	70 - 1000	.00291	to .0053		
Porcelain (Sèvres)	66 66	165 - 1055	.00391	to .0047		
Fire clay brick		125 - 1220		to .0054		
Limestone	Poole ⁸	40 100		to .0057		
	1	350		to .0049 to .0035		
Granite	Poole ⁸	100		to .0030		
		200		to .0097		
		500	.0040			
A11 Dhura Day 4		Clausersh Erms E	Trun I	T imme of		
Angell, Phys. Rev. 3	3, p. 421, 1911; v	dement, Egy, E	ng. Exp. u	nivers. of		
Ill., Bul. 36, 1909; Dewey, Progressive Age, 27, p. 772, 1909; Hering, Trans.						

Ill., Bul. 36, 1909; Dewey, Progressive Age, 27, p. 772, 1909; Hering, Trans. Am. Inst. Elect. Eng. 1910; Poole, Phil. Mag. 24, p. 45, 1912; Wologdine, Bull. Soc. Encouragement, 111, p. 879, 1909; Electroch. and Met. Ind. 7, pp. 383, 433, 1909; Woolson, Eng. News, 58, p. 166, 1907; heat transmission by concretes. Actual values not given; Hansen, Trans. Amer. Electrochem. Soc. 16, p. 329, 1909; Richards, Met. and Chem. Eng. 11, p. 575, 1913.

¹ Taken from Angell's curves. ² Values calculated from results expressed in other units. The max. and min. do ont relate to variability in material, but to possible errors in the method. ³ Taken from Poole's curves.

CONDUCTIVITY FOR HEAT.

TABLE 225. - Various Substances,

5

Substance.	<i>t</i> 0	ke	Au- thor- ity.
Asbestos paper Biotting paper. Carbon . Portland cement Cork . Cotton wool . Cotton pressed Chalk . Ebonite . Felt . Flannel (dry) . Glass {from . Horn . Horn . Leather, cow-hide "chamois. Linen . Caen stone (build- ing limestone) } Calc's sandstone { (freestone) }	- 0 - 0	.00043 .00015 .000717 .000405 .000717 .00043 .000033 .000087 .00012 .0012 .0012 .0023 .00042 .00223 .00042 .00042 .000433 .000433 .000211	55151112211 3 111455555 2 2
1 G. Forbes. 2 H., L., & D.* 3 Various.		Neumann. Lees-Chorlto	n.

TABLE 226. - Water and Salt Solutions.

Substa	nce.	Density.	t o	kı	Au- thor- ity.
Water " "	• • • • • • • •		- 0 9-15 4 30 18	.002 .00120 .00136 .00129 .00157 .00124	I 2 2 3 4 5
Solution water	is in r.				
$\begin{array}{c} CuSO_4\\ KC1\\ NaC1\\ H_2SO_4\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	· · · · · · · · · · · · · · · · · · ·	1.160 1.026 33 ¹ % 1.054 1.100 1.180 1.134 1.136	4.4 13 10–18 20.5 20.5 21 4.5 4.5	.00118 .00116 .00267 .00126 .00128 .00130 .00118 .00115	2 46 5552 2
2 H.	tomle F. W chsm	eber.	5 C	raetz. hree. Vinkelma	nn.

TABLE 227. — Organic Liquide.

Substance.	20	$\times^{k_t}_{1000}$	a	Authority.	s
Benzole Carbon disulphide Chloroform Ether	9-15 9-15 9-15 9-15 9-15 9-15 9-15 9-15	.328 .423 .495 .333 .288 .303 .637 .395 .425 .355 .325 .44		I I I I I I I I I I I I I I I I I I I	Air Argo Amm Carbo " Ethyl Heliu Hydr Methy Nitro Oxygo

TABLE 228. - Gases.

Substance.	<i>t</i> 0	kt ×10000	a	Authority.
Air Argon Ammonia Carbon monoxide " dioxide .	0 0 0 0 0	.568 .389 .458 .499 .307	.00190 .00260 .00548 	I 2 1 1 1
Ethylene Helium Hydrogen Methane	0 0 7-8	.395 3.39 3.27 .647	.00445 .00318 .00175	I 2 I I
Nitrogen Nitrous oxide . Oxygen	7-8 7-8 7-8	.524 .350 .563	.00446	I I I
	nkelm iwarze			

* Herschel, Lebour, and Dunn (British Association Committee).

.

207

TABLE 229.

DIFFUSIVITIES.

The diffusivity of a substance $= h^2 = k/c\rho$, where k is the conductivity for heat, c the specific heat and ρ the density. (Kelvin.) The values are mostly for room temperatures, about 18°C.

Material.	Diffusivity.	Material.	Diffusivity.
Aluminum Antimony Bismuth Brass (yellow) Cadmium Copper Gold Iron (wrought, also mild steel) Iron (cast, also r% carbon steel) Lead Magnesium Mercury Nickel Palladium Platinum Silver Tin Zinc Air Brick (average fire) "("building)	.139 .0678 .339 .467 1.133 1.182 0.173 .121 .237 .883 .0327 .152 .240 .243 1.737 0.407 .402 .179 .0035 .0074	Coal	0.002 .0032 .0058 .000 .0017 .0010 .0057 .0155 .0112 .0090 .0090 .0098 .0118 .0064 .0133 .0033 .0033 .0033 .0031 .0014 .0023

Taken from "An Intruduction to the Mathematical Theory of Heat Conduction," Ingersoll and Zobel, 1913. SMITHSONIAN TABLES.

HEAT OF COMBUSTION.

Heat of combustion of some common organic compounds. Products of combustion, CO_2 or SO_2 and water, which is assumed to be in a state of vapor.

Substance.	Small calories per gram of substance.	Authority.
Acetylene	11923	Thomsen.
Alcohols : Amyl	8958	Favre and Silbermann.
Ethyl	7183	« « «
Methyl	5307	cc cc ce
Benzene	9977	Stohmann, Kleber, and Langbein.
Coals : Bituminous	7400-8500	Various.
Anthracite	7800	Average of various.
Lignite	6900	•• •• ••
Coke	7000	cc (c 8)
Carbon disulphide	3244	Berthelot.
Dynamite, 75%	1290	Roux and Sarran.
Gas: Coal gas	5800-11000	Mahler.
Illuminating	5200-5500	Various.
Methane	13063	Favre and Silhermann.
Naphthalene	9618-9793	Various.
Gunpowder	720-750	
Oils: Lard	9200-9400	"
Olive	9328-9442	Stohmann.
Petroleum, Am. crude .	11094	Mahler.
" " refined .	11045	"
" Russian	10800	"
Woods: Beech with 12.9% H2O	4168	Gottlieb.
Birch " 11.83 "	4207	16
Oak " 13.3 "	3990	"
Pine " 12.17 "	4422	a

TABLE 231.

HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL.

(a) Ccals.

Coal.	Moisture.	Volatile Matter.	Fixed Carbon.	Ash.	Sulphur.	Hydrogen	Carbon.	Nitrogen.	Oxygen.	Calor ies per gram.	B. T. U.'s per pound.
Lignite { Low grade High grade Sub-bitu- { Low grade . minous { High grade . Bituminous { Low grade . High grade Semi-bitu- { Low grade . minous { High grade . Semi-anthracite Anthracite { Low grade . High grade	38.81 33.38 22.71 15.54 11.44 3.42 2.7 3.26 2.07 2.76 3.33	25.48 27.44 34.78 33.03 33.93 34.36 14.5 14.57 9.81 2.48 3.27	27.29 29.62 36.60 43.92 58.83 7 5.5 78.20 78.82 82.07 84.28	5.37 10.71	.29 .58 4.94 .58 .99 .54 1.74 .54	7.09 6.77 6.14 5.89 5.39 5.25 4.58 4.76 3.62 2.23 3.08	80.28	.50 .67 1.03 1.05 1.29 1.82 1.02 1.47 .68 .79	45.57 40.75 34.09 27.03 17.88 11.51 4.66 5.09 3.59 4.64 5.06	3526 3994 5115 5865 6088 7852 7845 8166 7612 6987 7417	6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351

(b) Peats (air dried).

From	Vol. Hydro- Carbon.	Fixed Carbon.	Ash.	Sul- phur.	Hydro- gen.	Carbon.	Nitro- gen.	Oxygen.	Calories per gram.	B.T.U.'s per pouud.
Franklin Co., N. Y.	67.10	28.9 9	3.91	.15	5.93	57.17	1.48	31.36	5726	10307
Sawyer Co., Wis.	56.54	27.92	15.54	.29	4.7 I	51.00	1.92	26.54	4867	8761

(c) Liquid Fuels.

Fuel.	Specific Gravity at 15 ⁰ C	Calories per gram,	British Thermal Units per pound.		
Petroleum ether	.684694	12210-12220	21978-21996		
Gasoline	.710730 .790800	11100-11400	19980-20520		
Fuel oils, heavy petroleum or refinery residue Alcohol, fuel or denatured	.990800 .960970	11000-11200 10200-10500	19800-20160 18360-18900		
with 7–9 per cent water and denaturing material	.81968202	6440-6470	11592-11646		

Table compiled by U. S. Geological Survey.

TABLE 232.

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES.

Explosive.	Specific gravity.	Number of large calories developed by <i>x</i> kilogram of the explosive.	Pressure developed in own volume after elimination of surface in- fluence.	Uoit disruptive charge by ballistic pendulum.	Rate of detonation. Cartridges 1≵ in. diam.	Duration of flame from 100 grams of explosive.	Length of flame from 100 grams.	Cartridge 14 in. transmitted explo- sion at a distance of	Products of combustion from 200 grams; gaseous, solid, and liquid, respectively.	fguition occurred in 4% fire damp & coal dust mixture with
			Kg. per sq. cm.	Grams.	Meters per second.	Millisec- onds.	Ioches.	Inches.	Grams.	Grams.
(A) Forty-per-cent nitro- glycerin dynamite	1.22	12 21. 4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25
(B) FFF black blasting powder	1.25	789.4	4817	374† 458*	469.4‡	925.	54.32	-	154.4 126.9 4.1∥	25
(C) Permissible explo- sive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27. 79	4	103.9 65.1 15.4	1000
(D) Permissible explo- sive; ammonium nitrate class	0.97	992.8	73 00	279*	3438§	.483	25.68	1	89.8 27.5 75.5	800
(E) Permissible explo- sive; hydrated class	1.54	610.6	6597	434*	2479	.338	17.49	3	86.1 56.0 33.0	Over 1000
			Chemical	Analyse	s.					
 (A) Moisture Nitroglycerin Sodium nitrate Wood pulp Calcium carbonate . (B) Moisture Sodium nitrate Charcoal 	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •	0.91 39.68 42.46 13.58 3.37 0.80 70.57 17.74		Moistur Ammon Sulphur Starch Wood p Poisono Mangan Sand	ium n ulp us ma	tter	• • • • • • • • • • • •	• • • • • • •	0.23 83.10 0.46 2.61 1.89 2.54 2.64 6.53
Charleoar Sulphur Nitroglycerin Sodium nitrate Wood pulp and crud grains Starch Calcium carbonate . Magnesium "	e fibro	• • • • • • • • • • • • • • • • • • •	17.74 10.89 7.89 24.02 36.25 9.20 21.31 0.97 0.36		Moisture Nitrogly Ammon Sand . Coal . Clay . Ammon Zinc sul Potassiu	cerin ium n ium si phate	ilphate (7HO)	 . .<		2.34 30.85 9.94 1.75 11.98 7.64 8.96 6.89 19.65

* One pound of clay tamping used. § Cartridges x³ in. diam.

† Two pounds of clay tamping used. || For 300 grammes.

.

‡ Rate of burning.

Compiled from U. S. Geological Survey Results, - " Investigation of Explosives for use in Coal Mines, 1909." SMITHSONIAN TABLES.

Substance.	Combined with oxygen forms —	Heat units.	Combined with chloriae forms —	Heat units.	Combined with sulphur forms —	Heat units.	Author- ity.							
Calcium	CaO CO2	3284	CaCl ₂	4255	CaS	2300	I 2							
Carbon - Diamond	CO	7859 2141	_	_	_	-	3							
" Graphite	CO ₂	7796	_	_	-	_	3							
Chlorine	Čl ₂ Ô	254	_	-	-	_	ĭ							
Copper	Cu ₂ O	321	CuCl	520	-	-	I							
	CuO	585	CuCl ₂	8 19	CuS	158	I							
"	"	593	-	-	-	-	4							
Hydrogen*	H ₂ O	34154	HCl	22000	H_2S	2250	3							
	"	34800	-	-	-	-	56							
" • • • •		34417	T.CI	-	T-CIT O	-	6							
Iron	FeO	1353	FeCl ₂	1464	FeSH ₂ O	428	3							
Iodine	I_2O_5		FeC18	1714	-	-	3 I							
Lead	PbO	177 243	PbCl ₂	400	PbS	08	I							
Magnesium	MgO	6077	MgCl ₂	6291	MgS	3191	I							
Manganese	MnOH ₂ O	1721	MnCl ₂	2042	MnSH ₂ O ₂	841	ī							
Mercury	Hg ₂ O	105	HgCl	206		_	I							
"	HgO	153	HgCl ₂	310	HgS	84	I							
Nitrogen*	N ₂ O	654	<u> </u>	-	-	-	I							
"	NO	—1541	-	-	-	-	I							
	NO ₂	- 143	-	-	-	-	I							
Phosphorus (red)	P_2O_5	5272	-	-	-	-	I							
" (yellow) .	"	5747 5964	_	_	-		7 I							
Potassium	K ₂ O	1745	KCI	2705	K_2S	1312	8							
Silver	Ag ₂ O	27	AgCl	271	Ag ₂ S	24	I							
Sodium	Na ₂ O	3293	NaCl	4243	Na_2S	1900	8							
Sulphur	SO_2	2241	-			-	I							
		2165	-	-	-	-	2							
	SnO	573	SnCl ₂	690	-	-	4							
	ZnO	1185	SnCl ₄	1089	-	-	7							
Zinc	ZnO "	1314	ZnCl ₂	-	-	-	4 I							
		1314	20012	1495	-									
Substance.	Combined with S+O4	Heat	Combined with N + O ₃	Heat	Combined with C+Oa	Heat	Author- ity.							
	to form —	units.	to form —	uoits.	to form	uaits.	A.							
Calcium	CaSO₄	7007	CaNO	5080	CaCO ₈	67.00								
Copper	CuSO ₄	7997 2887	$Ca(NO_8)_2$ $Cu(NO_8)_2$	5080 1304		6730	I I							
Hydrogen	H_2SO_4	96450	HNO ₈	41 500	-	_	I							
Iron	FeSO ₄	4208	$Fe(NO_8)_2$	2134	-	_	I							
Lead	PbSO ₄	1047	Pb(NO ₈) ₂	512	PbCO ₈	814	I							
Magnesium	MgSO ₄	12596	- 1	<u>-</u>	-	-	I							
Mercury	T 	-	-	-	-	-	I							
Potassium	K ₂ SO ₄	4416	KNO3	3061	K ₂ CO ₈	3583	I							
Silver Sodium	Ag_2SO_4 Na_2SO_4	776	AgNO3 NaNO8	266	Ag ₂ CO ₃	561	II							
Zinc.	$ZnSO_4$	7119	NaNO ₈	4834	Na_2CO_8	5841								
	2.004	3538	_	-		_								
	·	UTHORI	TIES		·		<u> </u>							
- 171														
I Thomsen. 3 Favre a	and Silberm	ann. 5	Hess.		G	Andrew	s.							
2 Berthelot. 4 Joule.		6	Average of s	seven di	nerent. 8	Woods.								
·						2 Berthelot. 4 Joule. 6 Average of seven different. 8 Woods.								

Heat of combination of elements and compounds expressed in units, such that when unit mass of the substance is units, which will be raised in temperature

SMITHSONIAN TABLES.

* Combustinn at constant pressure.

.

COMBINATION.

caused to combine with oxygen or the negative radical, the numbers indicate the amount of water, in the same from 0° to 1° C. by the addition of that beat.

	In dilute solutions.									
Substance.	Forms —	Heat units.	Forms—	Heat units.	Forms —	Heat units.	Author ity.			
Calcium Carbon — Diamond .	CaOH ₂ O	3734	CaCl ₂ H ₂ O	4690	$CaS + H_2O$	2457	I 2			
"""	-	-	-	_	-	-	3			
" - Graphite .	-	-	-		-	-	3			
Chlorine	-	-	-	-		-	1			
Copper	-	-	-	-	-	-	I			
	- !	-	-	-	-	-	I			
Hydrogen .	_	-	-	-	~	-	4			
"		_	-	_	} -	- 1	3 56			
"	-	_		-	-	- 1	5			
Iron	$FeO + H_2O$	1220*	$FeCl_2 + H_2O$	1785	_					
"		-	FeCl ₈	2280	_		3			
Iodine	-	~	-	-	-	-	3			
Lead	_	-	PbCl ₂	368	-	- 1	I			
Magnesium	MgO_2H_2	9050 t	MgCl ₂	7779	MgS	4784	I			
Manganese	-	- 1	$MnCl_2$	2327	- 1	- 1	I			
Mercury	-	-		-		-	I			
	-	-	HgCl ₂	299		-	I			
Nitrogen	-	-	-	-	-	-	Ι			
	_	-		-	-	-	I			
Phosphorus (red)	_	_	_	_	_		I I			
" (yellow).	_	_	_	-	_	1 -	7			
" ""	-	-	_	_		-	1			
Potassium	K ₂ O	2110*	KCl	2592	K ₂ S	1451	8			
Silver	-	-	-		-		I			
Sodium	Na_2O	3375	NaCl	4190	Na_2S	2260	8			
Sulphur	-	-	-	-	-		II			
··· · · ·	-		-	-	-		2			
Tin_{u}	-	-	SnCl ₂	691	-		7			
	-	- 1	$SnCl_4$	1344	-	- 1	7			
Zinc	_	-	ZnCl ₂	-	-		4 I			
	_	-	211012	1735	-					
	·····		In dilute solutio	ns.			-ion			
Substance.	Forms —	Heat units.	Forms	Heat units.	Forms —	Heat units.	Author- ity.			
Calcium Copper	CuSO4	_ 3150	$Ca(NO_8)_2$ $Cu(NO_8)_2$	5175 1310	-	-*	I I			
Hydrogen	H_2SO_4	105300	HNO.	24550	-	-	I			
Iron	FeSO ₄	4210	Fe(NO ₈) ₈	2134	-	-	I			
Lead		_	$Pb(NO_8)_2$	475	-	-	I			
Magnesium	MgSO ₄	13420	$Mg(NO_8)_2$	8595	-	-	I			
Mercury	w	-	Hg(NO ₈) ₂	335 2860	-	-	I I			
Potassium	K_2SO_4	4324	KNO8	2800	-	_	I			
Silver · · ·	Ag_2SO_4	753 7160	'AgNO ₈ NaNO ₈	4620	Na_2CO_8	5995	I			
Sodium	Na_2SO_4 ZnSO ₄	3820	$Zn(NO_8)_2$	2035	1,02003		ī			
Zinc	20504	5020	2011.08/2							
		AUTH	ORITIES.							
1 Thomsen. 3 F 2 Berthelot. 4 Jo	avre and Silbe	ermann.	5 Hess. 6 Average of	seven d	ifferent. 8 V	ndrew. Voods.	s.			

Thomsen.

† Total heat from elements.

TABLE 234.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T: the latent heat in large calories per kilogram or io small calories or therms per gram by H; the total heat from o° C, in the same units by H. The pressure is that due to the vapor at the temperature T.

Acetic acid . C ₈ H ₄ O ₂ 118° 84.9 Ogier. Air . . C ₆ H ₁₂ O 131 120 Schall. Alcohol: Amyl . C ₆ H ₁₂ O 131 120 Schall. Wirtz. Ethyl . C ₉ H ₆ O 78.1 205 255 Regnault. """"""""""""""""""""""""""""""""""""	Substance.	Formula.	Т	H	H'	Authority.
Alcohol: Amyl . $C_{g}H_{12}O$ 131 120 Schall. Ethyl . $C_{g}H_{6}O$ 78.1 205 255 Wirtz. u . u 50 - 264 . . u . u 50 - 264 . . u . u 150 - 267 . . u . u 150 - 267 . . u . u . u . . <td< td=""><td>Acetic acid</td><td>$C_2H_4O_2$</td><td>1180</td><td>84.9</td><td></td><td>Ogier.</td></td<>	Acetic acid	$C_2H_4O_2$	1180	84.9		Ogier.
Ethyl . C $g_{44}^{H_0}O$ 78.1 o 205 230 230 230 255 264 264 4 Wirtz. Regnault. u .	Air	-	-	50.97	-	Fenner-Richtmyer.
u u u z_{00} z_{00} z_{00} z_{00} u u u u u z_{00} z_{00} z_{00} u u u u u z_{00} z_{00} z_{00} z_{00} u	Alcohol: Amyl	C5H12O	131	120		Schall.
u u		C ₂ H ₆ O			255	
u u 150 -267 u Methyl. CH_4O 64.5 2.67 307 Wirtz. u u 0 -289 289 289 289 280 u u 0 -246 u u u u u u 150 -246 u u u u u 152 u u u u u u 200 -152 u u u u u 238.5 -444.2 u u u u u 239.5 -444.2 u u u Ammonia $$ NH_8 7.8 294.2 $ u$ u				236	264	- 44
Methyl . CH4O 64.5 2.67 307 Wirtz. a . a 50 - 226 a a a a . a 50 - 274 a a a a . a 200 - 1245 a a a a . a 200 - 1245 a a a a . a 200 - 127.9 Wirtz. Regnault. a . . a 16 297.4 - a	"		100	-	267	
a a a b c c c c a		CH.O	_			Wirtz
a a	"		0	289 289	289	Ramsay and Young.
a a 150 200 $ 152$ a a a Ammonia \cdot i				_	274 246	
a 233.5 - 152 44.2 44.4 4 Ammonia . NH8 7.8 294.2 - Regnault. 4 a . . 11 297.3 - 4 4 1 a . . . 11 297.4 - 4 4 a 17 296.5 . . . Benzene . . Cep H6 80.1 92.9 127.9 Wirtz. Bromine . . Br 61 45.6 - Andrews. Carbon dioxide, solid . CO2 -25 72.23 - . Cailletet and Mathias. " " " 4 20.85 14.4 - " . Mathias. . " " " . 46.1 83.8 94.8 Wirtz. Regnault. <td< td=""><td></td><td>ſ</td><td>150</td><td></td><td>206</td><td></td></td<>		ſ	150		206	
Ammonia . NH8 7.8 294.2 - Regnault. " . " 16 297.4 " " " . . " 16 297.4 " " Benzene . . CeH6 80.1 92.9 127.9 Wirtz. Bromine . . Br 61 45.6 - Andrews. Carbon dioxide, solid . . CO2 - - 138.7 Favre. " " " " - 20.55 - Mathias. " " " " " " 20.85 14.4 - "			200	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-	44.2	
u u 16 207.4 u u 17 296.5 u u Benzene \cdot C_6H_6 80.1 92.9 127.9 Wirtz. Bromine \cdot Br 61 45.6 $-$ Andrews. Carbon dioxide, solid \cdot CO_2 $ 138.7$ Favre. Cailletet and Mathias. u u u u 20.85 14.4 $ u$ u		NH ₈			-	Regnault.
" " 17 296.5 " " Benzene . . C_6H_8 80.1 92.9 127.9 Wirtz. Bromine . . Br 61 45.6 - Andrews. Carbon dioxide, solid . . CO_2 - 138.7 Favre. " " " " " " " " " .	"					
Bromine . Br 61 45.6 - Andrews. Carbon dioxide, solid . . CO_2 - 138.7 Favre. Cailletet and Mathias. " " " " - 13.8.7 - Cailletet and Mathias. " " " " - 31.8 - " " " " " " 20.85 14.4 - "		"	17			"
Carbon dioxide, solid. CO2 25 72.23 Favre. """"""""""""""""""""""""""""""""""""	P			92.9	127.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromine	Br	61	45.6	-	Andrews.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Carbon dioxide, solid	CO_2		-	1 38.7	
a a a 12.35 44.97 - Mathias. a a a 22.04 31.8 - a a a a 22.04 31.8 - a a a a 30.82 3.72 - a a a a 30.82 3.72 - a a a a a 30.82 3.72 - a a a a a 0 90 90 90 a a a a 0 90 90 a <	n naaia .			72.23	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•••			44.97	_	
""""""""""""""""""""""""""""""""""""			22.04	31.8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			29.85 30.82		-	
""""""""""""""""""""""""""""""""""""		CS.	-		018	Wirtz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" "	"				Regnault.
Chloroform. . . CHCl ₃ 60.9 58.5 72.8 Wirtz. Ether . . . CHCl ₃ 60.9 58.5 72.8 Wirtz. "" . . . C4H ₁₀ O 34.5 88.4 107 " "" . . . C4H ₁₀ O 34.9 90.5 - Andrews. "" "" Andrews. Regnault. "" Regnault. "" "" Regnault. "" "" Regnault. "" "" "" Regnault. "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" <	44 44			-		- 44
Ether . . $C_4H_{10}O$ 34.5 88.4 107 " " 34.9 90.5 - Andrews. " Regnault. " " Regnault. " " Regnault. " " .	••		-	58.5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-		•	
"" . . "" 0 94 94 Regnault. "" . . " 50 - II5.1 "" "" . . " 120 - I40 "" Iodine . . I - 23.95 - Favre and Silbermann. Mercury . . Hg 357 65 - Mean. Nitrogen . . N -195.6 47.65 - Alt. Oxygen . . O -182.9 50.97 - "" Sulphur dioxide . . SO2 0 91.2 - Cailletet and Mathias. "" "" . . 65 68.4 - """"""""""""""""""""""""""""""""""""	"	"			-	
" .			o			
Iodine . . I - 23.95 - Favre and Silbermann. Mercury . . Hg 357 65 - Mean. Nitrogen . . N -195.6 47.65 - Alt. Oxygen . . O -182.9 50.97 - " Sulphur dioxide . . SO2 0 91.2 - Cailletet and Mathias. "" " . . 65 68.4 - ""<""				-		"
Nitrogen . . N 195.6 47.65 - Alt. Oxygen . . O 182.9 50.97 - " Sulphur dioxide . . SO2 0 91.2 - Cailletet and Mathias. """"""""""""""""""""""""""""""""""""	Iodine	I	-	23.95	-	Favre and Silbermann.
Nitrogen . . N 195.6 47.65 - Alt. Oxygen . . O 182.9 50.97 - " Sulphur dioxide . . SO2 0 91.2 - Cailletet and Mathias. """"""""""""""""""""""""""""""""""""	Mercury	Hg	357	65	-	Mean.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrogen		—195.6	47.65	-	Alt.
`````````````````````````	Oxygen	0	-182.9	50.97	-	ff
`````````````````````````	Sulphur dioxide	$SO_2$	0	91.2	-	Cailletet and Mathias.
Turpentine . . . $C_{10}H_{10}$ 159.3 74.04 - Brix.	" "	"	30	80.5	-	** ** **
	•••				-	
	-		1 59.3	74.04	-	Brix.
Water . . H_2O 100 535.9 - Andrews. " . . . " 100 - 637 Regnault.	Water	Н ₂ О "	100 100	535.9	63 7	Andrews. Regnault.

LATENT	HEAT	OF	VAPORIZATION.*	
--------	------	----	-----------------------	--

Substance, formula, and temperature.	$l = \text{total heat from fluid at } o^\circ \text{ to vapor at } t^\circ$. $r = \text{latent heat at } t^\circ$.	Authority.
Acetone, C_8H_8O , - 3° to 147°.	$l = 140.5 + 0.36644 t - 0.000516 t^{2}$ $l = 139.9 + 0.23356 t + 0.00055358 t^{2}$ $r = 139.9 - 0.27287 t + 0.0001571 t^{2}$	Regnault. Winkelmann.
Benzol, C_6H_6 , 7° to 215°.	$l = 109.0 + 0.24429 t - 0.0001315 t^2$	Regnault.
Carbon dioxide, CO ₂ , — 25° to 31°.	$r^2 = 118.485 (31 - t) - 0.4707 (31 - t^2)$	Cailletet and Mathias.
Carbon disulphide, CS ₂ , — 6° to 143°.	$l = 90.0 + 0.14601 t - 0.000412 t^{2}$ $l = 89.5 + 0.16993 t - 0.0010161 t^{2} + 0.000003424 t^{8}$ $r = 89.5 - 0.06530 t - 0.0010976 t^{2} + 0.000003424 t^{8}$	Regnault. Winkelmann.
Carbon tetrachloride, CCl ₄ , 8° to 163°.	$l = 52.0 + 0.14625 t - 0.000172 t^{2}$ $l = 51.9 + 0.17867 t - 0.0003599 t^{2} + 0.000003733 t^{8}$ $r = 51.9 - 0.01931 t - 0.0010505 t^{2} + 0.000003733 t^{8}$	Regnault. Winkelmann. "
Chloroform, CHCl ₈ , — 5° to 159°.	l = 67.0 + 0.1375 t $l = 67.0 + 0.14716 t - 0.0000937 t^{2}$ $r = 67.0 - 0.08519 t - 0.0001444 t^{2}$	Regnault. Winkelmann. "
Nitrogen, N.	r=68.85-0.2736 T	Alt.
Nitrous oxide, N_2O , - 20° to 36°.	$r^2 = 131.75 (36.4 - t) - 0.928 (36.4 - t)^2$	Cailletet and Mathias.
Oxygen, O.	<i>r</i> = 60.67 – 0.2080 T	Alt.
Sulphur dioxide, SO ₂ , o° to 60°.	$r = 91.87 - 0.3842 t - 0.000340 t^2$	Mathias.
Water, H₂O.	$r = 94.210 (365 - t) {}^{0.81249}, 30^{\circ} - 100^{\circ}$ $r = 538.46 - 0.6422 (t - 100) - 0.000833 (t - 100)^{2},$ $100^{\circ} - 180^{\circ}$ $r = 539.66 - 0.718 (t - 100), 120^{\circ} - 180^{\circ}$	Henning.

* Quoted from Landolt & Börnstein's "Phys. Chem. Tab."

TABLE 235.

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

	1	<u> </u>		
Substance.	С	T	H	Authority.
Alloys: 30.5Pb + 69.5Sn	PbSn₄	183	17.	Spring.
36.9Pb + 63.1Sn .	PbSn ₈	179	15.5	"
ŏ3.7₽b + 3ŏ.3Sn	PbSn	177.5	11.6	56 56
77.8Pb + 22.2Su	Pb ₂ Sn	176.5	9.54	**
Britannia metal, 9Sn + 1Pb .	-	236	28.0*	Ledebur.
Rose's alloy, 24Pb+ 27.3Sn+ 48.7Bi	_	98.8	6.85	Mazzotto.
Wood's alloy $\begin{cases} 25.8Pb + 14.7Sn \\ + 52.4Bi + 7Cd \end{cases}$	-	75.5	8.40	"
+ 52.4Bi + 7Cd				
Aluminum	Al	658.	76.8	Glaser.
Benzole	NH ₈	-75.	108.	Massol.
Bromine	C ₆ H ₆ Br	5.4	30.6	Mean. Regnault.
Bismuth	Bi	-7.3 268	16.2 12.64	Person.
Cadmium .	Čd	320.7	12.04	"
Calcium chloride	$CaCl_2 + 6H_2O$	28.5	40.7	"
Copper	Cu	1083	42.	Mean.
Iron, Gray cast	-	-	23.	Gruner.
"White "	-	-	33.	
" Slag	-	-	50.	**
Iodine	I	-	11.71	Favre and Silbermann.
Ice	H ₂ O	0	79.63	Dickinson, Harper,
" • • • • • •	"	0	79-59	Smith.‡
" (from sea-water)	$H_2O + 3.535$ of solids	8.7	54.0	Petterson.
Lead	Pb	327	5.36	Mean.
Mercury	Hg	-39	2.82	Person.
Naphthalene	. C ₁₀ H ₈	79.87	35.62	Pickering.
Nickel	Ni	1435	4.64	Pionchon.
Palladium .	Pd	1545	36.3	Violle.
Phosphorus	P	44.2	4.97	Petterson.
Platinum	Pt K	1755	27.2	Violle.
Potassium nitrate	KNO ₈	62	15.7 48.9	Joannis. Person.
Phenol	C ₆ H ₆ O	333.5		Petterson.
Paraffin	-	25.37 52.40	24.93 35.10	Batelli.
Silver	Ag	961	21.07	Person.
Sodium	Na	97	31.7	Ioannis.
" nitrate	NaNO ₈	305.8	64.87	"
" phosphate	$\left\{ \begin{array}{c} Na_2HPO_4 \\ + 12H_2O \end{array} \right\}$	36.1	66.8	26
Spermaceti	-	43.9	36.98	Batelli.
Sulphur	S	43.9	9.37	Person.
Tin	Sn	232	14.0	Mean.
Wax (bees)	~	61.8	42.3	44
Zinc	Zn	419	28.13	44
L				

* Total heat from o° C. † U. S. Bureau of Standards, 1913, in terms of 15° calorie. ‡ 1903, based on electrical measurements, assuming mechanical equivalent = 4.187, and in terms of the value of the international volt in use after 1911.

MELTING-POINTS OF THE CHEMICAL ELEMENTS.

The metals in heavier type are often used as standards. The melting-points are reduced as far as possible to a common temperature scale which is the one used by the United States Bureau of Standards in certifying pyrometers. This scale is de-fined in terms of Wien's law with C₂ taken as 14500, and on which the melting-point of platinum is 1755° C (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above 1100° C, the temperatures are expressed to the nearest 5° C. Temperatures above the platinum point may be uncertain by over 50° C.

Element.	Melting- point.	Remarks,	Element.	Melting- point.	Remarks.
Aluminum	658 <u>+</u> 1	Most samples give 657 or less	Manganese Mercury	1260 	Burgess-Waltenberg
Antimony	63 0 ± 1	(Burgess). "Kahlbaum" pu-	Molybdenum Neodymium	2535 840	Mendenhall-Forsythe (Muthmann-Weiss.)
Argon Arsenic	188 500	rity. Ramsay-Travers.	Neon Nickel	252 14 52	Day, Sosman, Bur- gess, Waltenberg.
Barium Beryllium	850 <ag< td=""><td>(Guntz.)</td><td>Niobium Nitrogen</td><td>1950 211</td><td>v. Bolton. (Fischer-Alt.)</td></ag<>	(Guntz.)	Niobium Nitrogen	1950 211	v. Bolton. (Fischer-Alt.)
Bismuth Borou	270 {>2000}	Adjusted. Weintraub.	Osmium	About 2700	(Waidner - Burgess, unpublished.)
Bromine Cadmium	< 2500 - 7.3 $3^{21} $	Range : 320.7-	Oxygen Palladium	-230? 1545 ± 15	(Waidner-Burgess, Nernst-Warten- burg.)
Cæsium	26	320.9. Range: 26.37- 25.3	Phosphorus	44.2	Duig./
Calcium Chlorine	805 — 102	Adjusted. (Olszewski.)	Platinum Potassium	1755 ± 20 62.3	See Note.
Carbon Cerium	(>3500) 645	Sublimes.	Præsodymium Rhodium	940 1910	(Muthmann-Weiss.) (Mendenhall-Inger- soll.)
Chromium	>1520	Burgess-Walten- berg Burgess-Walten-	Rubidium	38.5 1900?	son.)
Cobalt	1478	berg Mean, Holborn-	Samarium	1300-1400	(Muthmann-Weiss.) Saunders.
Copper	108 <u>3</u> ± 3	Day, Day- Clement.	Silicon Silver	1420 96 1 <u>∔</u> 1	Adjusted. Adjusted.
Erbium Fluorine	- 223	(Moissan - De- war.)	Sodium Strontium Sulphur	97 113.5-119.5	Between Ca and Ba? Various forms. See Landolt-Börnstein.
Gallium Germanium	30.1 < Ag 10 63 ± 3	Adjusted.	Tantalum	2800	Adjusted from Waid- ner-Burgess = 2910.
Gold Hydrogen Indium	1003 ± 3 -259 155	(Thiel.)	Tellurium Thallium	451 302	Adjusted.
Iodine Iridium	114 2290	Range: 112-115. Mendenhall In-	Thorium Tin	>1700 <pt 231.9±.2</pt 	
Iron	1530	gersoll. Burgess-Walten-	Titanium Tungsten	1795 2950	Mean, Waidner-Bur- gess and Warten-
Krypton Lanthanum	169 810	berg. (Ramsay). (Muthmann- Weiss.)	Uranium Vanadium	Near Mo 1720	burg. Moissan. Burgess-Waltenberg.
Lead Lithium	327 ± 0.5 186 651		Xenon Zinc	-140 419 ± 0.5 > Si	Ramsay. Troost.
Magnesium	051	crucibles, 635.			

Element.	Range.	Boiling- point.	Observer; Remarks.
Aluminum Antimony Argon Arsenic " Barium Bismuth Boron Bromine Cadmium Cæsium Carbon " Chlorine Chlorine Helium Hydrogen Iodine Iron Krypton Lead Lithium Magaesium Manganese Mercury Neon Nitrogen Ozyne Phosphorus Potassium Rubidium Selenium Silver Sodium Sulphur Tellurium	Range. 	point.	Greenwood, Ch. News, 100, 1909. """"""""""""""""""""""""""""""""""""
Thallium Tin Xenon Zinc	- - 916-942	1280. 2270. —109.1 930.	v. Wartenberg, 25 Anorg. Ch. 56, 1908. Greenwood, l. c. Ramsay, Z. Phys. Ch. 44, 1903.

TABLE 238.

DENSITIES AND MELTING AND BOILING POINTS. INORGANIC COMPOUNDS.

Substance.	Chemical Formula.	Density about 20 ⁰ C.	Melting- point C.	Authority.	Boiling- point C.	Pres- sure mm.	Authority.
Aluminum chloride	AlCl ₈	-	190.	I	183°	752	I
" nitrate	$Al(NO_3)_3 + 9H_2O$	-	72.8	2	-		-
Aluminum oxide	Al_2O_8	4.00	2020	11	-	-	-
Ammonia	NH ₈		-75.	3	-33.5	760	7
Ammonium nitrate " sulphate	NH_4NO_8 $(NH_4)_2SO_4$	1.72	165. 140.	- 4	_		
" phosphite .	$NH_4H_2PO_8$	I.77 _	123.	4 5	_	-	_
Antimony trichloride	SbCl ₈	3.06	73.	-	223.	760	-
" pentachloride.	SbCl ₅	2.35	3,	II	102.	68	14
Arsenic trichloride	AsCl ₈	2.20		8	130.2	760	23 6
Arsenietted hydrogen	AsH ₈	-	-113.5	6	-54.8	"	6
Barium chloride " nitrate	$BaCl_2.2H_2O$	3.10 3.24	113.	9 24	-	_	_
" perchlorate	$\operatorname{Ba(NO_8)_2}_{\operatorname{Ba(ClO_4)_2}}$	J*#4 	575. 505.	10		_	- 1
Bismuth trichloride	BiCla	4.56	232.5	_	440.	760	- H
Boric acid	H ₈ BO ₈	1.46	185.	-		· - `	-
" anhydride	B_2O_8	1.79	577.	-		-	-
Borax (sodium borate)	$Na_2B_4O_7$	1.69	561+	9	1	-	-
Cadmium chloride	CdCl ₂	4.05	560.	25 2	900.±	760	9
" nitrate Calcium chloride	$\begin{bmatrix} Cd(NO_8)_2 + 4H_2O \\ CaCl_2 \end{bmatrix}$	2.45 2.26	59.5 774.	-	132.	/00	4
" "	$CaCl_2 + 6H_2O$	1.68	29.6		-	_	-
" nitrate	$Ca(NO_8)_2$	2.36	499.	24	-	-	-
" "	$Ca(NO_8)_2 + 4H_2O$	1.82	42.3	26	-	-	-
Carbon tetrachloride	CCl ₄	1.59		22	76.7	760	23
" trichloride	C ₂ Cl ₈	1,63	184.	6		760	6
" monoxide " dioxide				3		subl.	_
" disulphide		1.26	-110.	13	46.2	760	_
Chloric acid	$HClO_4 + H_2O$	1.81	50.	15	·	-	-
Chlorine dioxide	ClO ₂	-	<u> </u>	3	9.9	73I	2I
Chrome alum	$\begin{array}{c} \text{KCr}(\text{SO}_4)_2 + 12\text{H}_2\text{O} \\ \text{Cr}_2(\text{NO}_8)_6 + 18\text{H}_2\text{O} \end{array}$	1.83	89.		-		-
" nitrate	$Cr_2(NO_8)_6 + 18H_2O$	-	37.	2 16	170.	760	2
Cobalt sulphate		3.53	97. 498.	9		1 =	
Cupric chloride Cuprous "	$CuCl_2$ Cu_2Cl_2	3.05 3.7	490.	-	1000.	760	9
Cupric nitrate	$Cu(NO_8)_2 + 3H_2O$	2.05	114.5	2	170.	760	2
Hydrobromic acid	HBr	-		3	68.7	·"	-
Hydrochloric "	HC1	-	-111.3	17	-83.1	7 55	17
Hydrofluoric "	HFI	.99	92.3	6	-36.7	760	17
i riyunounce i i i i i	HI H_2O_2	1.5	-51.3 -2.	17 18		47	20
Hydrogen peroxide "phosphide	PH ₈	1.5	-132.5	6	-	1	-
" sulphide	H_2S	-	-86.	3	62.	-	-
Iron chloride	FeCl ₈	2.80	301.	- 1	-	-	-
" nitrate	$Fe(NO_8)_8 + 9H_2O$	1.68	47.2	2	-	-	
" sulphate	$FeSO_4 + 7H_2O$ PbCl ₂	1.90	64.	16		760	
Lead chloride	$PbCl_2$ $Pb(PO_8)_2$	5.8	500. 800.	9	900. <u>+</u>	/-	
" metaphosphate Magnesium chloride	MgCl ₂	2.18	708.	9	-	-	_
" nitrate	$Mg(NO_8)_2 + 6H_2O$	1.46	90.	2	143.	760	2
" sulphate	$\begin{array}{c} M_{g}(NO_{3})_{2}+6H_{2}O\\ M_{g}SO_{4}+5H_{2}O\end{array}$	1.68	1 50.	16		1.7	-
Manganese chloride	$MnCl_2 + 4H_2O$	2.01	87.5	19	106.	760	19
" nitrate	$Mn(NO_3)_2 + 6H_2O$	1.82	26.	2 16	129.		2
" sulphate	$\begin{array}{c c} \operatorname{MnSO}_{4} + 5\operatorname{H}_{2}\operatorname{O} \\ \operatorname{Hg}_{2}\operatorname{Cl}_{2} \\ \operatorname{Hg}_{2}\operatorname{Cl}_{2} \end{array}$	2.09 7.10	54.			- 1	_
Mercurous chloride Mercuric chloride	Hg2Cl ₂ HgCl ₂	5.42	450 <u>+</u> 282.		305.	-	-
Mercuric chloride			III				1

1, Friedel and Crafts; 2, Ordway; 3, Faraday; 4, Marchand; 5, Amat; 6, Olszweski; 7, Gibbs; 8, Baskerville; 9, Carnelly; 10, Carnelly and O'Shea; 11, Ruff; 13, Wroblewski and Ulszewski; 14, Anschütz; 15, Roscoe; 16, Tilden; 17, Ladenburg; 18, Staedel; 10, Clarke, "Const. of Nature"; 20, Bruhl; 21, Schacherl; 22, Tammao; 23, Thorpe; 24, Ramsay; 25, Lorenz; 26, Morgan.

SMITHSONIAN TABLES.

.

TABLE 238 (continued).

DENSITIES AND MELTING- AND BOILING-POINTS. INORGANIC COMPOUNDS.

						the second s	-
, Substance.	Chemical Formula.	Density about 20° C.	Melting- point C.	Authority.	Boiling- point C.	Pres- sure mm.	Authority.
Nickel carbonyl " " nitrate " " sulphate	$\begin{array}{c} NiC_4O_4 \\ Ni(NO_8)_2 + 6H_2O \\ NiO \\ NiSO_4 + 7H_2O \\ HNO_3 \\ N_2O_5 \\ NO \\ N_2O_4 \\ N_2O_8 \\ N_2O_8 \\ N_3O \\ H_3PO_4 \\ H_3PO_3 \\ PCI_8 \\ PCI_8 \\ POCI_8 \\ P_2S_5 \\ P_2S_5 \\ P_4S_8 \\ P_2S_5 \\ P_2S_5 \\ F_4S_8 \\ P_2S_5 \\ K_2CO_3 \\ K_2CO_3 \\ K_2CO_3 \\ K_2CO_3 \\ K_2CO_3 \\ K_2CO_4 \\ KCI \\ KNO_8 \\ KH_2PO_4 \\ KHSO_4 \\ AgCI \\ AgNO_8 \\ AgSO_4 \\ AgSO_4 \\ AgSO_4 \\ AgSO_4 \\ NaCIO_8 \\ NaCO_8 \\ NaCIO_8 \\ NaCIO_8 \\ NaCIO_8 \\ NaCO_8 \\ NaCIO_8 \\ NaCO_8 \\ NaCIO_8 \\ NaCO_8 \\ $	about	point C. -25.56.7 -99.430. -155.1 -102.4 40.4.72.8 -155.1 -102.4 40.4.72.8 -102.4 -102.4 40.4.72.8 -102.4 40.4.72.8 -102.4 40.4.72.8 -102.4 40.4.72.8 -102.4 -102.4 40.4.72.8 -102.4 -102.4 40.4.72.8 -102.4 -102.5 -102.4	$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ -\\ 8\\ 7\\ 8\\ -\\ -\\ 12\\ 13\\ -\\ 15\\ -\\ -\\ 3\\ -\\ 15\\ -\\ -\\ 3\\ -\\ 15\\ -\\ -\\ 3\\ -\\ 15\\ -\\ -\\ 3\\ -\\ 15\\ -\\ -\\ 28\\ 8\\ 3\\ -\\ 15\\ -\\ 28\\ 8\\ 3\\ -\\ 15\\ -\\ 28\\ 8\\ 3\\ -\\ 15\\ -\\ 28\\ 8\\ 3\\ -\\ 15\\ -\\ 28\\ 8\\ 3\\ -\\ 15\\ -\\ 28\\ 8\\ 3\\ -\\ 15\\ -\\ 28\\ 8\\ -\\ 15\\ -\\ 28\\ 8\\ -\\ 15\\ -\\ -\\ 28\\ 8\\ -\\ 15\\ -\\ -\\ 28\\ 8\\ -\\ -\\ 15\\ -\\ -\\ 28\\ 8\\ -\\ -\\ 15\\ -\\ -\\ 28\\ 8\\ -\\ -\\ -\\ 28\\ -\\ -\\ -\\ 28\\ -\\ -\\ -\\ 28\\ -\\ -\\ -\\ 28\\ -\\ -\\ -\\ -\\ 28\\ -\\ -\\ -\\ -\\ -\\ 28\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	Boiling: point C. 43° 136.7 -	sure	Lioquine 1 2 1 1 6 9 6 1 1 8 1 1 9 1 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
" (pyro) Sulphur trioxide Tin, stannic chloride " stannous " Zinc chloride " nitrate " sulphate	$\begin{array}{c} H_{2}S_{2}O_{7}\\ SO_{8}\\ SnCl_{4}\\ SnCl_{2}\\ ZnCl_{2}\\ ZnCl_{2}+3H_{2}O\\ Zn(NO_{8})_{2}+6H_{2}O\\ ZnSO_{4}+7H_{2}O\\ \end{array}$	- 1.91 2.28 - 2.91 - 2.06 2.02	35. 15. 33. 250. 365. 6.5 36.4 50.	22 23 24 29 26 3 3	- 46.2 114. 605. 710. - 131. -	- 760 " " - 760 -	- 19 - - 2 -

1, Mond, Langer, Quincke; 2, Ordway; 3, Tilden; 4, Erdmann; 5, R. Weber; 6, Olszewski; 7, Birhaus; 8, Ramsay; 9, Deville; 10, Wroblewski; 11, Day, Sosman, White; 12, Ramme; 13, Meyer; 14, Lemoine; 15, Carnelly; 16, Mitscherlich; 17, LeChatelier; 18, Carnelly, O'Shea; 19, Thorpe; 20, Amat; 21, Mendelejeff; 22, Marignac; 23, Besson; 24, Clarke, "Const. of Nature"; 25, Isambert; 26, Mylius; 27, Hevesy; 28, Retgers; 29, Grünauer; 30, Richards and others.

TABLES 239-240.

TABLE 239. - Effect of Pressure on Melting-Point.

Substance.	Melting-point at 1 kg/sq. cm.	Highest experimental pressure : kg/sq. cm.	dt/dp at 1 kg/sq. cm.	∆ t. (observed) for 1000 kg/sq. cm.	Reference.
Hg K Na Sn Bi Cd Pb		1 2000 2800 2800 2000 2000 2000 2000	0.00511 .0136 .0082 .00317 	5.1* 13.8 8.2 3.17 - 3.44 6.09 7.77	I 2 3 3 3 3 3 3 3

* Δ t (observed) for 10000 kg/sq. cm. is 50.8°.

References. — 1. P. W. Bridgman, "Proc. Am. Acad." 47, pp. 391-96, 416-19, 1911. 2. G. Tammann, "Kristallisieren und Schmelzen," Leipzig, 1903, pp. 98-99. 3. J. Johnston and L. H. Adams, "Am. J. Sci." 31, p. 516, 1911. A large number of organic substances, selected on account of their low melting-points, have also been investigated: by Tammann, *loc. cit.*; G. A. Hulett, "Z. Physik. Chem." 28, p. 629, 1899; F. Körber, *ibid.*, 82, p. 45, 1913; E. A. Block, *ibid.*, 82, p. 403, 1913. The results for water are given in the following table.

TABLE 240. — Effect of	Pressure on the	Freezing-Point of	Water (Bridgman*).

Pressure†: kg/sq. cm.	Freezing-point.	Phases in Equilibrium.
I 1000 2000 2115 3000 3530 4000 6000 6380 6380 6380 8000 12000 16000 20000	$\begin{array}{r} 0.0 \\ - 8.8 \\ - 20.15 \\ - 22.0 \\ - 18.40 \\ - 17.0 \\ - 13.7 \\ - 1.6 \\ + 0.16 \\ 12.8 \\ 37.9 \\ 57.2 \\ 73.6 \end{array}$	Ice I — liquid. " Ice I — ice III — liquid (triple point). Ice III — liquid. Ice III — ice V — liquid (triple point). Ice V — liquid. Ice V — ice VI — liquid (triple point). Ice VI — liquid. " " "

* P. W. Bridgman, "Proc. Am. Acad." p. 47, 441-558, 1912. † 1 atm. = 1.033 kg/sq. cm.

TABLES 241-243. MELTING-POINTS.

	1				Meltin	ng-point	s, Cº.					nce.
Metals.				Percent	age of n	netal in	second o	columa.				Reference.
	•%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100 %	Re
Pb. So.	326	295	276	262	240	220	190	185	200	216	232	т
B1.	322	290		-	179	145	126	168	205		268	Z
Te.	322	710	790	880	917	760	600	480	410	425	446	
Ag.	328	460	545	590	620	650	705	775	840	905	959	9
Na.	-	360	420	400	370	330	290	250	200	130	96	1
Cu.	326	870	920	925	945	950	955	985	1005	1020	1084	
Sb.	326	250	275	330	395	440	490	525	560	600	632	30
A1. Sb.	δςο	750	840	925	945	950	970	1000	1040	1010	632	17
Ču.	650	630	600	5 60	540	580	610	755	930	1055	1084	
Au.	655	675	740	800	855	915	970	1025	1055	675	1062	10
Ag.	650	625	615	600	590	580	575	570	650	750	954	13
Zn.	654	640	620	600	580	560	530	510	475	425	419	11
Fe.	653	860	1015	1110	1145	1145	1220	1315	1425	1500	1515	3
Ŝn.	650	645	635	625	620	605	590	570	560	540	232	17
Sb. Bi.	632	610	590	575	555	540	520	470	405	330	268	1 IČ
Ag.	630	595	570	545	520	500	505	545	680	850	959	9
Sn.	622	600	570	525	480	430	395	350	310	255	232	10
Zn.	632	555	510	540	570	565	540	525	510	470	419	1
Ni. So.	1455	1380	1200	1200	1235	1290	1305	1230	1060	800	2 3 2	1
Na. Bi.	455	425	520	590	645	690	720	730	715	570	268	1
Cd.	6	445	185	245	285	325	330	340	360	390	322	1
Cd. Ag.	322	420	520	610	700	760	805	850	895	940	954	1
Ca. Ag. Tl.			285	270	262	258	245	230	210	235	302	1.
Zn.	321	300 280			313	327	340	355	370	390	410	1 1
Au. Cu.	322		270 890	295 895	905	925	975	1000	1025	1060	1084	
	1063	910 1062	1061			1049	1039	1025	1006	982	963	
Ag.	1064			1058	1054	1380		1530	1610	1685	1775	2
Pt.	1075	1125	1190	1250	1320	1300	1455	41	58			1
K. Na.	62	17.5	-10	-3.5	5	90	110		162	265	97.5	
Hg.				188			220	135 240	280		301	1
TI.	62.5	133	165		205	215	1380			305		14
Cu. Ni.	1080	1180	1240	1290	1320	1335		1410	1430	1440	1455	I
Ag.	1082	1035	990	945	910	870	. 830	788 580	814	875	960	
Sn.	1084	1005	890	755	725	680	630		530	440	232	1:
Zn.	1084	1040	995	930	900	880	820	780	700	580	419	
Ag. Zn.	959	850	755	705	690	660	630	610	570	505	419	1
Sn.	9,59	870	750	630	550	495	450	420	375	. 300	232	
Na. Hg.	96.5	90	80	70	60	45	22	55	95	215		1

TABLE 241. - Melting-point of Mixtures.

1 Means, Landolt-Börnstein-Roth Tabellen.

- Means, Landoit-Börnstein-Roth Tabellen.
 Friedrich-Leroux, Metal. 4, 1907.
 Gwyer, Zs. Anorg. Ch. 57, 1908.
 Means, L.-B.-R. Tabellen.
 Roberts-Austen Chem. News, 87, 2, 1903.
 Shepherd J. ph. ch. 8, 1904.
 Kapp, Diss., Königsberg, 1907.
 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov. 1901.
- 9 Heycock and Neville, Phil. Trans. 189A, 1897. 10 194A, 201, 1900.

11 Heycock and Neville, J. Chem. Soc. 71, 1897. 12 " Phil. Traos. 202A, 1, 1903.

12 13 Kurnakow, Z. Anorg. Chem. 23, 439, 1900. 14 """ 30, 86, 1902.

18 26. 1895. 19 Reinders, Z. Anorg. Chem. 25, 113, 1896. 20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw. Sachsen. 1879, 17.

TABLE 242. - Alloy of Lead, Tin, and Bismuth.

		Per cent.										
Lead Tin Bismuth	32.0 15.5 52.5	25.8 19.8 54.4	25.0 15.0 60.0	43.0 14.0 43.0	33·3 33·3 33·3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.9 9.1 20.0		
Solidification at	96 ⁰	1010	1250	1280	145 ⁰	148 ⁰	1610	181 ⁰	182 ⁰	234 ⁰		

Charpy, Soc. d'Encours, Paris, 1901.

TABLE 243. - Low Melting-point Alloy.

		Per cent.									
Cadmium Tin Lead Bismuth	10.8 14.2 24.9 50.1	10.2 14.3 25.1 50.4	14.8 7.0 26.0 52.2	13.1 13.8 24.3 48.8	6,2 9.4 34.4 50.0	7.1 	6.7 43•4 49•9				
Solidification at	65.5 ⁰	67.5 ⁰	68.5 ⁰	68.5 ⁰	76.5 ⁰	89.5 ⁰	95 ⁰				

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen. SMITHSONIAN TABLES.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

The data in this table refer only to normal compounds.												
Substance.	Formula	Temp. °C.	Den- sity.	Melting- point	Boiling-point.	Authority.						
		(a) Para	ffin Series	$: C_n H_{2n+2}$							
Methane* Ethane† Propane Butane Pentane Hexane Heptane Docane Undecane Undecane Tridecane Hexadecane . Hexadecane . Hexadecane . Hexadecane . Heradecane . Hentadecane . Eicosane Tetracosane . Tetracosane . Heneicosane . Docosane . Tetracosane . Pentriacontane .	$\begin{array}{c} CH_4\\ C_2H_6\\ C_8H_8\\ C_4H_{10}\\ C_6H_{14}\\ C_7H_{16}\\ C_8H_{16}\\ C_9H_{20}\\ C_{10}H_{20}\\ C_{10}H_{22}\\ C_{11}H_{24}\\ C_{12}H_{26}\\ C_{14}H_{30}\\ C_{16}H_{82}\\ C_{16}H_{82}\\ C_{16}H_{84}\\ C_{17}H_{86}\\ C_{13}H_{85}\\ C_{19}H_{40}\\ C_{20}H_{42}\\ C_{21}H_{44}\\ C_{22}H_{46}\\ C_{23}H_{45}\\ C_{27}H_{56}\\ C_{31}H_{64}\\ \end{array}$	-164. 0 0 0 0 0 0 0 0	0.415 .446 .536 .60 .647 .701 .719 .733 .745 .756 .765 .775 .775 .776 .775 .777 .777	$\begin{array}{c} -171.4 \\ -195 \\ -\\ -\\ -\\ -31. \\ -26. \\ -126. \\ -126. \\ -16. \\ 5. \\ 10. \\ 18. \\ 28. \\ 32. \\ 37. \\ 40. \\ 44. \\ 48. \\ 51. \\ 60. \\ 68. \end{array}$	-165. -93. -45. 1. 36.3 69. 98.4 125.5 150. 173. 195. 214. 234. 252. 270. 287. 303. 317. 330. 121. \$ 129. \$ 136.5 \$ 142.5 \$ 172. \$ 199. \$	Olszewski, Young. Ladenburg, " Young, Hainlen. Butlerow, Young. Thorpe, Young. Schorlemmer. Thorpe, Young. " " Krafft. " " " " " " " " " " " " " " " " " " "						
Dicetyl Penta-tria-contane	C ₈₂ H ₅₆ C ₈₅ H ₇₂	70. 75	.781 .782	70. 75.	205.§ 331.‡	"						
	(Ъ)	Olefines	, or the	Ethylene	e Series: C _n H	I 277.						
Ethylene Propylene Butylene Amylone Hexylene Octylene Doctylene Decylene Dodecylene Tridecylene Tetradecylene . Hexadecylene . Hexadecylene . Eicosylene Eicosylene Melene	$\begin{array}{c} C_2H_4\\ C_8H_6\\ C_4H_8\\ C_6H_{12}\\ C_7H_{14}\\ C_8H_{16}\\ C_9H_{18}\\ C_{10}H_{20}\\ C_{11}H_{22}\\ C_{12}H_{24}\\ C_{18}H_{23}\\ C_{15}H_{30}\\ C_{16}H_{32}\\ C_{16}H_{32}\\ C_{18}H_{36}\\ C_{27}H_{54}\\ C_{30}H_{60}\\ \end{array}$	- - - - - - - - - - - - - - - - - - -	0.610 - .635 - .76 .703 .722 .767 - .773 .773 .774 .794 .814 .791 .871 - .871			Wroblewski or Olszewski, Ladenburg, Krügel. Sieben. Wagner or Saytzeff. Wreden or Znatowicz, Morgan or Schorlemmer. Möslinger. Beilstein, "Org. Chem." """""""""""""""""""""""""""""""""""						

N.B. - The data in this table refer only to normal compounds.

* Liquid at —rr.°C. and r80 atmospheres' pressure (Cailletet). + " + 4.°" 46 ‡ Boiling-point under 15 mm. pressure. § In vacuo.

TABLE 244 (continued).

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORCANIC COMPOUNDS.

Substance.	Chemical formula.	Temp. C°.	Specific gravity.	Melting- point.	Boiling- point.	Authority.
	(c) A	cetylene	Series :	C _n H _{2n} .		1
Acetylene	C_2H_2	-	-	81.	85.	Villard.
Allylene	$\begin{array}{c} C_8H_4\\ C_4H_6\end{array}$	-	-	-	- + 18.	Bruylants, Kutsche-
Propylacetylene	$C_{5}H_{8}$	-	-	-	4850.	roff, and others. Bruylants, Taworski. Taworski.
Butylacetylene Oenanthylidene	$C_{6}H_{10} \\ C_{7}H_{12}$	-	-	-	68.–70. 100.–101.	Beilstein, and oth-
Caprylidene Undecylidene	$C_8H_{14} \\ C_{11}H_{20}$	o. _	0.771	-	133.–134. 210.–215.	Behal. Bruylants.
Dodecylidene	$C_{12}H_{22}$	9.	.810	<u> </u>	105.*	Krafft.
Tetradecylidene	$C_{14}H_{26}$	+ 6.5	.806	+ 6.5	I 34.*	"
Hexadecylidene Octadecylidene	$C_{16}H_{80} \\ C_{18}H_{54}$	20.	.804 .802	20.	160.* 184.*	"
Octauce ynuche		30.	1	30.		
	(d) Monat		<u>.</u>	C _n H _{2n} -		
Methyl alcohol	CH ₃ OH	0.	0.812 .806	-	66.	
Ethyl alcohol Propyl alcohol	C_2H_5OH C_8H_7OH	0. 0.	.817	-130.†	78. 97.	From Zander, "Lieb.
Butyl alcohol	C ₄ H ₉ OH	0.	.823	-	117.	Ann." vol. 224, p.85,
Amyl alcohol	C ₅ H ₁₁ OH	о.	.820	-	138.	Ann." vol. 224, p.85, and Krafft, "Ber."
Hexyl alcohol	C ₆ H ₁₈ OH	0.	.833 .836		157.	vol. 16, 1714,
Heptyl alcohol Octyl alcohol	$C_7H_{15}OH$ $C_8H_{17}OH$	0. 0.	.830		176. 195.	" 19, 2221, " 23, 2360.
Nonyl alcohol	$C_9H_{19}OH$	0.	.842	- 5.	213.	"23,2360, and also Wroblew-
Decyl alcohol	$C_{10}H_{21}OH$	+ 7.	.839	1 + 7.	231.	ski and Olszewski,
Dodecyl alcohol	$C_{12}H_{25}OH$	24.	.831	24.	143.*	"Monatshefte,"
Tetradecyl alcohol	C ₁₄ H ₂₉ OH	38.	.824	38.	167.*	vol. 4, p. 338.
Hexadecyl alcohol Octadecyl alcohol	C ₁₆ H ₈₈ OH C ₁₈ H ₈₇ OH	50. 59.	.818	50. 59.	190.* 211.*	
	1	·		$C_n H_{2n+1}$!	<u> </u>
Dissetted where				n ¹ 2n+	1	The Real
Dimethyl ether	C_2H_6O	-	-	-	23.6	Erlenmeyer, Kreich- baumer.
Diethyl ether Dipropyl ether	$C_4H_{10}O$ $C_6H_{14}O$	4. 0.	0.731	- 117	+34.6	Regnault, Olszewski. Zander and others.
Di-iso-propyl ether.	$C_{6}H_{14}O$	0.	·763	1 -	90.7 69.	"
Di-n-butyl ether	C ₈ H _{I8} O	о.	.784	-	141.	Lieben, Rossi, and others.
Di-sec-butyl ether	$C_8H_{18}O$	21.	.756	-	121.	Kessel.
Di-iso-butyl "	C ₈ H ₁₈ O	15.	.762	-	I 22.	Reboul.
Di-iso-amyl" Di-sec-hexyl"	$C_{10}H_{22}O \\ C_{12}H_{26}O$	0. -	•799	2	170175. 203208.	Wurtz. Erlenmeyer and
Di-norm-octyl"	C ₁₆ H ₈₄ O	17.	.805	_	280282.	Wanklyn. Moslinger.
				H _{2n+2} O		
Ethyl-methyl ether	C ₃ H ₈ O	0.	0.725	277+2~	T	Wurtz Williamaan
" propyl "	$C_{5}H_{12}O$	20.	0.725	-	11. 63.–64.	Wurtz, Williamson. Chancel, Brühl.
" iso-propyl ether .	$C_5H_{12}O$	0.	.745	-	54.	Markownikow.
" norm-butyl ether	$C_6H_{14}O$	о.	.769	-	<u>9</u> 2.	Lieben, Rossi.
" iso-butyl ether .	C ₆ H ₁₄ O	-	.751	-	7880.	Wurtz.
" iso-amyl ether .	$C_7H_{18}O$	18.	.764	-	112.	Williamson and others.
" norm-hexyl ether	C ₈ H ₁₈ O	_	- 1	-	134137.	Lieben, Janeczek.
" norm-heptyl ether	C ₉ H ₂₀ O	16.	.790	-	165.	Cross.
" norm-octyl ether	C ₁₀ H ₂₂ O	17.	·794	-	182184.	Moslinger.

* Boiling-point under 15 mm. pressure. † Liquid at —11.º C. and 180 atmospheres' pressure (Cailletet).

TABLE 244 (concluded).

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

(g) Miscellanecus.

				*		
Substance.	Chemical formula.	Density temperat		Melting- point, C.	Boiling- point, C.	Authority.
Acetic Acid Acetone	CH ₈ COOH CH ₈ COCH ₈	1.11 5 0.812	0° 0°	16.7 —94.6	118.5 56.1	Young'09
Aldehyde Aniline Beeswax	C_2H_4O $C_8H_5NH_2$	0.806 1.038 0.96 <u>+</u>	0° 0°	—120. —8. 62.	+20.8 183.9	
Benzoic Acid Benzol Benzophenone	$\begin{array}{c} \mathrm{C_7H_6O_2}\\ \mathrm{C_6H_8}\\ (\mathrm{C_6H_5)_2CO} \end{array}$	1.293 0.879 1.090	4 20 50	121. 5.58 48.	249 . 80.2 305.9	Young Holborn- Henning
Butter Camphor Carbolic Acid	C ₁₀ H ₁₈ O C ₈ H ₅ OH	0.86-7 0.99 1.060	10 21	30.± 176. 43∙	209 . 182.	Tremmig
Carbon bisulphide " tetrachlor-	CS ₂ CCl ₄	1.292 1.582	0 21	—110. —30.	46.2 76.7	Young
ide Chlorbenzene Chloroform	C ₈ H₅Ĉl CHCl ₈	1.111 1.257	15 0	-40. -65.	132. 61.2 -21.	
Cyanogen Ethyl bromide ,, chloride	$\begin{array}{c} C_2 N_2 \\ C_2 H_0 Br \\ C_2 H_5 Cl \end{array}$	1.45	15 8 0	-35. -117. -141.6 -118.	38.4 14. 34.6	
" ether " iodide Formic acid	$\begin{array}{c} C_4 H_{10} O \\ C_2 H_5 I \\ HC O O H \end{array}$	0.736 1.944 1.242 0.68 <u>+</u>	14 0	8.6	72. 100.8 70-90	
Gasolene Glucose Glycerine	CHO(HCOH) ₄ CH ₂ OH C ₈ H ₈ O ₈	1.56 1.269	0	146. 20. 119.	29 0.	
Lard Methyl chloride	CHI8 CH8Cl	2.25 0.992		38. <u>+</u> -103.6	-24.1	
Methyl iodide Napthalene	$\begin{array}{c} CH_{3}I\\ C_{6}H_{4}\cdot C_{4}H_{4}\end{array}$	2.285	15 15	64. 80.	42.3 218.0	Holborn- Henning
Nitrobenzol Nitroglycerine Olive oil	$\begin{bmatrix} C_8H_5O_2N\\ C_8H_5N_8O_9 \end{bmatrix}$	1.212 1.60 0.92	7.5	5.	211. 300. <u>+</u>	
Oxalic acid Paraffin wax, soft . ""hard	$C_2H_2O_4\cdot 2H_2O$	1.68		190. 38-52 52-56	350-390	
Pyrogallol Spermaceti	$C_{g}H_{8}(OH)_{8}$ $C_{g}H_{10}O_{5}$	1.46 1.56	40	¹ 33. 45·±	293.	
Starch Sugar, cane Stearine	$\begin{array}{c} C_{12}H_{22}O_{11}\\ C_{13}H_{35}O_{2})_3C_3H_5\\ C_4H_6O_6\end{array}$	1.588 0.925 1.754	20 65		160.	
Tartaric acid Tallow, beef " mutton .		0.882	00	40-45 44-45 92.	111.	
Toluene . . Xylene (0) . . " (m) . .	$C_{8}H_{5}CH_{8}$ $C_{8}H_{4}(CH_{8})_{2}$ "	0.862 0.863 0.864 0.861	20 20 20	28. 54. 15.	142. 140. 138.	
" (p)		0.001	20	1 13.		

TABLE 245.

TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES.

The majority of these determinations are by G. A. Rankin. (Part unpublished.)

Substance.	% C	aO Al	2O3	SiO ₂		Transforma	tion.		Т	emp.	
$\begin{array}{cccc} CaSiO_8 & . & . \\ CaSiO_8 & . & . \\ Ca_2SiO_4 & . & . \\ & & . \\ & & . \\ Ca_8Si_2O_7 & . \\ CaSiO_7 & . \\ \end{array}$	48. 48. 65. 65. 65. 58.	2 -		51.8 51.8 55. 55. 55. 11.8		Melting α to β and reverse Melting	• •		120 213 67 142	$10^{\circ} \pm 2^{\circ}$ $10^{\circ} \pm 2^{\circ}$ $10^{\circ} \pm 5^{\circ}$ $10^{\circ} \pm 5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73. 62. 47. 35. 24. 20. 40. 50.	2 37. 8 52. 4 64. 8 75. - 62. 1 36. 8 37.	8 · · 2 · · 6 · · 2 · · 8 · 3 6 · 4 2 · 2	7.1 3.3 2.0 8.2	liquid1475Dissociation into Ca_2SiO_4 and1475CaO1900Dissociation into CaO and liquid1535Melting1455Melting1600Melting1720Melting1550Melting1550Melting1590Dissociation into $Ca_2SiO_4 +$ 1335						
E	UTECT	ICS.					EUTECT	ics.			
Crystalline Phases.	% CaO	Al ₂ O ₃	SiO_2	Meltin Temp	ng p.	Crystalline Phases.	% CaO	Al ₂ O ₃	SiO ₂	Melting Temp.	
$\begin{array}{c c} CaSiO_{3},SiO_{2} \\ Ca,SiO_{3} \\ 3CaO,2SiO_{2} \\ Ca,SiO_{4} \\ CaO, \\ Al_{2}SiO_{6},SiO_{2} \\ Al_{2}SiO_{6},Al_{2}O_{3} \\ CaAl_{2}SiO_{6} \\ CaSiO_{8} \\ CaAl_{2}SiO_{8} \\ CaAl_{2}SiO_{6} \\ \end{array}$	37. 54.5 67.5 34.1		63. 45·5 32·5 87. 36. 47·3	1436 1455: 2065: 1610 1810 1299	± ±	$\begin{array}{c c} CaAl_2Si_2O_8\\ Ca_2Al_2SiO_7\\ CaSiO_8\\ CaAl_2Si_2O_8\\ Ca_2Al_2SiO_7\\ Al_2O_8\\ Ca_2SiO_4\\ CaAl_2O_4\\ CaAl_2O_4\\ Ca_5Al_6O_{14} \end{array}$	38. 29.2 49.5	20. 39. 43.7	42. 31.8 6.8	1265° 1380 1335	
SiO_2 { CaAl ₂ Si ₂ O ₈ {	10.5 23.2	19.5 14.8	70. 62.	1359 1165	1	QUIN	TUPLE	POINTS	5.		
$\begin{array}{c c} SiO_2, CaSiO_8 \\ Ca_2Al_2SiO_7 \\ Ca_2SiO_4 \\ Al_2O_8 \\ CaAl_2Si_2O_8 \\ CaAl_2Si_2O_8 \end{array}$	49.6 19.3	23.7 39.3	26.7 41.4	1545 1547		$\left.\begin{array}{c} Ca_2Al_2SiO_7\\ Ca_3SiO_7\\ Ca_2SiO_4\end{array}\right\}$	48.2	11.9	39.9	1335	
$\left.\begin{array}{c} CaAl_2Si_2O_8\\ Al_2SiO_6,SiO_2\\ Ca_2Al_2SiO_7\end{array}\right\}$	9.8 35.	19.8 50.8	70.4	1345		$\left.\begin{array}{c}Ca_{2}Al_{2}SiO_{7}\\Ca_{2}SiO_{4}\\CaAl_{2}O_{4}\end{array}\right\}$	48.3	42.	9.7	1380	
$\begin{bmatrix} Ca_3Al_{10}O_{18} \\ Ca_2Al_2SiO_7 \\ CaAl_2O_4 \end{bmatrix}$	35. 37.8	52.9	14.2 9.3	1552 1512		$\left.\begin{array}{c} CaAl_2Si_2O_8\\ Al_2O_8\\ Al_2SiO_5 \end{array}\right\}$	15.6	36.5	47.9	1512	
$\left.\begin{array}{c} Ca_2Al_2SiO_7\\ CaAl_2O_4\\ Ca_8Al_{10}O_{18}\\ CaAl_2Si_2O_8\end{array}\right\}$	37.5	53.2	9.3	1505		$\left.\begin{array}{c} \text{Ca}_{3}\text{Al}_{10}\text{O}_{18}\\ \text{Ca}_{2}\text{Al}_{2}\text{SiO}_{7}\\ \text{Al}_{2}\text{O}_{8}\end{array}\right\}$	31.2	44.5	24.3	1475	
$\left \begin{array}{c} Ca_2Al_2SiO_7\\ Ca_2Al_2SiO_7\\ Ca_3Si_2O_7\end{array}\right\}$	30.2 47.2	36.8 11.8	33. 41.	1385 1310		QUAL	RUPLE	POINTS	s .		
$\left.\begin{array}{c} CaSiO_8\\ Ca_2Al_2SiO_7\\ CaSiO_8\end{array}\right\}$	45.7	13.2	41.1	1316		$3CaO.2SiO_2$ $2CaO.SiO_2$	55.5		4 4.5	1475	

The accuracy of the melting-points is 5 to 10 units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 341, 1911.

TABLE 246.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular weight then a reference much weight, then a reference number.

		1					
	Molecular Lowering.		Molecular Lowering.		13 66		1 2 50
g. mol	E ic	g. mol.	3.6	g. mol.	Molecular Lowering.	g. mol.	Molecular Lowering.
1000 g. H ₂ O	0 of	1000 g. H ₂ O	alo	1000 g. H ₂ O	we	1000 g. H2O	wei
	27		ΣÅ		Êğ	1000 g. 1120	ĽX
	<u> </u>		I				
Pb(NO ₈) ₂ , 331.0:	I. 7.	0.0500	3•47°	0.078	0.00		
0.000362	5.5°	.1000	3.47	0.4978	2.020	MgCl ₂ , 95.26: 6,	14.
.001204	5.30	.2000	3.42		2.01	0010.0	5.10
.002805	5.17	.500	3.32 3.26	1.5233	2.28	.0500	4.98
.005570	4.97	1.000		BaCl ₂ , 208.3: 3,6	, 13.	.1 500	4.96
.01737	4.69	LINO3, 69.07: 9.	3.14	0.00200	5.5°	.3000	5.186
.5015	2.99	0.0398	3.4°	.00498	5.2	.6099 /	5.69
Ba(NO ₈) ₂ , 261.5:		.1671		.0100	5.0	KC1, 74.60: 9, 17-	-19.
0.000383	5.6°	.4728	3.35	.0200	4.95	0.02910	3.54°
.001259	5.28	1.0164	3.35	.04805	4.80	.05845	3.46
.002681	5.23	n	3.49	.100	4.69	.112	3.43
.005422	5.13	Al ₂ (SO ₄) ₈ , 342.4:	5.6°	.200	4.66	.31 39	3.41
.008352		0.0131		.500	4.82	.476	3.37
Cd(NO) 2-6	5.04	fl	4.9	.586	5.03	1.000	3.286
$Cd(NO_3)_2, 236.5:$ 0.00298	^{3,} , , o	.0543	4.5	.750	5.21	1.989	3.25
.00689	5.4°	.1086	4.03	CdCl ₂ , 183.3: 3, 14	ь I	3.269	3.25
	5.25 5.18	217	3.83	0.00299	5.0°	NaCl, 58.50: 3, 20	, 12, 16.
.01997	5.10	CdSO ₄ , 208.5: 1, 1	···	.00690	4.8	0.00399	3.7°
.04873	5.15	0.000704	3-35°	.0200	4.64	.01000	3 67
AgNO ₃ , 167.0: 4,	5.	.002685	3.05	.0541	4.11	.0221	3.55
0.1506	3.320	.01151	2.69	.0818	3.93	.04949	3.51
.5001	2.96	.03120	2.42	.214	3.39	.1081	3.48
.8645	2.87	.1473	2.13	.429	3.03	.2325	3.42
1.749	2.27	.4129	1.80	.858	2.71	.4293	3.37
2.953	1.85	.7501	1.76	1.072	2.75	.700	3.43
3.856	1.64	1.253	1.86	CuCl ₂ , 134.5:9.		NH4Cl, 53.52: 6,	16.
0.0560	3.82	K2SO4, 174.4: 3, 5,	6, 10, 12.	0.0350	4.9°	0.0100	3.6°
.1401	3.58	0.00200	5.4°	.1337	4.81	.0200	3.56
.3490	3.28	.00398	5.3	.3380	4.92	.0350	3.50
KNO3, 101.9: 6, 7.		.00865	4.9	.7149	5.32	.1000	3.43
0.0100	3.5	.0200	4.76	-	J-J-	.2000	3.396
.0200	3.5	.0500	4.60	CoCl ₂ , 129.9: 9. 0.0276	5.0°	.4000	3.393
.0500	3.41	.1000	4.32			.7000	3.41
.100	3.31	.200	4.07	.1094	4.9	LiCl, 42.48: 9, 15.	
.200	3.19	.454	3.87	.2369	5.03	0.00992	3.7°
.250	3.08	CuSO ₄ , 159.7: 1, 4	, 11.	.4399 .538	5.30	.0455	3.5
.500	2.94	0.000286	3.3°		5.5	.09952	3.53
.750	2.81	.000843	3.15	CaCl ₂ , 111.0: 5, 13	-16.	.2474	3.50
1.000	2.66	.002279	3.03	0.0100	5.1°	.5012	3.61
NaNO ₃ , 85.09: 2, 6	5, 7.	.006670	2.79	.05028	4.85	•7939	3.71
0.0100	3.6°	.01463	2.59	.1006	4.79		J•/ *
.0250	3.46	.1051	2.28	.5077	5.33	BaBr ₂ , 297.3: 14.	5.1°
.0500	3.44	.2074	1.95	.946	5.3	0.100	
.2000	3.345	.4043	1.84	2.432	8.2	.150	4.9
.500	3.24	.8898	1.76	3.469	11.5	.200	5.00
.5015	3.30	MgSO4, 120.4: 1,		3.829	14.4	.500	5.18
1.000	3.15	0.000675	3.29	0.0478	5.2	AlBr ₃ , 267.0: 9.	
1.0030	3.03	.002381	3.10	.153	4.91	0.0078	1.4°
NH4NO3, 80.11: 6,	, 8.	.01263	2.72	.331	5.15	.0559	1.2
0.0100	3.6°	.0580	2.65	.612	5.47	.1971	1.07
.02 50	3.50	.2104	2.23	.998	6.34	·43 55	1.07

 1 Hausrath, Ann. Phys. 9, 1902.
 11 Kahlenberg, J. Phys. Ch. 5, 1901.

 2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
 13 Abegg, Z. Phys. Ch. 20, 1896.

 3 Jones, Z. Phys. Ch. 1, 1893.
 13 Jones-Cetman, Am. Ch. J. 27, 1902.

 4 Raoult, Z. Phys. Ch. 2, 1888.
 14 Jones-Chambers, Am. Ch. J. 27, 1902.

 5 Arrhenius, Z. Phys. Ch. 2, 1888.
 15 Loomis, Wied. Ann. 60, 1897.

 6 Loomis, Wied. Ann. 5, 1802.
 17 Raoult, Z. Phys. Ch. 4, 1889.

 7 Jones-Caldwell, Am. Chem. J. 25, 1901.
 18 Roloff, Z. Phys. Ch. 40, 1902.

 9 Biltz, Z. Phys. Ch. 40, 1902.
 19 Ristiakowsky, Z. Phys. Ch. 6, 1897.

 10 Jones-Mackay, Am. Chem. J. 19, 1897.
 20 Loomis, Wied. Ann. 51, 1894.

 Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabelleu.
 70 Neither Stallen.

TABLE 246 (continued).

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

	Molecular Lowering.		Molecular Lowering.		Molecular Lowering.		Molecular Lowering.
g. mol.	l la ig	g. mol.	2.5	g. mol	l i i c	g. mol.	[]. []. [].
1000 g. H ₂ O	we	1000 g. H ₂ O	we le	1000 g. H2O	we le	1000 g. H2O	we
	Ľžl	8	ž3		Ľž	8	Ľž I
					1		
							0
CdBr ₂ , 272.3: 3, 1	14.	KOH, 56.16: 1, 1	5, 23.	Na ₂ SiO ₃ , 122.5:	15.	0.472	2.20°
0.00324	5.1°	0.00352	3.60°	0.01052	6.4°	•944	2.27
.00718	4.6	.00770	3.59	.05239	5.86	1.620	2.60
.03627	3.84	.02002	3.44	.1048	5.28	(COOH) ₂ , go.o2: 0.01002	4, 15.
.0719	3.39	.05006	3.43	.2099	4.66	0.01002	3.3°
.1122	3.18	.1001	3.42	•5233	3.99	.02005	3.19
.220	2.96	.2003	3.424	HCl, 36.46 :		.05019	3.03
.440	2.76	.230	3.50	1-3, 6, 13	, 18, 22.	.1006	2.83
.800	2.59	.465	3.57	0.00305	3.68°	.2022	2.64
CuBr ₂ , 223.5: 9.		CH3OH, 32.03: 2	4, 25.	.00695	3.66	.366	2.56
0.0242	5.1°	0.0100	1.8°	.0100	3.6	.648	2.3
.0817	5.1	.0301	1.82	.01703	3.59		- 1
.2255	5.27	.2018	1.811	.0500	3.59	C ₃ H _δ (OH) ₃ , 92.06 0.0200	24, 25. 1.86°
.6003	5.89	1.046	1.86	.1025	3.56	.1008	1.86
CaBr ₂ , 200.0: 14.	5	3.41	1.88	.2000	3.57		1.85
0.087I	5.1°	6.200	1.944	.3000	3.612	.2031	
.1742	5.18	C2H5OH, 46.04 :	2.1	.464	3.68	.535	1.91
		1, 12, 17	24-27	.516	3.79	2.40	1.98
.3484	5.30	0.000402	1.67°	1.003	3.95	5.24	2.13
.5226	5.64	.004993	1.67	1.032	4.10	$(C_2H_\delta)_2O, 74.08:$	24
MgBr ₂ , 184.28: 1	4.	.0100	1.81	1.500	4.42	0.0100	1.6°
0.0517	5.4°	.02892	1.707	2.000	4.97	.0201	1.67
.103	5.16	.0705	1.85	2.115	4.52	.1011	1.72
.207	5.26	.1292	1.829	3.000	6.03	.2038	1.702
.517	5.85	.2024	1.832	3.053	4.90	Dextrose, 180.1 :	24. 20.
KBr, 119.1 : 9, 21.	.		1.834	4.065	5.67	0.0198	1.84°
0.0305	3.61°	.5252 1.0891	1.826	4.657	6.19	.0470	1.85
.1850	3.49	1.760	1.82			.1326	1.87
.6801	3.30		1.92	HNO ₃ , 53.05: 3, 1 0.02004	3, 15.	.4076	1.894
.250	3.78	3.901	2.02		3.55°	1.102	1.921
.500	3.56	7.91		.05015	3.50		- 1
CdI2, 366.1: 3, 5,		11.11	2.12 1.81	.0510	3.71	Levulose, 180.1:	24, 25
0.00210	4.5°	18.76	1.80	.1004	3.48	0.0201	1.87°
.00626	4.0	0.0173		.1059	3.53	.2050	1.871
.02062	3.52	0778	1.79	.2015	3.45	.554	2.01
.048 57	2.70	K ₂ CO ₃ , 138.30:6		.250	3.50	1.384	2.32
.1360	2.35	0.0100	5.1°	.500	3.62	2.77	3.04
•333	2.13	.0200	4.93	1.000	3.80	CHO, 342.2: 1, 24	, 26.
.684	2.23	.0500	4.71	2.000	4.17	0.000332	í1.90°
.888	2.51	.100	4.54	3.000	4.64	.001410	1.87
1		.200	4.39	H ₈ PO ₂ , 66.0: 29.		.009978	1.86
KI, 166.0 : 9, 2. 0.0651	3.5°	Na ₂ CO ₃ , 106.10: 6	5.	0.1260	2.90°	.0201	1.88
.2782		0.0100	5.1°	.2542	2.75	.1 305	1.88
	3.50	.0200	4.93	.5171	2.59	H2SO4, 98.08:	
.6030	3.42	.0500	4.64	1.071	2.45	13, 20,	31-33.
1.003	3.37	.1000	4.42	HPO, 82 0: 4, 5.	_	13, 20, 0.00461	4.8°
SrI2, 341.3: 22.	0	.2000	4.17	0.0745	3.0°	.0100	4.49
0.054	5.1°	Na ₂ SO ₃ , 126.2: 28		.1241	2.8	.0200	4.32
.108	5.2	0.1044	4.51°	.2482	2.6	.0461	4.10
.216	5.35	·3397	3.74	I.00	2.39	.100	3.96
.327	5.52	.7080	3.38	H3PO4, 98.0: 6, 2	2.	.200	3.85
NaOH, 40.06: 15.		Na ₂ HPO ₄ , 142.1;	22, 29.	0.0100	2.8°	.400	3.98
0.02002	3.45°	0.01001	5.00	.0200	2.68	1.000	4.19
.05005	3.45	.02003	4.84	.0500	2.49	1.500	4.96
.1001	3.41	.05008	4.60	.1000	2.36	2.000	5.65
.2000	3.407	.1002	4-34	.2000	2.25	2.500	6.53

1-20 See page 217. 21 Sherrill, Z. Phys. Ch. 43, 1903. 22 Chambers-Frazer, Am. Ch. J. 23, 1900. 23 Noyes-Whitney, Z. Phys. Ch. 15, 1894. 24 Loomis, Z. Phys. Ch. 25, 1894. 25 Abegg, Z. Phys. Ch. 15, 1894. 26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

SMITHSONIAN TABLEB.

228

Pictet-Altschul, Z. Phys. Ch. 16, 1895.
 Barth, Z. Phys. Ch. 9, 1892.
 Petersen, Z. Phys. Ch. 11, 1893.
 Roth, Z. Phys. Ch. 43, 1003.
 Wildermann, Z. Phys. Ch. 15, 1894.
 Jones-Carroll, Am. Ch. J. 28, 1902.
 Jones-Murray, Am. Ch. J. 30, 1903.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grams of the salt which, when dissolved in roo grams of water, will raise the boil-ing-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

Salt.	1 ° C.	2 °	3 °	4 °	5°	7 °	10 °	15 °	2 0°	25 2
$\begin{array}{cccc} BaCl_2 + 2H_2O & . & . \\ CaCl_2 & . & . \\ Ca(NO_6)_2 + 2H_2O & . \\ KOH & . & . \\ KC_2H_3D_2 & . & . \end{array}$	4.7	31.1 11.5 25.5 9.3 12.0	47.3 16.5 39.5 13.6 18.0	63.5 21.0 53.5 17.4 24.5	(71.6 g 25.0 68.5 20.5 31.0	32.0		of tem 55.5 240.0 47.0 98.0	5.) 69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
KCl K ₂ CO ₈ KClO ₃ KI KNO ₈	11.5 13.2 15.0	16.7 22.5 27.8 30.0 31.0	23.4 32.0 44.6 45.0 47.5	29.9 40.0 62.2 60.0 64.5	36.2 47.5 74.0 82.0	48.4 60.5 99.5		gives a 103.5 185.0	rise of 127.5	
$\begin{array}{c} K_{2}C_{4}H_{4}O_{6}+\frac{1}{2}H_{2}O \\ KNaC_{4}H_{4}O_{6} \\ KNaC_{4}H_{4}O_{6}+4H_{2}O \\ LiCl \\ LiCl +2H_{2}O \end{array}$	18.0 17.3 25.0 3.5	36.0 34.5 53.5 7.0 13.0	47.5 54.0 51.3 84.0 10.0 19.5	72.0 68.1 118.0 12.5 26.0	90.0 84.8 1 57.0 1 5.0 32.0	126.5 119.0	182.0	338.5 284.0 272.5 5510.0 35.0 92.0	390.0 42.5 123.0	510.0 50.0
$\begin{array}{c} MgCl_2+6H_2O\\ MgSO_4+7H_2O\\ NaOH\\ NaCI\\ NaNO_8\\ \end{array}$	11.0 41.5 4.3 6.6	22.0	33.0 138.0 11.3 17.2 28.0	44.0 196.0 14.3 21.5 38.0	55.0 262.0 17.0 25.5 48.0	44.0 77.0 22.4 33.5 68.0	110.0 30.0	170.0 41.0	241.0 51.0 .8 rise)	160.5 334.5 60.1
$\begin{array}{l} NaC_{2}H_{6}O_{2}+3H_{2}O \\ Na_{2}S_{2}O_{8} \\ Na_{2}HPO_{4} \\ Na_{2}C_{4}H_{4}O_{6}+2H_{2}O \\ Na_{2}S_{2}O_{8}+5H_{2}O \end{array} .$	14.9 14.0 17.2 21.4	30.0 27.0 34.4 44.4 50.0	46.1 39.0 51.4 68.2 78.6	62.5 49.5 68.4 93.9 108.1	79.7 59.0 85.3 121.3 139.3	118.1 77.0 183.0	194.0 104.0	480.0 1 52.0 gives 8	6250.0 214.5 °.4 rise)	311.0
$\begin{array}{rcl} Na_2CO_3 + 10H_2O & .\\ Na_2B_4O_7 + 10H_2O & .\\ NH_4CI & .\\ NH_4NO_3 & .\\ NH_4SO_4 & .\\ .\\ \end{array}$	34.1 8 39. 0 6.5 1 10.0 2	86.7	177.6 254.2 19.0 30.0 44.2	369.4 898.5 24.7 41.0 58.0	1052.9 (5555.5 29.7 52.0 71.8		4°.5 ris 56.2 108.0			337.0
$\begin{array}{rrr} SrCl_2 + 6H_2O & . & .\\ Sr(NO_3)_2 & . & .\\ C_4H_6O_6 & . & .\\ C_2H_2O_4 + 2H_2O & .\\ C_6H_6O_7 + H_2O & . \end{array}$	24.0 4 17.0 3 19.0 4	10.0 15.0 34. 4 10.0 58.0	60.0 63.6 52.0 62.0 87.0	81.0 81.4 70.0 86.0 116.0	103.0 97.6 87.0 112.0 145.0	1 50.0 1 2 3.0 1 6 9.0 2 0 8.0	234.0 177.0 262.0 320.0	524.0 272.0 540.0 553.0	374.0 1316.0 952.0	484.0 50000.0
Salt. 40 9	60	•	80°	100°	120°	140 °	160°	160 °	200	240°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 121 5 150 5 1370	1.7 0.8 0.0 2		185.0 345.0 4099.0 y gives	219.8 526.3 8547.0 170)	800.0				

* Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

FREEZING MIXTURES.*

Column r gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is need, and H the amonot of heat absorbed in heat noits (small calories when A is grams). Temperatures are in Centigrade degrees.

Substance.	A	В	С	D	E	F	G	Н
Substance.								
NaC ₂ H ₃ O ₂ (cryst.)	85	H2O-100	-	10.7	4.7	15.4		-
NH ₄ Cl .	30		-	13.3	- 5.1	18.4 18.5	-	-
$NaNO_8$	75 110	66 66		13.2		18.7	_	-
$Na_2S_2O_3$ (cryst.) . KI.	140	** **	-	10.8	- 11.7	22.5	-	- 1
CaCl ₂ (cryst.)	250	"	-	10.8	- 12.4	23.2	-	-
NH_4NO_3 · ·	60	"" "		13.6		27.2 26.0		-
$(NH_4)_2SO_4$ NH_4Cl	25 25	" 50 " "	" "	_	_	22.0	-	_
$CaCl_2$.	25	** **	** **	-		20.0	-	-
KNO8	25	** **	NH4Cl-25	-	-	20.0	-	-
Na_2SO_4	25		46 .6	-		19.0 17.0		_
$NaNO_3$ K_2SO_4	25 10	Snow 100	_	-1	— I.9	0.9		
Na_2CO_3 (cryst.)	20	66 66	-	— I	- 2.0	1.0	-	-
KNO8	13	66 66 66 66	-	— I	- 2.85	1.85	-	_
$CaCl_2$	30 25	** **	-		10.9	9.9 14.4	_	_
NH4NO8	45	6 6 46	-	— î	- 16.75	15.75	-	-
NaNO ₃	50	66 BB	-	— I	- 17.75	16.75		
NaCl	33	" " · · · · · ·	-		- 21.3	20.3 36.0	- 37.0	0.0
	I	" 1.097 " 1.26	-			35.0	-37.0 -30.2	17.0
	ī	" 1.38		— ī	- 35.0	34.0	- 25.0	27.0
$H_2SO_4 + H_2O$ } (66.1 % H_2SO_4)	I	" 2.52	-	— т	— 30.0	29.0	- 12.4	133.0
(00.1 /0 1120 04)	I	" 4.3 ²	-			24.0 19.0	- 7.0	273.0
	1 I	** 7.92 ** 13.08	-		<u> </u>	15.0	<u> </u>	553.0 967.0
	i	" 0.35	_	0	-	⁻ -	0.0	52.1
	I	"·49		0	-		- 19.7	49-5
	I	" .61 " .70	_	0	_	-	— 39.0 — 54.9†	40.3 30.0
$CaCl_2 + 6H_2O$	I	" .81	_	ŏ	_	_	- 40.3	46.8
	I	" 1.23	-	0	- 1	-	- 21.5	88.5
	I	" 2.46	-	0	-	-	9.0	192.3
ł	77	" 4.92 " 73		0	- 30.0		- 4.0	392.3
Alcohol at 4°	11/2	CO ₂ solid	-	<u> </u>	- 72.0	-	-	-
Chloroform .	-		-	-	77.0	- 1	- 1	-
Ether			-	-	- 77.0	-	-	-
Liquid SO ₂	- I	H ₂ O75	_	20	- 82.0 5.0	_	_	33.0
	ī	" .94		20	4.0	- 1	-	21.0
	I		-	10	- 4.0	-	-	34.0
	I	Snow "	_	5	- 4.0		· _	40.5 122.2
NH4NO3 .	I	$H_2O-1.20$	-	0	- 4.0 - 14.0	-	_	122.2
	ī	Snow "	-	õ	14.0	-	-	129.5
	I	H ₂ O-1.31	-	10	- 17.5	-	-	10.6
	I	Snow " H ₂ O~3.61	_	0	$ -17.5^{\dagger}$ -8.0	-		131.9
	I	Snow "	-	0	- 8.0	1 -		0.4 327.0
				_				5-7.2

* Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanudler, Rudorf, and Tollinger. † Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

- $\theta = Critical temperature.$
- P = Critical pressure in atmospheres.
- ϕ == Critical volume referred to volume at 0° and 76 centimeters pressure.
- d = Critical density in grams per cubic centimeter.

a, b, Van der Waals constants in	$\left(p + \frac{a^2}{v^2}\right)$ ($\left(\mathbf{v}-\mathbf{b}\right)=\mathbf{I}+\mathbf{at}.$
----------------------------------	--------------------------------------	--

Substance.	θ	Р	φ	đ	a X 10 ⁵	b× 10 ⁶	Observer
Air '	-140.0	39.0	_	-	2 57	1560	I
Alcohol (C_2H_6O).	243.6	62.76	0.00713	0.288	2407	3769	2
" (CH_4O) .	239.95	78.5		-	1898	2992	3
Ammonia	130.0	15.0	-	- 1	798	1606	4
Argon	-117.4	52.9	-	-	259	1348	34536
Benzol	288.5	47.9	-	0.305	3726	5370	3
Bromine	302.2		0.00605	1.18	1434	2020	6
Carbon dioxide .	31.2	73.	0.0044	0.46	717	1908	-
" monoxide.	-141.1	35.9		-	275	1683	- 7 8
" disulphide	277.7	78.1	-	-	2197	3227	8
Chloroform	260.0	54.9	-	-	2930	4450	9 4
Chlorine	141.0	83.9	-		1157	2259	4
"	146.0	93.5	_ `	- 1	1063	2050	10
Ether	197.0	35.77	0.01 584	0.208	3496	6016	11
**	194.4	35.61	0.01 344	0.262	3464	6002	3
Ethane	32.1	49.0	_	-	1074	2848	12
Ethylene · ·	9.9	51.1		-	886	2533	-
Helium · · ·	<268.0		-	-	5	700	13
Hydrogen · ·	-240.8	14.	-	-	42	880	14
chloride.	51.25	86.o	-	i	692	1726	15
" "	52.3	86.0		0.61	697 888	1731	4
" sulphide.	100.0	88.7	. –	-		1926	I
Krypton		54.3	-		462	1776	5
Methane .	<u>—81.8</u>	54.9		-	376	1557.	I
"	95.5	50.0		-	357	1625	4
Neon · · ·	<205.0	29.	- 1	-	-		5,13
Nitric oxide (NO).	-93.5	71.2	-	1 -	257	1160	I
Nitrogen .	146.0	35.0	-	0.44	² 59	1650	I
" monoxide				1		-000	
(N_2O)	35.4	75.0	0.0048	0.41	720	1888	4,17
Oxygen .	35·4 118.0	50.0	-	0.6044	273	1420	I
Sulphur dioxide	155.4	78.9	0.00587	0.49	1,316	2486	2,17
Water	358.1	-	0.001874	0.429			6 16
"	374.	217.5	-	-	1089	1 362	10
		1	l	L	L		

- (1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.
- (2) Ramsay-Young, Tr. Roy. Soc. 177, 1886.
- (3) Young, Phil. Mag. 1900. (4) Dewar, Phil. Mag. 18, 1884; Ch. News, 84, 1901.
- (5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.
 (6) Nadejdine, Beibl. 9, 1885.
- (7) Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. 91, 1885.
- (8) Hannay, Pr. Roy. Soc. 32, 1882.

- (9) Sajotschewsky, Beibl. 3, 1879.
 (10) Knietsch, Lieb. Ann. 259, 1890.
 (11) Batelli, Mem. Torino (2), 41, 1890.
- (12) Cardozo, Arch. sc. phys. 30, 1910. (13) Kamerlingh-onnes, Comno. Phys. tab. Leiden, 1908, 1909, Proc. Amst. 11, 1908, C. R. 147, 1908. (14) Olszewski, Ann. Phys. 17, 1905.
- (15) Ansdell, Chem. News, 41, 1880.
 (16) Holborn, Baumann Ann. Phys. 31, 1910.
 (17) Cailletet, C. R. 102, 1886; 104, 1887.

*Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

SMITHSONIAN TABLES.

231

LINEAR EXPANSION OF THE ELEMENTS."

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion; A_1 is the authority for C; M is the mean coefficient of expansion between 0° and 100° C.; α and β are the coefficients in the equation $l_t = l_0 (1 + \alpha t + \beta l^2)$, where l_0 is the length at 0° C. and l_t the length at t° C.; A_2 is the authority for α , β , and M.

			1				
Substance.	t	C X 104	A	MX 10 ⁴	a X 10 ⁴	β X 10 ⁶	A_2
Aluminum	40	0.2313	I	0.2220	-	-	2
"	600	.3150	3				l.
"	-191 to +16	.1835	4	_	.23536	.00707	5
Antimony:		55			000		
Parallel to cryst. axis	40	.1692	I				
Perp. to axis	40	.0882	I				li
Mean	40	.1152	I	.1056	.0923	.0132	6
Arsenic	40	.0559	1	5	10	ũ	1
Bismuth :							1
Parallel to axis	40	.1621	I				
Perp. to axis	40	.1208	I				
Mean	40	.1346	Ī	.1316	.1167	.0149	6
Cadmium	40	.3069	Ī	.3159	.2693	.0466	6
Carbon:		.3009	⁻	•3•39			Ŭ
Diamond	40	.0118	I				
Gas carbon	40	.0540	Î				
Graphite	40	.0786	Î		.0055	.0016	13
Anthracite	40	.2078	Î				~
Cobalt	40	.1236					
Copper	40	.1678		.1666	.1481	.0185	6
			1 -	.1000	.16070		
Gold	-191 to $+16$.1409	4 I			.00403	5
Indium	40	.1443		.1470	.1358	.0112	0
Iron:	40	.4170	I				
Soft			l .				1
Cast	40	.1210	1				
Cast	40	.1061	I				
XIV	-191 to $+16$.0850	4	1			
Wrought	-18 to 100	.1140	7	-	.11705	.005254	8
Steel	40	.1 322	I	-	.09173	.008336	8
annealeu	40	.1095	I	.1089	.1038	.0052	9 6
Lead	40	.2924	I	.2709	.273	.0074	6
Magnesium	40	.2694	I				
Nickel	40	.1279	1	1	.1 3460	.003315	8
·······	-191 to $+16$.1012	4				
Osmium	40	.0657	1				
Palladium	40	.1176	1	- 1	.11670	.002187	8
Phosphorus	0-40	1.2530	10				
Platinum	40	0.0899	1	-	.08868	.001324	8
Potassium	0-50	.8300	1 II	1			
Rhodium	40	•0850	I				
Ruthenium	40	.0963	I				
Selenium	40	·3680	1	.6604	-	-	12
Silicon	40	.0763	I				
Silver	1	.1921	I	- 1	.18270	.004793	8
" • • • •	-191 to +16	.1704	4		1	1125	
Sulphur :			1				
Cryst. mean	40	.6413	I	1.180	-	-	12
Tellurium	40	.1675	I	.3687	-	-	12
Thallium	40	.3021	1	J	1		
Tin	40	.2234	1	.2296	.2033	.0263	6
Zinc	40	.2918	1	.2976	.2741	.0234	6
					1 -/		
	· · · · · · · · · · · · · · · · · · ·					_	<u> </u>
1 Fizeau. 4 H	Ienning.	8 H	olbor	n-Day.	11	Hagen.	
2 Calvert, Johnson 5 I	littenberger.	9 Be	enoit.		12	Spring.	
and Lowe. 6 M	latthiessen.	to Pi	sati a	ind De		Day and	Sos-
3 Chatelier. 7 A	andrews.		Fran	chis.	-5	man.	

The above table has been partly compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Matthiessen, "Proc. Roy. Soc.," vol. 15. The Holborn-Day and Day and Sosman data are for temperatures from 20° to 1000° C. The Dittenberger, 0° to 600° C.

LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

Substance.	ŧ	C X 10 ⁴	А.	Substance.	t	C X 104	A.
							_
Brass: Cast	0.000	a . 9		Platinum-silver:	0-100	0 1 5 2 2	
Wire	0-100	0.1875	I I	1Pt+2Ag Porcelain	20-790	0.1523	
whe	"	0.1930		" Bayeux .	1000-1400	0.0413 0.0553	
71.5Cu+27.7Zn+		.1783–.193	2	Quartz:	1000-1400	0.0333	20
0.3Sn+0.5Pb	40	0.1859	3	Parallel to axis .	o –80	0.0797	6
71Cu+29Zn .	0-100	0.1906	4		—190 to +16		
Bronze :	0.00	0.1.900	1 1	Perpend." " .	0-80	0.1 337	6
3Cu+1Sn	16.6-100	0.1844	5	Quartz glass	—190 to +16		13
4 4	16.6-350	0.2116	5	Rock salt	40	0.4040	
"""	16.6-957	0.1737	5	Speculum metal .	0-100	0.1933	I
86.3Cu+9.7Sn+		_	-	Topaz:			
4Zn	40	0.1782	3	Parallel to lesser	"		
97.6Cu+ hard	o-80	0.1713	6	horizontal axis		0.0832	8
[] 2.2.311 [] soft]	"	0.1708	6	Parallel to greater	"	0.0806	8
0.21				horizontal axis		0.0836	0
Caoutchouc		.657686	2	Parallel to verti- cal axis	44	0.0472	8
Canadamtina	16.7-25.3	0.770	7	Tourmaline:		0.0472	
Constantine Ebonite	4-29	0.1523 0.842	5	Parallel to longi-			
Fluor spar: CaF_2 .	25.3-35.4 0-100	0.1950	78	tudinal axis	"	0.0937	8
German silver	"	0.1836	8	Parallel to hori-		1	
Gold-platinum:				zontal axis	66	0.0773	8
2Au+1Pt	"	0.1523	4	Type metal	16.6-254	0.1952	5
Gold-copper :				Vulcanite	0~18	0.6300	
2Au+1Cu	"	0.1552	4	Wedgwood ware .	0~100	0.0890	5
Glass :				Wood:			
Tube	"	0.0833 0.0828	1	Parallel to fibre :		0.0011	
"	"	0.0828	9	Ash		0.0951	
Plate .	"	0.0891	10		2-34	0.0257	
Crown (mean) .		0.0897	10	Chestnut Elm		0.0565	
	50-60	0.0954	II	Mahogany .	"	0.0361	
Flint				Maple	"	0.0638	
Jena ther- mometer normal }	0-100	0.081	12	Oak	"	0.0492	
" 59 ^{III} .	66	0.058	12	Pine	"	0.0541	
66 66	-191 to +16		13	Walnut	"	0.0658	24
Gutta percha .	20	1.983	14	Across the fibre :			
Ice . · · ·	—20 to —1	0.51	15	Beech .	"	0.614	24
Iceland spar:				Chestnut		0.325	24
Parallel to axis .	o-80	0.2631	6	Elm.		0.443	24 24
Perpendicular to				Mahogany .		0.404	24
axis	66	0.0544	6	Maple Oak	"	0.404	24
Lead-tin (solder)		0.2508	1	-	"	0.341	24
2Pb+1Sn	0-100	0.2508	16		"	0.484	24
Magnalium	12-39 15-100	0.230			10-26	2.300	25
Marble	0-16	1.0662	17 18	"	26-31	3.120	25
Paraffin . • •	16-38	1.3030	18	"	31-43	4.860	25
"	38-49	4.7707	18		43-57	15.227	25
Platinum-iridium	J ² T						
IoPt+1Ir	40	0.0884	3				1
	L		1.	<u> </u>			
- Smooton	8 Pfaff.			14 Russner.	20 Deville a	nd Troo	ost.
1 Smeaton. 2 Various.	9 Deluc.			15 Mean.	21 Scheel.		
	10 Lavoisier	and Lapl	ace	, 16 Stadthagen.	22 Mayer.		
3 Fizeau. 4 Matthiessen.	11 Pulfrich.	•		17 Fröhlich.	23 Glatzel.		
	12 Schott.			18 Rodwell.	24 Villari.		
5 Daniell. 6 Benoit.	13 Henning.			19 Braun.	25 Kopp.		
7 Kohlrausch.	-						
			_				_

TABLE 252.

CUBICAL EXPANSION OF SOLIDS.

If v_2 and v_1 are the volumes at t_2 and t_1 respectively, then $v_2 = v_1 (1 + C\Delta t)$, C being the coefficient of cubical expansion and Δt the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.*

* For tables of cubical expansion complete to 1876, see Clark's Constants of Nature, Smithsonian Collections, 289. SMITHSONIAN TABLES.

TABLE 253.

CUBICAL EXPANSION OF LIQUIDS.

If V_o is the volume at o^o then at t^o the expansion formula is $V_t = V_o (1 + at + \beta t^2 + \gamma t^3)$. The table gives values of a, β and γ and of C, the true coefficient of cubical expansion, at 20^o for some liquids and solutions. Δt is the temperature range of the observation and A the authority.

Liquid.	Δt	a 10 ⁸	β 10 ⁶	γ 10 ⁸	C 10 ⁸ at 20 ⁰	A
Acetic acid	16-107	1.0630	0.12636	1.0876	1.071	3
Acetone	0 −54	1.3240	3.8090	0.87983	1.487	3
Alcohol:	- 14		3.0090	0.07905	/	3
Amyl	<u> </u>	8.0001	0.6573	1.18458	0.902	4a
Ethyl, 30% by vol	18-39	0.2928	10.790	-11.87	-	4a 6
" 50% "	0-39	0.7450	1.85	0.730	- 1	6
" 99·3% " · ·	27-46	1.012	2.20		1.12	6
" 500 atmo. press	0-40	0.866	_	-	_	I
" 3000 " " .	0-40	0.524		-		I
Methyl	o–Ġı	1.1342	1.3635	0.8741	1.199	5a
Benzol	11-81	1.17626	1.27776	0.80648	1.237	5a
Bromine	0− 59	1.06218	1.87714	0.30854	1.132	2
Calcium chloride :						
5.8% solution	18-25	0.07878	4.2742	-	0.250	7
40.9% "	17-24	0.42383	0.8571	-	0.458	7
Carbon disulphide	34-60	1.13980	1.37065	1.91225	1.218	4a
500 atmos. pressure	0-50	0.940			-	I
3000 " " .	0-50	0.581	-	-	-	I
Carbon tetrachloride	0-76	1.18384	0.89881	1.35135	1.236	4b
Chloroform	0-63	1.10715	4.66473	-1.74328	1.273	4b
Ether	—1 <u>5</u> –3 ⁸	1.51324	2.35918	4.00512	1.656	4a
Glycerine	-	0.4853	0.4895	-	0.505	8
Hydrochloric acid:						
33.2% solution	0-33	0.4460	0.215	-	0.455	9
Mercury	0-100	0.18182	0.0078	-	1.8186	13
Olive oil	-	0.6821	1.1405	o.539	0.721	10
Pentane	0−33	1.4646	3.09319	1.6084	1.608	14
Potassium chloride :						1
24.3% solution	16-25	0.2695	2.080	- /	0.353	7
Phenol	36-157	0.8340	0.10732	0.4446	1.090	11
Petroleum :						
Density 0.8467	24-120	0.8994	1.396	-	0.955	12
Sodium chloride :						
20.6% solution	0-29	0.3640	1.237	1	0.414	9
Sodium sulphate:				1		
24% solution \ldots	11-40	0.3599	1.258	-	0.410	9
Sulphuric acid :	1		-0.			
10.9% solution	0-30	0.2835	2.580	-	0.387	9
100.0%	0-30	0.5758	0.432	-	0.558	9
Turpentine	9-106	0.9003	1.9595	0.44998	0.973	5b
Water	o−33	-0.06427	8.5053	6.7900	0.207	13
	1		I	l	<u> </u>	<u> </u>

AUTHORITIES.

- 1. Amagat: C. R. 105, p. 1120; 1887. 2. Thorpe: Proc. Roy. Soc. 24, p. 283; 1876.

- 3. Zander: Lieb. Ann. 225, p. 109; 1884. 4. Pierre: a. Lieb. Ann. 56, p. 139; 1845. b. Lieb. Ann. 80, p. 125; 1851. 5. Kopp: a. Lieb. Ann. 94, p. 257; 1855.
- b. Lieb. Ann. 93, p. 129; 1855. 6. Recknagel : Sitzber. bayr. Ak. p. 327, 2
- Abt.; 1866.
- Drecker : Wied. Ann. 34, p. 952; 1888.
 Emo : Ber. Chem. Ges. 16, 1857; 1883.

9. Marignac: Lieb. Ann., Supp. VIII, p. 335; 1872.

- 10. Spring: Bull. Brux. (3) 3, p. 331; 1882.
- 11. Pinette : Lieb. Ann. 243, p. 32; 1888. 12. Frankenheim : Pogg. Ann. 72, p. 422; 1847.
- 13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. 1; 1903.
- 14. Thorpe and Jones: J. Chem. Soc. 63, p. 273; 1893.

TABLE 254.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Expansion of Gases.

Pressures are given in centimeters of mercury.

Coefficient a	t Constant Volu	ume.		Coefficient at Constant Pressure.				
Substance.	Pressure cm.	Coefficient X 100.	Reference.	Substance, Pressure cm.		Coefficient X 100.	Reference.	
Air """"""""""""""""""""""""""""""""""""	$\begin{array}{c} .6\\ 1.3\\ 10.0\\ 25.4\\ 75.2\\ 100.1\\ 76.0\\ 200.0\\ 2000.\\ 2000.\\ 10000.\\ 51.7\\ 76.0\\ 1.8\\ 5.6\\ 74.9\\ 51.8$.37666 .37172 .36630 .36540 .36550 .36744 .36650 .36866 .4100 .36856 .36753 .36856 .36753 .36855 .36955 .36955 .36955 .36955 .36955 .36955 .36955 .37248 .36856 .37248 .36657 .3228 .36657 .3228 .36657 .3228 .36565 .36753 .37248 .36657 .3228 .36565 .36753 .37248 .36565 .36753 .37248 .36565 .36753 .37248 .36565 .36753 .37248 .36565 .36753 .37248 .36556 .36753 .36565 .36753 .37248 .36556 .36753 .36565 .36753 .37248 .36556 .32744 .36556 .36753 .36565 .36753 .36565 .36753 .37248 .36556 .32744 .36556 .36753 .36565 .36753 .37248 .36556 .32744 .36556 .36753 .36565 .36753 .37248 .36556 .32753 .36565 .36753 .37253 .37248 .36556 .32753 .36565 .36753 .35753	1	Oxygen, $E = .$ Nitrogen, $E = .$ CO_2 $E = .$ V/v is the ratio of gas at o° C to what I Atm. pressure.	ne calculatio 0° and 100° C c change of v 3662(10c) 3662(10c) 3662(10c) 3662(10c) 3662(10c) 3662(10c) the actual c it would hav	on of the C. Expanded colume u 0049 V/v' 026 V/v' 032 V/v' 031 V/v' 164 V/v' density of e at o° C	e ex- asion nder),),),),), f the and	
Ann. 47, 1892. 2 Chappuis, Trav. 1 Meas. 13, 1903. 3 Regnault, Ann. c	 Meleander, Wied. Beibl. 14, 1890; Wied. Ann. 47, 1892. Chappuis, Trav. Mem. Bur. Intern. Wts. Meas. 13, 1903. Regnault, Ann. chim. phys. (3)5, 1842. Keunen-Randall, Proc. R. Soc. 59, 1896. Chappuis, Arch. sc. phys. (3), 18, 1892. Baly-Ramsay, Phil. Mag. (5), 38, 1894. Andrews, Proc. Roy. Soc. 24, 1876. Meleander, Acta Soc. Fenn. 19, 1891. Amagat, C. R. 111, 1890. Hirn, Théorie méc. chaleur, 1862. 							

TABLES 255-257.

MECHANICAL EQUIVALENT OF HEAT.

TABLE 255. - Summary.

Taken from	J. S. Ames,	L'équivalent	mécanique	de la chaleur,	Rapports	présentés	au	congrès
				sique, Paris, 1				-

Name.	Method.	Method. Scale.			
Joule Rowland	Mechanical . Mechanical .		4.173 4.195 4.187 4.181	16.5 10. 15. 20.	
Reynolds-Morby.	Mechanical .		4.176 4.1832	25. Mean- calory.	
Griffiths	$\frac{\text{Electrical }}{\frac{\text{E}^2 t}{\text{R}}}$	$\int \text{Latimer-Clark} = 1.4342 \text{ v at } 15^{\circ}\text{C.}$ $(\text{International Ohm})$	4.198 4.192 4.187	15. 20. 25.	
Schuster-Gannon	Electrical Eit.	Latimer-Clark = 1.4340v. at 15° C., Elec. Chem. Equiv. Silver = 0.001118g	4.1905	19.1	
Callendar-Barnes	Electrical Eit.	Latimer-Clark = 1.4342v. at 15° C.	4.179	40.	

TABLE 256.-Reduced to Gram-calory at 20° C. (Nitrogen thermometer).

Joule Rowland Griffiths Schuster-Gannon Callendar-Barnes	4.169 × 10 ⁷ ergs 4.181 " " 4.192 " " 4.189 " " 4.189 " " 4.186 " "	* 4.169 × 10 ⁷ ergs. 4.181 " " 4.184 " " 4.181 " " 4.178 " "
--	---	--

* Admitting an error of 1 part per 1000 in the electrical scale.

The mean of the last four then gives

1 small (20° C) celory=4.161×107 ergs.

small (15°C) calory = 4.185×10^7 ergs assuming sp. ht. of water at $20^\circ = 0.9990$.

TABLE 257 .- Conversion Factors for Units of Work.

	Joules Watts X sec. Volt-amp. per sec.	Small 15 ⁰ Calories.	Ergs.	Kilo- gram- meters.	Foot-poundals.	Foot-pounds.
<pre>I joule = I watt × second I small I5° cal- ory = I erg = I kilog-meter = I foot-poundal = I foot-pound =</pre>	1 4.185 10 ⁻⁷ g* .04214 .04214g†	0.2389 I 0.2389×10 ⁻⁷ 0.2389g* .01007 .01007g†	10^{7} 4.185 × 10 ⁷ 1 $g^* × 10^{7}$ 421400. 421400g†	$\frac{1}{g^{*}}$ $\frac{4.185}{g^{*}}$ $\frac{10-7}{g^{*}}$ I $\frac{.04214}{g^{*}}$.04214	23.73 99.31 23.73 × 10 ⁻⁷ 23.73g* I g†	$\frac{23.73}{g^{\dagger}}$ $\frac{90.31}{g^{\dagger}}$ $\frac{23.73}{g^{\dagger}} \times 10^{-7}$ 23.73 $\frac{1}{g^{\dagger}}$ I

* g = 9.80 m. per sec. per sec. at latitude $45^{\circ}_{...}$, sea level. † g = 32.2 ft. per sec. per sec. """""

Element.	Range * of Temperature, °C.	Specific heat.	Refer- ence.	Element.	Range * of Temperature, ° C.	Specific beat.	Refer- ence.
			<u> </u>				<u> </u>
Aluminum .	-250	0.1428	I	Iodine	9-98	0 0541	25
"	o	.2089	"	lridium	-186 + 18	.0282	26
44 · · ·	100	.2226	66 16	" • •	18-100	.0323	"
· · ·	250	.2382		Iron, cast	20-100	.1189	27
" · · ·	500	·2739		" wrought .	15-100	.1152	28
	16-100	.2122	43		1000-1200	.1989	
Antimony	15	.0489	2	" hard-drawn	500	.176	1 1
	100 200	.0503	66	" naro-orawn	0–18 20–100	.0986	29
Arsenic, gray	0-100	.0520 .0822	2	"	-185 - +20	.1146 .0958	4
" black .	0-100	.0861	3	Lanthanum	0-100	.0958	15
Barium	-185-+20	.068	4	Lead	15	.0299	2
Bismuth	-186	.0284		<i>"</i> , , .	100	.0311	"
"	0	.0301	5	"	300	.0338	"
"	75	.0309	"	"fluid .	to 310	.0356	30 "
" " 1	20-100	.0302	7	""	" 360	.0410	-14
nuna.	280–380	.0363	1 1	"	18-100	.03096	43
Boron	0-100	·307	9		16-256	.03191	
Bromine, solid . "fluid .	<u> </u>	.0843	10	Lithium	-100	·5997	31
Cadmium	13-45 21	.107	II		0	.7951	
" caumum	100	.0551	2		50 100	.9063	66
66	200	.0570		"		1.0407	56
"	300	.0594 .0617		Magnesium .	190 —185-+20	1.3745 0.222	4
Cæsium .	0-26	.0482	12	"	60	.2492	
Calcium	-185-+20	.157	4	"	325	.3235	7.
"	ŏ–181	.170	13	"	625	.4352	**
Carbon, graphite	50	.114	14	"	20-100	.2492	"
""	+ī1	.160	66	Manganese .	60	.1211	"
"""	977	.467	"	" .	325	.1783	"
" diamond	<u> </u>	.0635	66 56	"	20-100	.1211	"
	+11	.113		" · ·	-100	.0979	31
	985	.459		"···	0	.1072	
Cerium Chlorine, liquid	0-100 0-24	.0448 .2262	15 16	Mercury .		.1143	
Chromium .	-200	.0666	17	"	-185-+20 0	.032 .03346	4 32
4	0	.1039		"	85	.0328	3-
"	100	.1121	66	"	100	.03284	2
".	600	.1872	"	"	250	.03212	"
"	-185-+20	.086	4	Molybdenum .	-185-+20	.062	4
Cobalt	500	.1452	4 18	" · ·	60	.0647	7.
" • •	1000	.204		".	475	.0750	
"·····································	-182 + 15	.0822	19	• •	20-100	.0647	"
• •	15-100	.1030		Nickel	-185 + 20	.092	4
Copper	17 100	.0924	2	" · ·	100	.1128	18
"	15-238	.0942 .09510	43		300	.1403	"
"	900	.1259	43 20	"	500 1000	.1299 .1608	- 44
	-181-+13	.0868	21	"	18-100	.1008	26
"	23-100	.0940		Osmium .	19-98	.0311	10
Gallium, liquid .	to 113	.080	22	Palladium.	-186-+18	.0528	26
" solid .	12-23	.079	22	"	0-100	.0592	24
Germanium .	0-100	.0737	23	" • •	0-1265	.0714	
Gold	-185 - +20	.033	4	Phosphorus, red	0-51	.1829	33
	0-100	.0316	24	" yellow	13-36	.202	- . .
Indium	0-100	.0570	13	·· · ·	-186-+20	.178	4
L			[

See opposite page for References. See Table 260 for supplementary data.

*Where one temperature alone is given, the "true" specific heat is given; otherwise, the "mean" specific heat.

TABLES 258 (continued) -259.

SPECIFIC HEAT.

TABLE 258. - Specific Heat of the Chemical Elements (continued).

1 Boatschew.

- 2 Naccari, Atti Torino, 23, 1887–88. 3 Wigand, Ann. d. Phys. (4) 22, 1907. 4 Nordmeyer-Bernouli, Verh. d. phys. Ges. 9, 1907; 10,

- 1007ameyer-Bernouli, Vern. d. phys. Ges. g, 1907; 10, 1908.
 5 Giebe, Verh. d. phys. Ges. 5, 1903.
 6 Lorenz, Wied. Ann. 13, 1881.
 7 Stücker, Wien. Ber. 114, 1905.
 8 Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847; 24, 1848.
 Moiscon Cautiar, Ann. chim. phys. (c) 12, 1865. 24, 1548. 9 Moisson-Gautier, Ann. chim. phys. (7) 17, 1896. 10 Regnault, Aun. d. chim. (3) 26, 1849 ; 63, 1861. 11 Andrews, Pog. Ann. 75, 1848. 12 Eckardt-Graefe, Z. Anorg. Ch. 33, 1900. 13 Bunsen, Pogg. Ann. 141, 1870; Wied. Ann. 31, 1887. 14 Weber, Phil. Mag. (4) 49, 1875. 15 Hillebrand, Pog. Ann. 158, 1876. 16 Knietsch. 17 Adlar Beibl az 1903.

- 10 Kinetschi. 17 Adler, Beibl. 27, 1903. 18 Pionchon, C. R. 102-103, 1886. 19 Tilden, Phil. Trans. (A) 201, 1903. 20 Richards, Ch. News, 58, 1893. 21 Trowbridge, Science, 8, 1898.

- 22 Berthelot, Ann. d. chim. (5) 15, 1878. 23 Pettersson-Hedellins, J. Pract. Ch. 24, 1881. 24 Violle, C. R. 85, 1877; 87, 1878. 25 Regnault, Ann. d. chim. (2) 73, 1840; (3) 63, 1861. 26 Behn, Wied. Ann. 66, 1898; Ann. d. Phys. (4) 1, 1900. 27 Schnitz, Pr. Roy. Soc. 72, 1903. 28 Nichol, Phil. Mag. (5) 12, 1881. 29 Hill, Verh. d. phys. Ges. 3, 1901. 30 Spring, Bull. de Belg. (3) 11, 1886; 29, 1895. 31 Laemmel, Ann. d. Phys. (4) 16, 1905. 32 Barnes-Cooke, Phys. Rev. 76, 1903. 33 Wiegand, Fort. d. Phys. 1906.

- 34 Tilden, Pr. Roy. Soc. 66, 1900, 71, 1903; Phil. Trans. Tilden, Pr. Roy. Soc. 66, 1900, 71, 1903;
 (A) 194, 1900; 201, 1903.
 White, Phys. Rev. 28, 1909.
 Dewar, Ch. News, 92, 1905.
 Nilson, C. R. 96, 1883.
 Nilson, C. R. 96, 1883.
 Nilson-Pettersson, Zt. phys. Ch. 1, 1887.
 Mache, Wien, Ber. 106, 1897.
 Blümcke, Wied. Ann. 24, 1885.
 Magnus, Ann. d. Phys. 31, 1910.
 Ghe at igraph. of therwise, the "mean" space.

* When one temperature alone is given, the "true " specific heat is given; otherwise, the " mean " specific heat. Compiled in part from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 259. - Specific Heat of Water and of Mercury.

		Specif	ic Heat of	Water.			Specific Heat of Mercury.				
Temper- ature, ^o C.	Barnes.	Rowland.	Barnes- Regnault.	Temper- ature,°C.	Barnes	Barnes- Regnault.	Temper- ature,ºC.	Specific Heat.	Temper- ature,ºC.	Specific Heat.	
-5	1.0155	1.0070	1.0094	60 65	0.9988	0.9994 1.0004	0	0.03346	00 100	0.03277	
+5	1.0050	1.0039	1.0053 1.0023	70 80	1.0001	1.0015 1.0042	10 15	.03335	110 120	.03262	
15 20	1.0000	1.0000	1.0003	90 100	1.0028 1.0043	1.0070 1.0101	20 25	.03325	130 140	.03248	
25 30	.9978	.9989	.9981 .9976	120 140	-	1.0162 1.0223	30 35	.03316	150 170	.0324	
35 40	.9971 .9971	.9997 1.0006	.9974 .9974	160 180	_	1.0285 1.0348	40 50	.03308	190 210	.0320	
45 50	.9973 .9977	1.0018	.9976 .9980	200 220		1.0410 1.0476	60 70	.03294	-	-	
55	.9982	1,0045	.9985	-		-	80	.03284	-		

Barnes's results : Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.) d, Phil. Trans. A 211, p. 199, 1911. Barnes-Regnault's as revised by Peabody; Steam Tables. Bousfield, Phil. Trans. A 211, p. 199, 1911. The mercury data from 0° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

Element.	Temperature.	Sp. Heat.	Refer- ence.	Elemen1.	Temperature.	Sp. Heat.	Refer- ence.		
Aluminum . Boron Bromine Carbon, graph. —Ache. graph. —Diamond . Copper Iodine Lead	$\begin{array}{c} -240.6^{\circ} \\ -190.0 \\ -190.0 \\ -19082 \\ -76-1 \\ +16-100 \\ +16-304 \\ -19178 \\ -76-0 \\ -19280 \\ -19179 \\ -76-0 \\ -244.0 \\ -186.0 \\ -79-3 \\ -249.5 \\ -185.0 \\ -79-3 \\ -185.0 \\ -19083 \\ -76-0 \\ +15-+238 \\ -90-+17 \\ -19180 \\ -773 \\ +18-+100 \\ +16-+250 \end{array}$.2250 .0707 .1677 .0702 .0573 .1255 .027 .0720 .0720 .0532 .0720 .0532 .0720 .0878 .0951 .0485 .0454 .0454 .0303 .0310	I " 2 " 3 " 2 " 4 2 " 6 " 2 I " 2 " 3 4 " 2 3 "	Lithium Manganese . Mercury, sol. "liq. Potassium . Sodium Zinc Iron	$\begin{array}{c} -19180\\ -78-0\\ -78-0\\ -75-+19\\ -75-+19\\ -79-+15\\ -7742\\ -363\\ -19180\\ -78-0\\ -19183\\ -77-0\\ -19082\\ -76-2\\ 0-+200\\ 0-+300\\ 0-+300\\ 0-+500\\ 0-+500\\ 0++500\\ 0++500\\ 0++500\\ 0++500\\ 0++500\\ 0++500\\ 0++1100\\ 0+100\\ 0+1$	0.521 .595 .629 .0329 .0329 .0334 .1568 .1666 .243 .276 .0906 .1175 .1233 .1282 .1338 .1396 .1487 .1597 .1544 .1557 .1534	2 4 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4		
1. Nernst, Lindemann, 1910, 1911. 4. Estreicher, Straniewski, 1912. 2. Kosef, Ann. der Phys. 36, 1911. 4. Estreicher, Straniewski, 1912. 3. Magnus, Ann. der Phys. 31, 5. Harker — Proc. Phys. Soc., London, 19, 1910. p. 703, 1905. Fe=.01C, .02Si, .03S, .04P,									

TABLE 260. - Additional Specific Heats of the Ohemical Elements.

TABLE 261. — Mean Specific Heats of Quartz, Silica Glass, and Platinum from zero, C., to the temperature named.

The mean specific heats of quartz above 550° are here increased by the heat (2.3 calories) of the inversion at 575° . The accuracy is probably better than 2 per mille.

Interval.	Quartz.	Silica Glass.	Platinum.	Obscalculated for Pt.
0-100° 0-300° 0-500°	.1870 .2169 .2382	.1845 .2124 .2303	.03283 .03363	.00000 +.00012
0-550° 0-600° 0-700°	.2441 .2520 .2555 .2608		.03424	+.00005
0-900° 0-1100° 0-1300°	.2608 .2654	.2523 —	.03487 .03551 .03620	.00000 00004 00003

The results for Platinum follow the formula :

Sp. Heat = $.03174 + .000 \ 0034 \theta$ very closely. If the formula were strictly correct the *true* specific heat at any temp. would be : $.03174 + .000 \ 006 \ 8 \theta$, which is probably true to 1% as it is. Determinations by W. P. White. Geographical Laboratory.

TABLES 262-263.

TABLE 262. - Specific Heat of Various Solids.*

Solid.	Temperature C.	Specific Heat.	Authority.†
Alloys :			
Bell metal	15-98	0.0858	R
Brass, red	0	.08991	Ê
" vellow	ő	.08831	
80 Cu+20 Sn .	14-98	.0862	R
88.7 Cu+11.3 Al	20-100	.10432	Ln
German silver	0-100	.09464	Т
Lipowitz alloy: 24.97 Pb + 10.13 Cd + 50.66 Bi		109404	_
+14.24 Sn	5-50	.0345	М
" "	100-150	.0426	
Rose's alloy : 27.5 Pb+48.9 Bi+23.6 Sn	77-20	.0356	S
""""" """	20-89	.0552	"
Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi +		1 35	
14.73 Sn	5-50	.0352	M
14.73 Sn	100-150	.0426	"
Miscellaneous alloys:			
17.5 Sb+29.9 Bi+18.7 Zn+33.9 Sn	20-99	.05657	R
27.1 Sb+62.0 Pb	10-98	.03880	"
39.9 Pb+60.1 Bi	16-99	.03165	P
" " (fluid)	144-358	.03500	"
63.7 Pb+36.3 Sn	12-99	.04073	R
46.7 Pb + 53.3 Sn	10-99	.04507	"
$6_{3.8}$ Bi+ $_{36.2}$ Sn · · · · · · ·	20-99	.04001	"
46.9 Bi+53.1 Sn	20-99	.04504	"
Gas coal	20-1040	.3145	-
Glass, normal thermometer 16 ¹¹¹ .	19-100	.1988	W
" French hard thermometer	-	.1869	Z
" crown	10-50	.161	НМ
" flint	10-50	.117	46
	-188252		D
"			"
"	-1878	.463	"
India rubber (Para)	?-100	.481	G-T
Paraffin	-20 + 3	.3768	RW
"	-19-+20	.5251	"
"	0-20	.6939	
"	35-40	.622	B
"fluid	60-63	.712	"
Vulcanite	20-100	.3312	AM
	1		

TABLE 263. - Specific Heat of Various Liquids.*

Liquid. Alcohol, ethyl "" " methyl " Anilin	Temper- ature °C. 20 0 40 5-10 15-20 15 30	Specific Heat, 0.5053 .548 .648 .590 .601 .514 .520	Author- ity. R " " " G "	Liquid. Nitrobenzole . Napthalene, C ₁₀ H ₈ " . Oils : castor citron olive sesame .	Temper- ature °C. 28 80-85 90-95 5.4 6.6	Specific Heat. 0.362 .396 .409 .434 .438 .471 .387	ity.† A B " W H W " W
" Benzole, C ₆ H ₆ " Diphenylamine, C ₁₂ H ₁₁ N " Ethyl ether Glycerine Nitrobenzole	50 10 40 65 53 65 0 15–50 14	.529 .340 .423 .482 .464 .482 .529 .576 .350	" H-D " B " R E A	turpentine . Petroleum Tolnol, C ₆ H ₆ " CaCl ₂ , sp. gr. 1.14 . " " " " " " " . " " " . Lacebraic state of the stat	$ \begin{array}{c} 0 \\ 21-58 \\ 10 \\ 65 \\ 85 \\ -15 \\ 0 \\ +20 \\ -20 \\ \end{array} $.411 .511 .364 .490 .534 .764 .775 .787 .695	R Pa H-D " UMG "

* These specific heat tables are compiled partly from more extended tables in Landolt-Börnstein-Meyerhoffer's Tables. † For references see Table 263, page 242. SMITHSONIAN TABLES.

TABLES 263 (continued)-264.

TABLE 263. - Specific Heat of Various Liquids.

Liquid.	Tempera- ture °C.	Specific Heat.	Author- ity.		Liquid.		Tempera- ture °C.	Specific Heat.	Author- ity.
$\begin{array}{c} CaCl_2, sp. gr. 1.20. \\ ```````````````````````````````````$	$\begin{array}{c} 0 \\ +20 \\ -20 \\ 0 \\ +20 \\ 12-15 \\ 12-14 \\ 13-17 \\ 20-52 \\ 20-52 \end{array}$	0.712 .725 .651 .663 .676 .848 .951 .975 .842 .952	DMG " " Pa " " Ma	NaOH " NaCl – Sea wat	$-30 H_2 (-30 H_2)$ $+50 H_2 (-30 H_2)$ $+100 H_2 (-30 H_2)$ $-10 H_2 (-30 H_2)$ $-200 H_2 (-30 H_2)$ $-200 H_2 (-30 H_2)$ $-10 H_2 (-30 H_2)$ -10			0.876 .975 .942 .983 .791 .978 .980 .938 .903	TH " " " "
A, Abbot.DMG, Dickinson, Mueller, and George.T, Tomlison.AM, A. M. Mayer.H-D, de Heen and Deruyts.S, Schüz.B, Batelli.HM, H. Meyer.Th, Thomsen.D, Dewar.L, Lorenz.P, Person.W, Wachsmuth.E, Emo.Ln, Luginen.Pa, Pagliani.Wn, Winkelmann.G, Griffiths.M, Mazotto.R, Regnault.Z, Zouloff.									

TABLE 264. - Specific Heat of Minerals and Rocks.

		1		1		1	· · · · · · · · · · · · · · · · · · ·
Substance.	Tempera- ture °C.	Specific Heat.	Refer- ence.	Substance.	Tempera- ture ⁰ C.	Specific Heat.	Refer- ence.
			[i
Andalusite	0-100	0.1684	I	Rock-salt			6
Anhydrite, CaSO ₄			-		13-45	0.219	- 1
	0-100	.1753	1	Serpentine	16-98	.2586	2
Apatite	15-99 •	.1903		Siderite	9–98	.1934	4
Asbestos	20-98	.195	3	Spinel	J 5-47	.194	6
Augite	20-98	.1931	3	Talc	20-98	.2092	3
Barite, BaSO ₄	10-98	.1128	4	Topaz	0-100	.2097	1
Beryl	I 5~99	.1979	2	Wollastonite .	19-51	.178	6
Borax, Na ₂ B ₄ O ₇ fused	16-98	.2382	4	Zinc blende, ZnS.	0-100	.1146	1
Calcspar, CaCO ₃ .	0-50	.1877	I	Zircon	21-51	.132	6
" " • •	0-100	.2005	I	Rocks:			
" "	0-300	.2204	I	Basalt, fine, black	12-100	.1996	6
Casiderite, SnO ₃	16-98	.0933	4		20-470	.199	9
Corundum	9-98	.1976	4		470-750	.243	9
Cryolite, Al ₂ Fl ₆ .6NaF .	16-99	.2522	2		750-880	.626	9
Fluorite, CaF ₂	15-99	.2154	4		880-1190	.323	9
Galena, PbS	0-100	.0466	5	Dolomite	20-98	.222	3
Garnet	16-100	.1758	2	Gneiss	17~99	.196	10
Hematite, Fe ₂ O ₃ .	15-99	.1645	2	"	17-213	.214	10
Hornblende	20-98	.1952	3	Granite .	12-100		1 1
Hypersthene.	20-98	.1952		Kaolin	20-98	.192	7
Labradorite	20-98		3			.224	3
		.1949	3	Lava, Aetna .	23-100	.201	11
Magnetite	18-45	.156		· · · · ·	31-776	.259	11
Malachite, Cu ₂ CO ₄ .H ₂ O	15-99	.1763	2	niauea.	25-100	.197	11
$\operatorname{Mica}_{\mathcal{W}}(\operatorname{Mg}) \cdot \cdot \cdot \cdot$	20-98	.2061	3	Limestone .	15-100	.216	12
	20-98	.2080		Marble	0-100	.21	-
Oligoclase	20-98	.2048	3	Quartz sand .	20-98	.191	3
Orthoclase	15-99	.1877	2	Sandstone	-	.22	-
Pyrites, copper	15-99	.1291	2		1		1
Pyrolusite, MnO ₂ .	17-48	.1 59	6	I Lindner, 6 K	opp. 1	1 Barto	1;
Quartz, SiO ₂	12-100	.188	78	2 Oeberg. 7 Jo	opp. 1 dv. 1	2 Mora	
	0	.1737			onchon.	2 mora	i0.
" "	350	.2786	8			1. D."	
	400-1200	-305	8	4 Regnault. 9 R 5 Tilden. 10 R	oberts-Aus	ten, Küc	ker.
	l ·			5 Tilden. 10 R	. Weber.		

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

SMITHSONIAN TABLES.

TABLE 265.

SPECIFIC HEATS OF GASES AND VAPORS.

Substance.	Range of Temp. °C.	Sp. Ht. Constant Pressure.	Authority.	Range of Temp. ^o C.	Mean Ratio of Specific Heats. C _P /C _T .	Authority.
Acetone, $C_{8}H_{6}O$ """" Air "" "" "" "" "" "" "" "" "" ""	26-110 27-179 129-233 30-+10 0-100 0-200 20-440 20-630	0.3468 0.3740 0.4125 0.2377 0.2374 0.2375 0.2366 0.2429	Wiedemann. " " " Holborn and Austin.	5-14	1.4025	Lummer and Pringsheim.
" Alcohol, C_2H_5OH " C_2H_8OH Ammonia	20-800 108-220 - 101-223 23-100 27-200	0.2430 0.4534 0.4580 0.5202 0.5356	" Regnault. Regnault. Wiedemann.	53 100 100 0 100	1.133 1.134 1.256 1.3172 1.2770	Jaeger. Stevens, " Wüllner.
Argon Benzole, C ₆ H ₆ """ Bromine	24-216 20-90 34-115 35-180 116-218 83-228	0.5125 0.1233 0.2990 0.3325 0.3754 0.0555	Regnault. Dittenberger. Wiedemann. Regnault.	0 20 60 99•7 20–388	1.667 1.403 1.403 1.105 1.293	Niemeyer. Pagliani. " Stevens Strecker.
Carbon dioxide, CO ₂ """ "" "" ""	19-388 28-+7 15-100 11-214 23-99 26-198	0.0553 0.1843 0.2025 0.2169 0.2425	Strecker. Regnault. " Wiedemann.	4-11 0	1.2995 1.403	Lummer and Pringsheim. Wüllner.
" disnlphide, CS ₂ Chlorine Chloroform, CHCl ₈	26-198 86-190 13-202 16-343 27-118	0.2426 0.1596 0.1241 0.1125 0.1441	" Regnault. " Strecker. Wiedemann.	100 3-67 20-340 0 22-78	1.395 1.205 1.323 1.336 1.102	" Beyme. Strecker. Martini. Beyme.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28–189 69–224 27–189 25–111	0.1489 0.4797 0.4618 0.4280 0.1940	Regnault. Wiedemann. Strecker.	99.8 3-46 42-45 12-20 20	1.150 1.025 1.029 1.024 1.389	Stevens. Beyme. Müller. Low. Strecker.
Hydrochloric acid, HCl """ Hydrogen	13-100 22-214 -28-+9 12-198 21-100	0.1867 3.3996 3.4090 3.4100	Regnault. " Wiedemann.	100 4 - 16	1.400 1.4080	" Lummer and Pringsheim
" sulphide,H ₂ S Methane, CH ₄ Nitrogen "	20-206 18-208 0-200 20-440 20-630	0.2451 0.5929 0.2438 0.2419 0.2464	Regnault. " Holborn and Austin.	10-40 11-30 -	1.276 1.316 1.41	Müller. " Cazin.
" Nitric oxide, NO Nitrogen tetroxide, NO ₂ """""	20-800 13-172	0.2497 0.2317 1.625 1.115 0.65	" Regnault. Berthelot and Olger.	-	1.31	Natanson.
Nitrous oxide, N ₂ O . """"" Oxygen .	16-207 26-103 27-206 13-207	0.2262 0.2126 0.2241 0.2175	Regnault. Wiedemann. " Regnault.	0 100 5-14	1.311 1.272 1.3977	Wüllner. " Lummer and Pringsheim
" Sulphur dioxide, SO ₂ Water vapor, H ₂ O	20-440 20-630 16-202 0 100	0.2240 0.2300 0.1544 0.4655 0.421	Holborn and Austin. Regnault. Thiesen.	16–34 78 94	1.256 1.274 1.33	Müller. Beyme. Jaeger.
ss ss ss .	180	0.51	"			

THERMOMETERS.

TABLE 266. - Gas and Mercury Thermometers.

If t_{f1} , t_{N} , t_{002} , t_{16} , t_{69} , t_{T} , are temperatures measured with the hydrogen, nitrogen, carbonic acid, 16th, 59th, and "verre dur" (Tonnelot), respectively, then

$$t_{\rm B} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.61859 + 0.0047351.t - 0.000011577.t^2 \right] * t_{\rm N} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.55541 + 0.0048240.t - 0.000024807.t^2 \right] * t_{\rm CO2} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.33386 + 0.0039910.t - 0.000016678.t^2 \right] * t_{\rm B} - t_{16} = \frac{(100 - t)t}{100^2} \left[-0.67039 + 0.0047351.t - 0.000011577.t^2 \right] * t_{\rm H} - t_{69} = \frac{(100 - t)t}{100^2} \left[-0.31089 + 0.0047351.t - 0.000011577.t^2 \right] *$$

* Chappuis; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1888. † Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895; Scheel; Wied. Ann. 58, 1896; D. Mech. Ztg. 1897.

	0 ⁰	10	2 ⁰	3 ⁰	4 ⁰	5 ⁰	6 ⁰	7 ⁰	80	9 ⁰
0° 10 20 30 40 50 60 70 80 90	.000° 056 093 113 120 116 103 058 058 030		013° 098 115 120 114 099 078 053 024		025° 073 103 117 119 111 096 074 048 018	031° 077 105 118 119 110 094 071 045 015	036° 080 107 119 119 109 092 069 042 012	042° 084 109 119 118 107 090 066 039 009	047° 087 110 119 117 106 087 064 036 006	090 112 120 116 104
100	.000									

TABLE 267. t_H - t₁₅ (Hydrogen - 16^{III}).

TABLE 266. t_H - t₅₉ (Hydrogen - 59¹¹¹).

	0 ⁰	τa	2 ⁰	3 ⁰	4 ⁰	5°	6 ⁰	7 ⁰	8 ⁰	9 ⁰
0° 10 20 30 40 50 60 70 80 90 100	$\begin{array}{c} .000^{\circ} \\024 \\035 \\038 \\034 \\026 \\016 \\008 \\001 \\ +.002 \\ .000 \end{array}$	003° 025 036 037 025 015 007 001 $+.002$	$\begin{array}{c} +.006^{\circ} \\027 \\036 \\037 \\032 \\024 \\015 \\006 \\ .000 \\ +.002 \end{array}$	009° 028 037 037 032 023 014 005 $.000$ $+.002$	-0.011° -0.030 -0.037 -0.037 -0.022 -0.013 -0.005 $+0.001$ $+0.002$	014° 031 037 036 021 021 004 $+.001$ $+.002$	016° 032 038 029 020 020 011 003 +.001 +.001	033	-0.020° -0.034 -0.038 -0.028 -0.018 -0.002 $+0.002$ $+0.002$ $+0.001$	035

TABLE 269. (Hydrogen - 16^{III}), (Hydrogen - 59^{III}).

	—5°	—10 ⁰	—15 ⁰	20 ⁰	25°	30 ⁰	-35°
$t_{\rm H} - t_{16} \\ t_{\rm H} - t_{59}$	+0.04°	+0.08°	+0.13°	+0.19°	+0.25°	+0.32°	+0.40°
	+0.02°	+0.04°	+0.07°	+0.10°	+0.14°	+0.18°	+0.23°

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

AIR AND MERCURY THERMOMETERS.

TABLE 270. t_{AIR}-t₁₀. (Air-16^{III}.)

۰c.	00	-				1	1			
		IQ	2 ⁰	3 ⁰	4°	5 ⁰	60	70	80	9 ⁰
0 10 20 30 40 50 60 70 80 90 100 110 120 130	.000 049 083 103 107 096 078 054 028 .000 +.028 +.053 +.053	006 053 086 104 107 095 076 052 025 +.030 +.055 +.055		017 061 091 106 111 105 092 072 072 047 020 +.08 +.035 +.060 +.080	4 ⁻ 022 065 093 107 110 090 070 044 017 +.011 +.038 +.062 +.081	5 ⁰ 027 068 108 100 103 041 014 +.014 +.041 +.064 +.084	032 071 097 109 110 102 086 065 039 011 +.017 +.043 +.066	7° 037 074 099 110 109 101 084 062 036 009 +.046 +.086 088	041 077 101 109 100 082 060 034 034 022 +.048 +.070	9°
140 150 160 170 180 190	+.090 +.098 +.097 +.084 +.059 +.019	+.091 +.098 +.096 +.082 +.055 +.014	+.092 +.098 +.095 +.052 +.052 +.009	+.093 +.099 +.094 +.078 +.048 +.004	+.091 +.094 +.093 +.076 +.045 001	+.033 +.095 +.099 +.092 +.073 +.041 007	+.034 +.096 +.098 +.090 +.071 +.037 013	+.000 +.006 +.089 +.068 +.033 019	+.087 +.097 +.098 +.088 +.065 +.028 +.025	+.009 +.097 +.086 +.062 +.023 031
200 210 220 230 240 250 260 270 280 290 300	038 113 208 325 466 632 825 -1.048 -1.301 -1.588 -1.908	045 122 338 481 650 846 -1.072 -1.328 -1.618	051 130 230 351 497 668 867 1.096 1.356 1.649		066 148 252 378 529 706 911 -1.140 -1.412 -1.711	073 158 264 392 546 725 9333 1.71 1.740 1.743		088 177 287 421 579 765 978 1.222 1.498 1.808	096 187 300 436 597 785 1.001 1.248 1.528 1.841	105 198 312 450 614 805 -1.025 -1.274 -1.558 -1.874

TABLE 271. tAIR-t59. (Air-5911.)

°C.	°°	IQ	z ^O	3 ⁰	4 ⁰	5°	60	70	go	90
100 110 120 130 140 150 160 170 180 190 200	.000 .000 002 004 008 013 019 028 039 052 067	.000 .000 002 004 008 013 020 029 040 053	.000 .000 002 005 009 014 021 030 041 055	.000 001 005 005 015 021 031 043 056	.000 001 002 010 010 016 022 032 044 057	.000 001 003 010 016 023 033 045 059	.000 001 003 006 011 016 024 034 046 060	.000 001 003 007 011 017 025 035 048 062	.000 002 004 007 012 018 026 037 049 064	.000 002 004 008 012 019 027 038 051 066

SMITHSONIAN TABLES.

.

TABLES 272-274.

GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

Temper- ature, C.	Thuringer Glass.*	Verre dur. Tonnelot.†	Resistance Glass.*	English Crystal Glass.*	Choisy-le- Roi.*	122 ^{III} .*	Nitrogen Thermometer. T _H —T _N .†	CO_2 Ther- mometer. $T_{\rm H}$ — T_{CO_2} .†
0	0	0	0	o	0	0	0	0
0	.000	.000	.000	.000	.000	.000	.000	.000
10	075	052	066	008	007	005	006	025
20	125	—.o85	108	—.001	004	006	010	043
30	156	102	—.r3r	+.017	+.004	002	—.011	054
40	—.168	107	140	+.0 37	+.014	+.001	01 I	059
50 60	166	103	135	+.057	+.025	+.004	009	059
60	1 50	090	119	+.073	+.033	+.008	005	053
70	124	072	095	+.079	+.037	+.009	100.	044
80	088	050	—.oðð	+.070	+.032	+.007	+.002	—.031
90	047	026	—.0 34	+.046	+.022	+.006	+.003	—.016
100	.000	.000	.000	.000	.000	.000	.000	.000
	1							

TABLE 272. - t^H-t_M (Hydrogen-Meroury).

* Schlösser, Zt. Instrkde. 21, 1901.

TABLE 273. - Comparison of Air and High Temperature Mercury Thermometers.

Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of 59^{III} glass.

Air.	59 ¹¹¹ .	Air.	59 ¹¹¹ .
0	0	0	0
0	0.	375	385.4
100	100.	375 400	385.4 412.3
200	200.4	425	440.7
300	304.1	450	469.1
325	330.9	475	498.0
325 350	330.9 358.r	475 500	527.8

Mahlke, Wied. Ann. 1894.

TABLE 274. - Comparison of Hydrogen and Other Thermometers.

Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether.†	Pentane.‡
° -10 -20 -30 -50 -50 -70 -100 -150 -200	0 	$\begin{array}{c} \circ \\ \circ \\ -9.31 \\ -18.45 \\ -27.44 \\ -36.30 \\ -45.05 \\ -53.71 \\ -62.31 \\ - \\ - \\ - \\ - \end{array}$	° 	o - - - - - - - - - - - - - - - - - - -	° 0.000 9.03 17.87 26.55 35.04 35.04 43.36 51.50 59.46 52.28 116.87 146.84

* Chappuis, Arch. sc. phys. (3) 18, 1892. † Holhorn, Ann. d. Phys. (4) 6, 1901. ‡ Rothe, unpublished. All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

[†] Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

TABLE 275. - Pletinum Resistance Thermometers.

Callendar has shown that if we define the platinum temperature, pt, by $pt = 100 \{ (R - R_0) / (R_{100} - R_0) \}$, where R is the observed resistance at t° C., R_0 that at O°, R_{100} at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by $t - pt = \delta \{ t/100 - I \} t/100$ where δ is a constant for any given sample of platinum and about 1.50 for pure platinum (impure platinum having higher values). This holds good between -23° and 450° when δ has been determined by the boiling point of sulphur (445°.) See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909.

TABLE 276. — Thermodynamic Temperature of the los Point, and Reduction to Thermodynamic Scale.

Mean $= 273.10^{\circ}$ C. (ice point)

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907.

Temp.	Constant	t pressure =	= 76 cm.	Constant	volume ©o=	= 273. 10 C.
C.*	He	н	N	He	н	N
$ \begin{array}{r} -250^{\circ} \\ -200 \\ -100 \\ -50 \\ +25 \\ +50 \\ +75 \\ +150 \\ +200 \\ +450 \\ +1500 \\ +1500 \\ \end{array} $	$ \begin{array}{c} - \\ +0.10 \\ + .03 \\ + .009 \\002 \\002 \\002 \\ + .005 \\ + .01 \\ + .07 \\ + .24 \\ - \end{array} $	$\begin{array}{c} - \\ + 0.26 \\ + 0.03 \\ + 0.004 \\ - 0.002 \\ - 0.003 \\ - 0.003 \\ + 0.01 \\ + 0.01 \\ + 0.01 \\ + 0.01 \\ - \end{array}$	$ \begin{array}{c} -\\ +0.33\\ +.09\\ -\\ .013\\ -\\ .017\\ +.04\\ +.10\\ +.50\\ +1.7\\ +3.0\end{array} $	+0.02 +0.01 .000 .000 .000 .000 .000 .000 	+ .004 .000 .000 .000 + .001	

Scale Corrections for Gas Thermometers,

See Burgess, The Present Status of the Temperature Scale, Chemical News, 107, p. 169, 1913.

TABLE 277. - Standard Points for the Calibration of Thermometere.

		Atmos-	Crucible.	Temper	atures.
Substance.	Point.	phere.	Crucible.	°C.	Thermodynamic.
Water Napthalene Benzophenone Cadmium Zinc Sulphur Antimony Aluminum Silver Gold Copper Li2SiO8 Diopside, pure Nickel Cobalt Palladium Anorthite, pure Platinum	boiling, 760 mm. """" melting or solidify. """ boiling, 760 mm. melting or solidify. solidification melting or solidify. """" melting or solidify. """ melting or solidify. """ melting or solidify. """ melting or solidify. """ melting or solidify. """ melting or solidify.	air - air - CO2 - - - CO2 - - - - - - - - - - - - - - - - - - -	graphite " graphite " " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 100.00\\ 218.0\\ 305.85 \pm 0.1\\ 320.8 \pm 0.2\\ 419.3 \pm 0.3\\ 444.5 \pm 0.1\\ 629.8 \pm 0.5\\ 658.5 \pm 0.6\\ 960.0 \pm 0.7\\ 1062.4 \pm 0.8\\ 1201.0 \pm 1.0\\ 1391.2 \pm 1.5\\ 1452.3 \pm 2.0\\ 1391.2 \pm 2.0\\ 1549.2 \pm 2.0\\ 1549.5 \pm 2.0\\ 1549.5 \pm 5.*\\ 1755. \pm 5.*\\ \end{array}$	100.00 218.0 305.9 320.9 419.4 444.55 630.0 658.7

* Thermoelectric extrapolation. † Optical extrapolation.

(Day and Sosman, Journal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, -boils - 252.7°; O, boils - 182.9°; Hg. Ireezes - 37.7°; Alumina melts 2000°; Tungsten melts 3000°.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.

The Stem Correction is proportional to $n\beta(T-t)$: where *n* is the number of degrees in the exposed stem; β is the apparent coefficient of expansion of mercury in the glass; *T* is the measured temperature; and *t* is the mean temperature of the exposed stem determined by another thermometer, exposed some 10 cm. from, and at about half the height of, the exposed stem of the first.

For temperatures up to 100°C, the value of β is for :

Jena glass XVI^{III} or Greiner and Friedrich resistance glass, $\frac{1}{6300}$ or 0.000159;

Jena glass 59^{111} , $\frac{1}{6100}$ or 0.000164.

At 100° the correction is in round numbers 0.01° for each degree of the exposed stem; at 200° 0.02°; and for higher temperatures proportionately greater. At 500° it may amount to 0.07° for each exposed degree.

Tables 278-280 are taken from Rimbach, Zeitschrift für Instrumentenkunde, 10, 153, 1890, and apply to thermometers of Jena or of resistance glass.

TABLE 278. - Stem Correction for Thermometer of Jena Glass (0°-360° C.).

Degree length 0.9 to 1.1 mm; t = the observed temperature; t'= that of the surrounding air 1 dm. away; n = the length of the exposed thread.

	COBRECTION TO BE ADDED TO THE READING t.												
	t-t'												
n	70 °	80 °	90 °	100°	120°	140°	160°	1 90 °	200°	220°			
10	0.01	0.01	0.03	0.04	0.07	0.10	0.13	0.17	0.19	0.21			
20	0.08	0.12	0.14	0.19	0.25	0.28	0.32	0.40	0.49	0.54			
30	0.25	0.28	0.32	0.36	0.42	0.48	0.54	0.66	0.78	0.87			
40	0.30	0.35	0.41	0.48	0.60	0.67	0.77	0.92	1.08	1.20			
50 60	0.41	0.46	0.52	0.59	0.79	0.89	0.98	1.16	1.38	1.53			
бo	0.52	0.60	0.68	0.79	0.99	1.11	1.23	1.46	1.70	1.87			
70 80	0.63	0.74	0.85	0.98	I.20	1.32	1.45	1.70	1.99	2.21			
80	0.75	0.87	I.01	Ι.Ις	1.38	1.53 1.82	I.70	1.98	2.29	2.54			
90	0.87	0.99	1.13	1.28	1.62		1.94	1.25	2.60	2.89			
100	0.98	I.I2	1.29	I.47	1.82	2.03	2.20	2.55	2.92	3.24			
120	-	-	-	1.88	2.28	2.49	2.68	3.13	3.59	3.96			
140	-	-	-	- 1	2.75	2.97	3.22	3.75	4.24	4.69			
160	-	-	-	-	-	3.35	3.80	4.35	4.92	5.45 6.22			
18 0	-	-	- 1	-	-	-	4.37	4.99 5.68	5.63	6.22			
200	-	-		-	-	-	-	5.68	6.34	6.98			
2 20	-	-		-	-	-	-	-	7.05	7.82			

See "The correction for Emergent Stem of Mercurial Thermometer." Buckingham, Bul. Bur. of Standards, 8, p. 239, 1912.

TABLES 279, 280.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 279. - Stem Correction for Thermometer of Jena Glass (0°-360° C).

Degree length I to 1.6 mm.; t = the observed temperature; t' = that of the surrounding air one dm. away; n = the length of the exposed thread.

	Correction to be added to Thermometer Reading.*													
n					<i>t</i> -	- t'								
n	70° ,	80 °	80 °	100°	120 °	1 40 °	160 °	180 °	200 °	220°	n			
10°	0.02	0.03	0.05	0.07	0.11	0.17	0.21	0.27	0.33	0.38	10°			
20	0.13	0.15	0.18	0.22	0.29	0.38	0.46	0.53	0.61	0.67	20			
30	0.24	0.28	0.33	0.39	0.48	0.59	0.70	0.78	0.88	0.97	30			
40	0.35	0.41	0.48	0.56	0.68	0.82	0.94	1.04	1.16	1.28	40			
50	0.47	0.53	0.62	0.72	0.88	1.03	1.17	1.31	1.44	1.59	50			
60	0.57	0.53 0.66	0.77	0.89	1.09	1.25	1.42	1.58	1.74	1.90	60			
	0.69	0.79	0.92	1.06	1.30	1.47	1.67	1.86	2.04	2.23				
70 80	0.80	0.91	1.05	1.21	1.52	1.71	1.94	2.15	2.33	2.55	70 80			
90	0.91	1.04	1.19	1.38	1.73	1.96	2.20	2.42	2.64	2.89	90			
100	1.02	1.18	1.35	1.56	1.97	2.18	2.45	2.70	2.94	3.23	100			
110	i –	-	-	1.78	2.19	2.43	2.70	2.98	3.26	3.57	110			
120	-	-	- 1	1.98	2.43	2.69	2.95	3.26	3.58	3.92	I 20			
130	-	_	-	-	2.68	2.94	3.20	3.56	3.89	4.28	130			
140		_	-	-	2.92	3.22	3.47	3.86	4.22	4.64	140			
150	-	-	-	-	1 -	- ¹	3.74	4.15	4.56	5.01	150			
ığo	-	-	-	1 -	-	-	4.00	4.46	4.90	5.39	160			
170	_		_	-	-	-	4.27	4.76	5.24	5.77	170			
180	- 1	-	_	-	-	-	4.54	5.07	5.59	6.15	180			
190	-	-		-	-	-		5.38	5.95	6.54	190			
200	-	~		-	-	-	-	5.70	6.30	6.94	200			
210	_	-	-	-	-	-	_	- 1	6.68	7.35	210			
220	- 1	-	-	-	-	-	-	-	7.04	7.75	220			

* See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 280. - Stem Correction for a so-called Normal Thermometer of Jena Glass (0°-100° C). Divided into tenth degrees; degree length about 4 mm.

Correction to be added to the Reading t.												
	t-t'											
n	30 °	35°	40 °	45 0	50°	55 °	60°	65 °	70°	75 °	80 °	85 °
10 20 30 40 50 60 70 80 90 100	0.04 0.12 0.21 0.28 0.36 0.45 -	0.04 0.12 0.22 0.29 0.38 0.48 - -	0.05 0.13 0.23 0.31 0.40 0.51 - -	0.05 0.14 0.24 0.33 0.42 0.53 - - -	0.05 0.15 0.25 0.35 0.44 0.55 - -	0.06 0.16 0.25 0.37 0.46 0.57 0.66 -	0.06 0.17 0.27 0.39 0.48 0.60 0.60 0.76	0.07 0.18 0.29 0.41 0.50 0.63 0.71 0.81 0.92	0.08 0.19 0.31 0.43 0.53 0.66 0.75 0.87 0.99 1.10	0.09 0.20 0.33 0.45 0.57 0.69 0.81 0.93 1.06 1.18	0.10 0.22 0.35 0.48 0.61 0.73 0.87 1.00 1.13 1.26	0.10 0.23 0.37 0.51 0.65 0.78 0.92 1.06 1.20 1.34

TABLE 281.-Standard Calibration Curve for Pt.-Pt. Rh. (10% Rh.) Thermo-Element.

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by calibration of the particular element at some of the following fixed points:

Water	boiling-pt.	100.0	643mv.	Silver	melting-pt.	960.2	9111 mv .	
Napthalene		217.95	1585	Gold		1062.6	10290	
Tin	melting-pt.	231.9	1700	Copper	66 <u>66</u>	1082.8	10534	
Benzophenone	hoiling-pt.	305.9	2365	Copper Li ₂ SiO ₈	44 44	1201.	11941	
Cadmium	melting-pt.	320.9	2503	Dinpside	** **	1391.5	14230	
Zinc	" ""	419.4	3430	Nickel	66 66	1452.6	14973	
Sulphur	boiling-pt.	444.55	3672					
Antimony	melting-pt.	630.0	5530	Palladium	" "	1549.5	16144	
Aluminum	"	658.7	5827	Platinum	66 B6	1755.	18608	
		0-1				100		

E micro- volts.	0	1000.	2000.	3000. J	4000. Cemperat	5000. URES, ^C	6000. PC.	7000.	8000.	9000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	0.0 17.8 34.5 50.3 65.4 80.0 94.1 107.8 121.2 134.3 147.1	147.1 159.7 172.1 184.3 196.3 208.1 219.7 231.2 242.7 254.1 265.4	265.4 276.6 287.7 298.7 309.7 320.6 331.5 342.3 353.0 363.7	374-3 384-9 395-4 405-9 416-3 426-7 437-1 447-4 457-7 467-9 478.1	478.1 488.3 498.4 508.5 518.6 528.6 538.6 548.6 558.5 568.4	578.3 588.1 597.9 607.7 617.4 627.1 636.8 646.5 656.1 665.7 675.3	684.8 694.3 703.8 713.3 722.7 732.1 741.5 750.9	778.8 788.0 797.2 806.4 815.6 824.7 833.8 842.9 852.0	861.1 870.1 870.1 888.1 906.1 915.0 923.9 932.8 941.6 950.4	950.4 959.2 968.0 976.7 985.4 994.1 1002.8 1011.5 1020.1 1028.7	0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.
E micro- volts.	10000.	11000.	374-3	0. 130	578.3 50. 140 Temperat	000.	15000.	16000.	17000.	1037.3	E micro- volts.
D. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	1037.3 1045.9 1054.4 1062.9 1071.4 1070.9 1088.4 1096.9 1105.4 1113.8 1122.2	II22.2 II30.6 II39.0 II47.4 II55.8 II64.2 II72.5 I180.9 I189.2 I197.6 I205.9	1205. 1214. 1222. 1230. 1239. 1247. 1255. 1264. 1272. 1281. 1289.	9 128 2 129 6 130 9 131 3 132 6 133 9 131 3 132 6 133 3 134 6 135 0 136	9.3 13 7.7 13 6.0 13 4.3 13 2.6 14 0.9 14 9.2 14 5.8 14 4.1 14	72.4 80.7 89.0 97.3 05.6 13.8 22,0 30.2 38.4 46.6	1454.8 1463.0 1471.2 1479.4 1487.7 1496.0 1504.3 1512.6 1520.9 1529.2 1537.5	1537.5 1545.8 1554.1 1562.4 1570.8 1579.1 1587.5 1595.8 1604.2 1612.5 1620.9	1620.9 1629.2 1637.6 1645.9 1654.3 1662.6 1670.9 1679.3 1687.6 1696.0 1704.3	1704.3 1712.6 1721.0 1729.3 1737.7 1746.0 1754.3	0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.

TABLE 282. - Standard Calibration Curve for Copper - Constantan Thermo-Element.

For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the

Following fixed points: Water, boiling-point, 100°, 4276 microvnlts; Napthalene, bniling-point, 217.95, 10248 mv.; Tin, melting-point, 231.9, 11009 mv.; Benzophenone, bniling-point, 305.9, 15203 mv.; Cadmium, melting-point, 320.9, 16083 mv.

					T						
E.	ø	1000.	2000.	3000.	4000.	5000	6000.	7000.	8000.	9000.	E
micro- volts.					TEMPI	ERATURES,	°C.				micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 8800. 900. 1000.	0.00 2.60 5.17 7.73 10.28 12.81 15.33 17.83 20.32 22.80 25.27	25.27 27.72 30.15 32.57 34.98 37.38 39.77 42.15 44.51 46.86 49.20	49.20 51.53 53.85 56.16 58.46 60.76 63.04 65.31 67.58 69.83 72.08	72.08 74.31 76.54 78.76 80.97 83.17 85.37 87.56 89.74 91.91 94.07	94.07 96.23 98.38 100.52 102.66 104.79 106.91 109.02 111.12 113.22 115.31	119.48 121.56 123.63 125.69 127.75 129.80 131.84 133.88	137.94 139.96 141.98 143.99 146.00 148.00 150.00 151.99 153.97	159.89 161.86 163.82 165.78	175.50 177.43 179.36 181.28 183.20 185.11 187.02 188.93 190.83 192.73 194.62	194.62 196.51 198.40 200.28 202.16 204.04 205.91 207.78 209.64 211.50 213.36	D. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.
E micro-	10000.	11000	. 120	. 000	(3000.	14000.	15000.	16000.	17000.	18000.	E micro-
volts.						ERATURES,	°C.				vnlts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	213.36 215.21 217.06 218.91 220.75 222.59 224.43 226.26 228.09 229.92 231.74	248.0	6 25 8 25 0 25 1 25 2 25 3 20 3 20 3 20 3 20 3 20 3 20	9.82 1.61 3.40 5.18 6.96 8.74 0.52 2.29 4.06 5.83 7.60	267.60 269.36 271.12 272.88 274.64 276.40 278.15 279.90 281.65 283.39 285.13	285.13 286.87 288.61 290.35 292.08 293.81 295.54 297.26 298.98 300.70 302.42	302.42 304.14 305.85 307.56 309.27 310.98 312.69 314.39 316.09 317.79 319.49	319.49 321.19 322.88 324.57 326.26 327.95 329.64 331.32 333.00 334.68 336.36	336.36 338.04 339.72 341.40 343.07 344.74 346.41 348.08 349.75 351.42 353.09	353.09	0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.

Cf. Day and Sosman, Am. Jour. Sci. 29, p. 93, 32, p. 51; ; ibid. R. B. Sosman, 30, p. 1. SMITHSONIAN TABLES.

RADIATION CONSTANTS.

TABLE 283. - Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature T° (absolute, C) to one at t° is equal to

where
$$\sigma = 1.374 \times 10^{-12}$$
 gram-calories per second per sq. centimeter.
= 8.26×10^{-11} """"minute""""

= 5.75 \times 10⁻¹² watts per sq. centimeter.

The distribution of this energy in the spectrum is represented by Planck's formula:

$$\int_{\lambda} = C_1 \lambda^{-5} \left[e^{\frac{C_2}{\lambda^T}} - I \right]^{-1}$$

where f_{λ} is the intensity of the energy at the wave-length λ (λ expressed in microns, μ) and e is the base of the Napierian logarithms.

$$C_1 = 9.226 \times 10^{-28}$$
 for J in $\frac{gram. cal.}{sec. cm.^2} = 3.86 \times 10^{-22}$ for J in $\frac{watts}{cm.^2}$

$$J_{\text{max}} = 3.11 \times 10^{+4} T^{5} \text{ for } f \text{ in } \frac{gram. cal.}{sec. cm.^{2}} = 1.30 \times 10^{+5} T^{5} \text{ for } f \text{ in } \frac{watts}{cm.^{2}}$$

 $\lambda_{\max} T = 0.2910$ for λ in *cm*.

h = Planck's unit = elementary "Wirkungs quantum" = 6.83×10^{-27} ergs. sec.

k = constant of entropy equation = 1.42×10^{-16} ergs./degrees.

TABLE 284.—Radiation in Gram-Calories per 24 Hours per eq. cm. from a Perfect Radiator at t° C to an absolutely Cold Space (-273° C).

Computed from the Stefan-Boltzmann formula.

t° C	J	t⁰ C	J	t° C	1	t° C	1	۴C	1	ъс	1
$ \begin{array}{r} -273 \\ -220 \\ -210 \\ -200 \\ -190 \\ -180 \\ -170 \\ -160 \\ -150 \\ -140 \\ -130 \end{array} $	19 27 38	$ \begin{array}{c} -120 \\ -110 \\ -90 \\ -90 \\ -70 \\ -60 \\ -50 \\ -40 \\ -30 \\ -20 \\ \end{array} $	65 84 107 134 165 201 245 294 350 416 488	$ \begin{array}{c} 10 \\ -10 \\ -10 \\ -4 \\ -4 \\ -2 \\ -4 \\ +6 \\ +10 \\ -10 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4$	571 588 606 625 643 662 682 701 722 744 765	+12+14+16+18+20+22+24+26+28+30+32	787 808 831 855 879 903 928 953 979 1005 1032	+34 +36 +38 +40 +42 +44 +46 +48 +50 +52 +54	1059 1087 1115 1145 1174 1204 1265 1298 1330 1363	+56 +58 +70 +900 +1000 +1000 +1000 +2000 +2000 +2000	$1400 \\ 1430 \\ 1470 \\ 1650 \\ 2370 \\ 2310 \\ 5960 \\ 313 \times 10^8 \\ 318 \times 10^4 \\ 921 \times 10^5$

TABLE 285. — Values of J_{λ} for Various Temperatures Centigrade.

Ekholm, Met. Z. 1902, used $C_1 = 8346$ and $C_2 = 14349$, and for the unit of time the day. For 10°, the values for J_{λ} have been multiplied by 10, for the other temperatures by 100.

λ μ 2 3 4 50 7 8 9 10 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 14 15 14 15 14 15 16 16 16 16 16 16 16 16 16 16	1 573 1398 122 5 1063 918 792	0 41 508 1777 3464 4958 6382 6386 6386 6386 6127 5712 5222 4713 4220	15° C 0 18 272 1085 2296 3481 4352 4834 4979 4833 4633 4633 4633 4300 3930 3556	0° C 0 7 138 628 1454 2353 3088 3646 3781 3676 3467 3215 2944	-30° C 0 1 27 172 493 931 1372 1730 1971 2098 2114 2090 2004 1889 2000	80° C 0 1 8 39 105 203 316 426 520 592 640 666 673	λ μ 18 19 20 21 22 23 24 25 26 28 30 40 50 60 80	100° C 511 443 386 337 295 259 228 202 179 142 114 44 20 10 4	2961 2626 2329 2068 1840 1639 1402 1307 1170 947 771 311 146 77	15° C 2 557 2281 2034 1816 1622 1448 1298 1165 1047 850 696 285 135 72 25	0° C 2175 1954 1754 1574 1413 1270 1141 1028 926 757 623 259 124 66 24	 -80° C 623 594 561 527 494 428 398 369 317 272 130 67 38 14
15 16 17	792 683 590	4220 3759 3340	3556 3198 2862	2944 2674 2417	1889 1760 1626	673 663 649		10 4 2	77 27 12	72 25 11		30 14 7

TABLE 286. - At Ordinary Pressuree.

According to McFarlane* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C, can be expressed by the equations

 $e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^3$

when the surface of the sphere is blackened, or

 $e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-8}t^{2}$

when the surface is that of polished copper. Io these equations, e is the amount of heat lost in c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of	Valu	e of <i>e</i> .	Ratio.
tempera- ture t	Polished surface.	Blackened surface.	Katio,
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 267. - At Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8° C.

	<u> </u>		
Polish	ed surface.	Blacker	ned surface.
t	et	t	et
Pr	ESSURE 76 CM	s. of Me	RCURY.
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00528 .00562 .00438 .00378 .00278 .00210	61.2 50.2 41.6 34·4 27.3 20.5 - -	.01746 .01360 .01078 .00860 .00640 .00455 - - -
Pres	SSURE 10.2 CM	IS. OF ME	RCURY.
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791 .00490
PR	ESSURE I CM.	of Merc	URY.
65 60 50 40 30 23.5 –	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57-5 54.2 41.7 37-5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446 .00391

* "Proc. Roy. Soc." 1872. † "Proc. Roy. Soc." Edinb. 1869. See also Compan, Annal. de chi. et pbys. 26, p. 526.

COOLING BY RADIATION AND CONVECTION.

TABLE 288. - Cooling of Platinum Wire in Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers: —

 $t=408^{\circ}$ C., $et=378.8 \times 10^{-4}$, temperature of enclosure 16° C. $t=505^{\circ}$ C., $et=726.1 \times 10^{-4}$, " " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosur	e 16° C., t = 408° C.	Temp. of enclosure 1	7° C., $t = 505^{\circ}$ C.
Pressure in mm.	et	Pressure in mm.	et
740. 440. 42. 4. 0.444 .070 .034 .012 .0051 .00007	8137.0×10^{-4} 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached } but not measured }	1688.0×10^{-4} $1255.0 "$ $1126.0 "$ $920.4 "$ $831.4 "$ $767.4 "$ $746.4 "$ $726.1 "$

TABLE 289. - Effect of Pressure on Loss of Heat at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimeter per second.

Town of		1	Pressure in m	m.	
Temp. of wire in C ^o .	10.0	1.0	0.25	0.025	About o.r M.
100 ⁰ 200 300 400 500 600 700 800 900	0.14 .31 .50 .75 - - - - -	0.11 .24 .38 .53 .69 .85 - - -	0.05 .11 .18 .25 .33 .45 - - -	0.01 .02 .04 .07 .13 .23 .37 .56 -	0.005 .0055 .0105 .025 .055 .13 .24 .40 .61

NOTE. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows : —

> Dull black filament, 57.9 watts. Bright " " 39.8 watts.

TABLE 290.

PROPERTIES OF STEAM.

Metric Measure.

The temperature Centigrade and the absolute temperature in degrees Centigrade, together with other data for steam or water vapor stated in the headings of the columns, are here given. The quantities of heat are in therms or calo-ries according as the gram or the kilogram is taken as the unit of mass.

	_				_							
Temp. C.	Absolute temp.	Pressure in mm. of mercury.	Pressure in grams per sq. centimeter $= \rho$.	Pressure in atmospheres.	Total heat of evap- oration from o° at $t^{\circ} = H$.	Heat of liquid $= h$.	Heat of evapora- tion $-H - h$.	Outer latent or ex- ternal-work heat $= A p v.^*$	Total heat of steam $= H - A \not P v$.	fnner latent or in- ternal-work heat =H-(h+Apv).	Liters per gram, or cubic meters per kilog. = v.	Ratio of inner la- tent heat to vol- ume of steam. [†]
0° 5 10 15 20	273 278 283 288 293	4.60 6.53 9.17 12.70 17.39	6.25 8.88 12.47 17.27 23.64	0.006 .009 .012 .017 .023		0.00 5.00 10.00 1 5.00 20.01	606.5 603.0 599.5 596.0 592.6	31.07 31.47 31.89 32.32 32.75	575-4 576.5 577.7 578.8 579.8	57 5.4 57 1.5 567.7 563.7 559.8	210.66 150.23 108.51 79.35 58.72	2.732 3.805 5.231 7.104 9.532
25 30 35 40 45	298 303 308 313 318	23.55 31.55 41.83 54.91 71.39	32.02 42.89 56.87 74.65 97.06	0.031 .042 .055 .072 .094	617.2 618.7	25.02 30.03 35.04 40.05 45.07	589.1 585.6 582.1 578.6 575.1	33.20 33.66 34.12 34.59 35.06	580.9 582.0 583.1 584.1 585.2	555.9 552.0 548.2 544.1 540.1	43.96 33.27 25.44 19.64 15.31	12.6 4 16.59 21.54 27.70 35.26
50 55 60 65 70	323 328 333 338 343	91.98 117.47 148.79 186.94 233.08	125.0 159.7 202.3 254.2 316.9	0.121 .155 .196 .246 .306	626.3 627.8	50.09 55.11 60.13 65.17 70.20	571.7 568.2 564.7 561.1 557.6	35.54 36.02 36.51 37.00 37.48	586.2 587.2 588.3 589.3 590.4	536.1 532.1 528.1 524.2 520.2	12.049 9.561 7.653 6.171 5.014	44-49 55.65 69.02 84.94 103.75
75 80 85 90 95	348 353 358 363 368	288.50 354.62 433.00 525.39 633.69	392.3 482.1 588.7 714.4 861.7		629.4 630.9 632.4 633.9 635.5	75.24 80.28 85.33 90.38 95.44	554.1 550.6 547.1 543.6 540.0	37.96 38.42 38.88 39.33 39.76	591.4 592.5 593.5 594.6 595.7	516.2 512.2 508.2 504.2 500.3	4.102 3.379 2.800 2.334 1.957	125.8 151.6 181.5 216.0 255.7
100 105 110 115 120	373 378 383 388 388 393	760.00 906.41 1075.4 1269.4 1491.3	1033. 1232. 1462. 1726. 2027.	1.000 .193 .415 .670 .962	637.0 638.5 640.0 641.6 643.1	100.5 105.6 110.6 115.7 120.8	536.5 533.0 529.4 525.8 522.3	40.20 40.63 41.05 41.46 41.86	596.8 597.9 599.0 600.1 601.2	496.3 492.3 488.4 484.4 480.4	1.6496 1.3978 1.1903 1.0184 0.8752	300.8 352.2 410.3 475.6 549.0
125 130 135 140 145	398 403 408 413 418	1743.9 2030.3 2353.7 2717.6 312 5 .6	237 I. 2760. 3200. 3695. 4249.	2.295 2.671 3.097 3.576 4.113	644.6 646.1 647.7 649.2 650.7	125.9 131.0 136.1 141.2 146.3	518.7 515.1 511.6 508.0 504.4	42.25 42.63 43.01 43.38 43.73	602.4 603.5 604.7 605.8 607.0	476.5 472.5 468.6 464.6 460.7	0.7555 0.6548 0.5698 0.4977 0.4363	630.7 721.6 822.3 933.5 1055.7
150 155 160 165 170	423 428 433 438 443	3581.2 4088.6 4651.6 5274.5 5961.7	4869. 5589. 6324. 7171. 8105.	4.712 5.380 6.120 6.940 7.844	655.3 656.8 658.3	151.5 156.5 161.7 166.9 172.0	500.8 497.2 493.5 489.9 486.3	44.09 44.43 44.76 45.09 45.40	608.2 609.3 610.5 611.7 612.9	444.8 440.9	0.3839 0.3388 0.3001 0.2665 0.2375	1 190. 1 336. 1 496. 1 669. 1 8 56.
175 180 185 190 195		6717.4 7546.4 8453.2 9442.7 10520.	9133. 10260. 11490. 12838. 14303.	8.839 9.929 11.123 12.425 13.842	659.9 661.4 662.9 664.4 666.0	177.2 182.4 187.6 192.8 198.0	482.7 479.0 475.3 471.7 468.0	45.71 46.01 46.30 46.59 46.86	614.2 615.4 616.6 617.9 619.1	436.9 433.0 429.0 425.0 421.1	0.2122 0.1901 0.1708 0.1538 0.1389	2059. 2277. 2512. 2763. 3031.
200	473	11689.	1 5892.	1 5.380	667.5	203.2	464.3	47.13	б20.4	417.1	0.1257	3318.

* Where A is the reciprocal of the mechanical equivalent of the thermal unit. $t = \frac{H - (h + Apv)}{v} = \frac{\text{internal-work pressure}}{\text{mechanical equivalent of heat}}$. Where v is taken in litres the pressure is given per square decimetre, and where v is taken in cubic metres the pressure is given per square metre, — the mechanical equivalent being that of the therm and the kilogram-degree or calorie respectively.

TABLE 291.

PROPERTIES OF STEAM.

British Messure.

The quantities given in the different columns of this table are sufficiently explained by the headings. The abbreviation B. T. U. stands for British thermal units. With the exception of column 3, which was calculated for this table, the data are taken from a table given by Dwelshauvers-Dery (Trans. Am. Soc. Mech. Eng. vol. xi.).

35 36 37 38 39	31 32 33 34	26 27 28 29 30	21 22 23 24 25	16 17 18 19 20	11 12 13 14 15	6 7 8 9 10	1 2 3 4 5	Pressure iu pounds per square inch.
47 52 4896	4464 4608	3744 3888 4032 4176 4320	3024 3168 3312 3456 3600	2304 2448 2592 2736 2880	1584 1728 1872 2016 2160	864 1008 1152 1296 1440	144 288 432 576 720	Pressure in pounds per square foot.
.177 .245 .313 .381	2.109	1.769 .837 .905 .973 2.041	1.429 .497 .565 .633 .701	1.088 .156 .224 .292 .360	0.748 .816 .884 .952 1.020	0.408 .476 .544 .612 .680	0.068 .136 .204 .272 .340	Pressure in atmospheres.
253.9 255.7 257.5 259.2	252.1	242.2 244.3 246.3 248.3 250.2	230.5 233.0 235.4 237.7 240.0	216.3 219.4 222.4 225.2 227.9	197.8 202.0 205.9 209.5 213.0	170.1 176.9 182.9 188.3 193.2	102.0 126.3 141.6 153.1 162.3	Temp. in degrees Fahr.
12.68 12.32 11.98 11.66	1 3.07 1 2.68	1 5.42 14.88 14.38 13.91 13.48	18.84 18.03 17.30 16.62 15.99	24.33 22.98 21.78 20.70 19.72	34.61 31.90 29.58 27.59 25.87	61.10 53.00 46.60 41.82 37.80	334.23 173.23 117.98 89.80 72.50	Volume per pound in cubic feet.
0.0765 .0788 .0811 .0835 .0858	0.0765	0.0649 .0672 .0695 .0619 .0742	0.0531 .0554 .0578 .0602 .0625	0.0411 .0435 .0459 .0483 .0507	0.0289 .0314 .0338 .0362 .0387	0.0163 .0189 .0214 .0239 .0264	0.0030 .0058 .0085 .0111 .0137	Weight per cubic foot in pounds.
223.5 225.3 227.1 228.8	221.6	211.5 213.7 215.7 217.8 219.7	199.7 202.2 204.7 207.0 209.3	185.2 188.4 191.4 194.3 197.0	166.5 170.7 174.7 178.4 181.9	138.6 145.4 151.5 156.9 161.9	70.1 94.4 109.9 121.4 130.7	Heat of water per pound in B. T. U.
860.3 858.9 857.5 856.1	861.7	869.6 867.9 866.3 864.7 863.2	878.8 876.8 874.9 873.1 871.3	890.1 887.6 885.3 883.1 880.9	904.8 901.5 898.4 895.4 892.7	926.7 921.3 916.5 912.2 908.3	980.6 961.4 949.2 940.2 932.8	Internal latent heat per pound of steam in B. T. U.
75.47 75.61 75.76 75.89 76.02	H F 4H	74.69 74.85 75.01 75.17 75.33	73.74 73.94 74.13 74.32 74.51	72.57 72.82 73.07 73.30 73.53	70.99 71.34 71.68 72.00 72.29	68.58 69.18 69.71 70.18 70.61	62.34 64.62 66.58 67.06 67.89	External latent heat per pound of steam in B. T. U.
935.9 934.6 933.4 932.1	937.2	944-3 942.8 941.3 939.9 938.5	952.6 950.8 949.1 947.4 945.8	962.7 960.4 958.3 956.3 954.4	97 5.8 972.8 970.0 967.4 965.0	995.2 990.5 986.2 982.4 979.0	1043. 1026. 1011. 1007. 1001.	Total latent licat per pound of steam in B. T. U.
1159.4 1159.9 1160.5 1161.0	1158.8	1155.8 1156.4 1157.1 1157.7 1158.3	1152.2 1153.0 1153.7 1154.4 1155.1	1147.9 1148.9 1149.8 1150.6 1151.4	1142.3 1143.5 1144.7 1145.9 1146.9	1133.8 1135.9 1137.7 1139.4 1140.9	1113.0 1120.4 1127.0 1128.6 1131.4	Total heat per pound of steam in B. T. U.

TABLE 291 (continued).

PROPERTIES OF STEAM.

British Measure.

Pressure in prunds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
50	7200	3.401	280.8	8.34	0.1198	251.0	839.0	77.67	916.6	1167.6
51	7344	.469	282.1	8.19	.1221	252.2	838.0	77.76	915.7	1168.0
52	7488	.537	283.3	8.04	.1243	253.5	837.0	77.85	914.9	1168.3
53	7632	.605	284.5	7.90	.1266	254.7	836.0	77.94	914.0	1168.7
54	7776	.673	285.7	7.76	.1288	256.0	835.1	78.03	913.1	1169.1
55	7920	3.741	286.9	7.63	0.1310	257.1	834.2	78.12	912.3	1 169.4
56	8064	.810	288.1	7.50	.1333	258.3	833.2	78.21	911.5	1 169.8
57	8208	.878	289.2	7.38	.1355	259.5	832.3	78.29	910.6	1 170.1
58	8352	.946	290.3	7.26	.1377	260.7	831.5	78.37	909.8	1 170.5
59	8496	4.014	291.4	7.14	.1400	261.8	830.6	78.45	909.0	1 170.8
60	8640	4.082	292.5	7.03	0.1422	262.9	829.7	78.53	908.2	1171.2
61	8784	.1 50	293.6	6.92	.1444	264.0	828.9	78.61	907.5	1171.5
62	8928	.218	294.7	6.82	.1466	265.1	828.0	78.68	906.7	1171.8
63	9072	.286	295.7	6.72	.1488	266.1	827.2	78.76	905.9	1172.1
64	9216	.354	296.7	6.62	.1511	267.2	826.4	78.83	905.2	1172.4
65	9360	4.422	297.8	6.52	0.1533	268.3	825.6	78.90	904.5	1172.8
66	9504	.490	298.8	6.43	.1555	269.3	824.8	78.97	903.7	1173.1
67	9648	.558	299.8	6.34	.1577	270.4	824.0	79.04	903.1	1173.4
68	9792	.626	300.8	6.25	.1599	271.4	823.2	79.11	902.3	1173.7
69	9936	.694	301.8	6.17	.1621	272.4	822.4	79.18	901.6	1174.0
70	10080	4.762	302.7	6.09	0.1643	273.4	821.6	79 .25	900.9	1174.3
71	10224	.830	303.7	6.00	.1665	274.3	820.9	79.32	900.2	1174.6
72	10368	.898	304.6	5.93	.1687	275.3	820.1	79.39	899.5	1174.9
73	10512	.966	305.5	5.85	.1709	276.3	819.4	79.46	898.8	1175.1
74	10656	5.034	306.5	5.78	.1731	277.2	818.7	79.53	898.1	1175.4
75	10800	5.102	307.4	5.70	0.1753	278.2	817.9	79-59	897.5	1175.7
76	10944	.170	308.3	5.63	.1775	279.1	817.2	79:65	896.9	1176.0
77	11088	.238	309.2	5.57	.1797	280.0	816.5	79:71	896.2	1176.2
78	11232	.306	310.1	5.50	.1818	280.9	815.8	79:77	895.6	1176.5
79	11376	.374	310.9	5.43	.1840	281.8	815.1	79:83	895.0	1176.8
80	11520	5.442	311.8	5.37	0.1862	282.7	814.4	79.89	894.3	1177.0
81	11664	.510	312.7	5.31	.1884	283.6	813.8	79.95	893.7	1177.3
82	11808	.578	313.5	5.25	.1906	284.5	813.0	80.01	893.1	1177.6
83	11952	.646	314.4	5.19	.1928	285.3	812.4	80.07	892.5	1177.8
84	12096	.714	315.2	5.13	.1949	286.2	811.7	80.13	891.9	1178.0
85	12240	5.782	316.0	5.07	0.1971	287.0	811.1	80.19	891.3	1178.3
86	11384	.850	316.8	5.02	.1993	287.9	810.4	80.25	890.7	1178.6
87	12528	.918	317.6	4.96	.2015	288.7	809.8	80.30	890.1	1178.9
88	12672	.986	318.4	4.91	.2036	289.5	809.2	80.35	889.5	1179.0
89	12816	6.054	319.2	4.86	.2058	290.4	808.5	80.40	888.9	1179.3
90	12960	6.122	320.0	4.81	0.2080	291.2	807.9	80.45	888.4	1179.5
91	13104	.190	320.8	4.76	.2102	292. 0	807.3	80.50	887.8	1179.8
92	13248	.258	321.6	4.71	.2123	292.8	806.7	80.56	887.2	1180.0
93	13392	.327	322.4	4.66	.2145	293.6	806.1	80.61	886.7	1180.3
94	13536	.396	323.1	4.62	.2166	294.3	805.5	80.66	886.1	1180.5
95	13680	6.463	323.9	4.57	0.2188	295.1	804.9	80.71	885.6	1180.7
96	13824	.531	324.6	4.53	.2209	295.9	804.3	80.76	885.0	1180.9
97	13968	.599	325.4	4.48	.2231	296.7	803.7	80.81	884.5	1181.2
98	14112	.667	326.1	4.44	.2252	297.4	803.1	80.86	884.0	1181.4
99	14256	.735	326.8	4.40	.2274	298.2	802.5	80.91	883.4	1181.6

TABLE 291 (continued).

PROPERTIES OF STEAM.

British Measure.

()	1									
Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pouods.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
100	14400	6.803	327.6	4.356	0.2295	298.9	802.0	80.95	882.9	1181.8
101	14544	.871	328.3	.316	.2317	299.7	801.4	81.00	882.4	1182.1
102	14688	.939	329.0	.276	.2338	300.4	800.8	81.05	881.9	1182.3
103	14832	7.007	329.7	.237	.2360	301.1	800.3	81.10	881.4	1182.5
104	14976	.075	330.4	.199	.2381	301.9	799.7	81.14	880.8	1182.7
105	1 51 20	7.143	331.1	4.161	0.2403	302.6	799.2	81.18	880.3	1182.9
106	1 5264	.211	331.8	.125	.2424	303.3	798.6	81.23	879.8	1183.1
107	1 5408	.279	332.5	.088	.2446	304.0	798.1	81.27	879.3	1183.4
108	1 5552	.347	333.2	.053	.2467	304.7	797.5	81.31	878.8	1183.6
109	1 5696	.415	333.8	.018	.2489	305.4	797.0	81.36	878.3	1183.8
110	1 5840	7.483	334-5	3.984	0.2510	306.1	796.5	81.41	877.9	1184.0
111	1 5984	.551	335-2	.950	.2531	306.8	795.9	81.45	877.4	1184.2
112	161 28	.619	335.8	.917	.2553	307.5	795.4	81.50	876.9	1184.4
113	1627 2	.687	336.5	.885	.2574	308.2	794.9	81.54	876.4	1184.6
114	16416	.755	337-2	.853	.2596	308.8	794.4	81.58	875.9	1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	81.62	87 5.5	1185.0
116	16704	.891	338.5	.790	.2638	310.2	793.3	81.66	87 5.0	1185.2
117	16848	.959	339.1	.760	.2660	310.8	792.8	81.70	874.5	1185.4
118	16992	8.027	339.7	.730	.2681	311.5	792.3	81.74	874.1	1185.6
119	17136	.095	340.4	.700	.2702	312.1	791.8	81.78	873.6	1185.7
120	17280	8.163	341.0	3.67 I	0.2724	312.8	791.3	81.82	873.2	1185.9
121	17424	.231	341.6	.643	.2745	313.4	790.8	81.86	872.7	1186.1
122	17568	.299	342.2	.61 5	.2766	314.1	790.3	81.90	872.2	1186.3
123	17712	.367	342.8	.587	.2787	314.7	789.9	81.94	871.8	1186.5
124	17856	.435	343.5	.560	.2809	315.3	789.4	81.98	871.4	1186.7
125 126 127 128 129	18000 18144 18288 18432 18576	8.503 .571 .639 .708 .776	344.1 344.7 345.3 345.9 346.5	3.534 .507 .481 .456 .431	0.2830 .2851 .2872 .2893 .2915	316.0 316.6 317.2 317.8 318.4	788.9 788.4 787.9 787.5 787.5 787.0	82.02 82.06 82.09 82.13 82.17	870.9 870.5 870.0 869.6 869.2	1186.9 1187.1 1187.2 1187.4 1187.6
130 131 132 133 134	18720 18864 19008 19152 19296	8.844 .912 .980 9.048 .116	347.1 347.6 348.2 348.8 349.4	3.406 .382 .358 .334 .310	0.2936 .2957 .2978 .2999 .3021	319.0 319.7 320.3 320.9 321.5	786.5 786.1 785.6 785.1 785.1 784.7	82.21 82.25 82.28 82.32 82.35	868.7 868.3 867.9 867.5 867.0	1187.8 1188.0 1188.1 1188.3 1188.5
135	19440	9.184	349·9	3.287	0.3042	322.1	784.2	82.38	866.6	1188.7
136	19584	•252	350·5	.265	.3063	322.6	783.8	82.42	866.2	1188.8
137	19728	·320	351·1	.442	.3084	323.2	783.3	82.45	865.8	1189.0
138	19872	·388	351.6	.220	.3105	323.8	782.9	82.49	865.4	1189.2
139	20016	·456	352·2	.199	.3126	324.4	782.4	82.52	865.0	1189.4
140	20160	9.524	352.8	3.177	0.3147	325.0	782.0	82.56	864.6	1189.5
141	20304	.592	353·3	.156	.3168	325.5	781.6	82.59	864.2	1189.7
142	20448	.660	353·9	.135	.3190	326.1	781.1	82.63	863.8	1189.9
143	20592	.728	354·4	.115	.3211	326.7	780.7	82.66	863.4	1190.0
144	20736	.796	355·0	.094	.3232	327.2	780.3	82.69	863.0	1190.2
145	20880	9.864	355.5	3.074	0.3253	327.8	779.8	82.72	862.6	1190.4
146	21024	.932	356.0	.054	.3274	328.4	779.4	82.75	862.2	1190.5
147	21168	10.000	356.6	.035	.3295	328.9	779.0	82.79	861.8	1190.7
148	21312	.068	357.1	.016	.3316	329.5	778.6	82.82	861.4	1190.9
149	21456	.136	357.6	.997	.3337	330.0	778.1	82.86	861.0	1191.0

TABLE 291 (continued).

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp, in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
150	21600	10.204	358.2	2.978	0.3358	330.6	777-7	82.89	860.6	1191.2
151	21744	.272	358.7	.960	•3379	331.1	777-3	82.92	860.2	1191.3
152	21888	.340	359.2	.941	•3400	331.6	776.9	82.95	859.9	1191.5
153	22032	.408	359.7	.923	•3421	332.2	776.5	82.98	859.5	1191.7
154	22176	.476	360.2	.906	•3442	332.7	776.1	83.01	859.1	1191.8
155	22320	10.544	360.7	2.888	0.3462	333.2	775-7	83.04	858.7	1192.0
156	22464	.612	361.3	.871	.3483	333.8	775-3	83.07	858.3	1192.1
157	22608	.680	361.8	.854	.3504	334.3	774-9	83.10	858.0	1192.3
158	22752	.748	362.3	.837	.3525	334.8	774-5	83.13	857.6	1192.4
159	22896	.816	362.8	.820	.3546	335.3	774-1	83.16	857.2	1192.6
160 161 162 163 164	23040 23184 23328 23472 23616	10.884 .952 11.020 .088 .157	363.3 363.8 364.3 364.8 365.3	2.803 .787 .771 .755 .739	0.3567 .3588 .3609 .3630 .3650	335.9 336.4 336.9 337.4 337.9	773.7 773.3 772.9 772.5 772.1	83.19 83.22 83.25 83.28 83.28 83.31	.856.9 856.5 856.1 855.8 855.4	1192.7 1192.9 1193.0 1193.2 1193.3
165	23760	11.225	365.7	2.724	0.3671	338.4	771.7	83.34	855.1	1193.5
166	23904	.293	366.2	.708	.3692	338.9	771.3	83.37	854-7	1193.6
167	24048	.361	366.7	.693	.3713	339.4	771.0	83.39	854-3	1193.8
168	24192	.429	367.2	.678	.3734	339.9	770.6	83.42	854-0	1193.9
169	24336	.497	367.7	.663	.3754	340.4	770.2	83.45	853.6	1194.1
170 171 172 173 174	24480 24624 24768 24912 25056	11.565 .633 .701 .769 .837	368.2 368.6 369.1 369.6 370.0	2.649 .634 .620 .606 .592	0.3775 .3796 .3817 .3838 .3858	340.9 341.4 341.9 342.4 342.9	769.8 769.4 769.1 768.7 768.3	83.48 83.51 83.54 83.56 83.59	853.3 852.9 852.6 852.2 851.9	1194.2 1194.4 1194.5 1194.7 1194.7 1194.8
175	25200	11.905	370.5	2.578	0.3879	343-4	767.9	83.62	851.6	1194.9
176	25344	.973	371.0	.564	.3900	343-9	767.6	83.64	851.2	1195.1
177	25488	12.041	371.4	.550	.3921	344-3	767.2	83.67	850.9	1195.2
178	25632	.109	371.9	.537	.3942	344-8	766.8	83.70	850.5	1195.4
179	25776	.177	372.4	5 ² 4	.3962	345-3	766.5	83.73	850.2	1195.5
180 181 182 183 184	25920 26064 26208 26352 26496	12.245 .313 .381 .449 .517	372.8 373·3 373·7 374·2 374·6	2.510 .497 .485 .472 .459	0.3983 .4004 .4025 .4046 .4066	345.8 346.3 346.7 347.2 347.7	766.1 765.8 765.4 765.0 764.7	83.75 83.77 83.80 83.83 83.83 83.86	849.9 849.5 849.2 848.9 848.5	1 195.6 1 195.8 1 195.9 1 196.1 1 196.2
185 186 187 188 189	26640 26784 26928 27072 27216	12.585 .653 .721 .789 .857	375.1 375.5 376.0 376.4 376.8	2.447 .434 .422 .410 .398	0.4087 .4108 .4129 .4150 .4170	348.1 348.6 349.1 349.5 350.0	764.3 764.0 763.6 763.3 762.9	83.88 83.90 83.92 83.95 83.95 83.97	848.2 847.9 847.5 847.2 846.9	1196.3 1196.5 1196.6 1196.7 1196.9
190	27360	12.925	377-3	2.386	0.4191	350.4	762.6	83.99	846.6	1197.0
191	27504	.993	377-7	·374	.4212	350.9	762.2	84.02	846.3	1197.1
192	27648	13.061	378.2	·362	.4233	351.3	761.9	84.04	845.9	1197.3
193	27792	.129	378.6	·351	.4254	351.8	761.6	84.06	845.6	1197.4
194	27936	.197	379.0	·339	.4275	352.2	761.2	84.08	845.3	1197.5
195	28080	13.265	379-4	2.328	0.4296	352.7	760.9	84.10	845.0	1197.7
196	28224	•333	379-9	.317	.4316	353.1	760.5	84.13	844.7	1197.8
197	28368	•401	380.3	.306	.4337	353.6	760.2	84.16	844.4	1197.9
198	28512	•469	380.7	.295	.4358	354.0	759.9	84.19	844.0	1198.1
199	28656	•537	381.1	.284	.4379	354.4	759.5	84.21	843.7	1198.2

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pouod of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam io B. T. U.
200	28800	13 605	381.6	2.273	0.4399	354-9	7 59.2	84.23	843.4	1198.3
201	28944	13.673	382.0	.262	.4420	355-3	7 58.9	84.26	843.1	1198.4
202	29088	13.742	382.4	.252	.4441	355-8	7 58.5	84.28	842.8	1198.6
203	292 3 2	13.810	382.8	.241	.4461	356-2	7 58.2	84.30	842.5	1198.7
204	29376	13.878	383.2	.231	.4482	356-6	7 57.9	84.33	842.2	1198.8
205	29520	13.946	383.7	2.221	0.4503	357.1	7 57 • 5	84.35	841.9	1199.0
206	29664	14.014	384.1	.211	.4523	357.5	7 57 • 2	84.37	841.6	1199.1
207	29808	14.082	384.5	.201	.4544	357.9	7 56 • 9	84.40	841.3	1199.2
208	29952	14.150	384.9	.191	.4564	358.3	7 56 • 6	84.42	841.0	1199.3
209	30096	14.218	385.3	.181	.4585	358.8	7 56 • 2	84.44	840.7	1199.4
210	30240	14.386	385.7	2.171	0.4605	359.2	755-9	84.46	840.4	1199.6
211	30384	14.454	386.1	.162	.4626	359.6	755-6	84.48	840.1	1199.7
212	30528	14.522	386.5	.152	.4646	360.0	755-3	84.51	839.8	1199.8
213	30672	14.590	386.9	.143	.4666	360.4	755-0	84.53	839.5	1199.9
214	30816	14.658	387.3	.134	.4687	360.9	754-7	84.55	839.2	1200.1
215	30960	14.726	387.7	2.124	0.4707	361.3	754-3	84.57	838.9	1200.2
216	31104	14.794	388.1	.115	.4727	361.7	754-0	84.60	838.6	1200.3
217	31248	14.862	388.5	.106	.4748	362.1	753-7	84.62	838.3	1200.4
218	31392	14.930	388.9	.097	.4768	362.5	753-4	84.64	838.0	1200.5
219	31536	14.998	389.3	.088	.4788	362.9	753-1	84.66	837.7	1200.7

1856 3.11×10^{10} R. Kohlrausch and W. Weber.Pogg. Ann. 99; 1856. Pogg. Ann. 99; 1856. 1868 $2.75 - 2.92 \times 10^{10}$ 2.84 Maxwell.Pogg. Ann. 99; 1856. 1869 $2.71 - 2.88$ 2.81 Thomson and King. Rowland.Phil. Trans.; 1869. 1874 $2.86 - 3.00$ 2.90 McKichan. Phil. Mag. 47; 1874.Phil. Mag. 47; 1874. 1879 $ 2.96$ Ayrton and Perry. Hockin.Phil. Mag. 7; 1879. 1879 $ 2.967$ Hockin. Hockin.Phil. Mag. 7; 1879. 1880 $ 2.955$ Shida.Jour. de Phys; 1881. 1882 $ 2.967$ Exner.Jour. de Phys; 1881. 1885 $ 2.963$ J. J. Thomson. Klemenčič.Wien. Ber.; 1882. 1884 $3.001 - 3.029$ 3.019 Klemenčič.Wien. Ber. 83, 89, 93; 1881-6." $3.005 - 3.003$ 3.009 Himstedt.Wied. Ann. 28; 1886." $3.005 - 3.005$ 3.000 Himstedt.Wied. Ann. 29, 33, 35; 1887-8." $3.005 - 3.005$ 3.000 Jour. de Phys. 10; 1890. 1890 $ 2.996$ J. J. Thomson and Searle.Pill. Trans.; 1890. 1890 $ 3.009$ Abraham.Jour. de Phys. 10; 1891. 1892 $2.990 - 2.995$ 2.991 Abraham.Ann. Chim. et Phys. 10; 1897. 1893 $ 3.001$ Hurmuzescu.Ann. Chim. et Phys. 13; 1898.	Date.	V Cm. per sec.	Mean.	Determined by	Reference.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1868 1869	2.71-2.88	2.84 2.81	W. Weber. Maxwell. Thomson and King.	Phil. Trans. ; 1868. B. A. Report ; 1869.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1879 1879		2.981 2.96 2.967	Ayrton and Perry. Hockin.	Phil. Mag. 28; 1889. Phil. Mag. 7; 1879. B. A. Report; 1879.
"" 3.016-3.031 3.015 Colley. Wied. Ann. 28; 1886. 1886 2.999-3.009 3.009 Himstedt. Wied. Ann. 29, 33, 35; 1887-8. "" 3.005-3.015 2.92 Thomson, Ayrton and Perry. Billinge 1888 - 2.92 Thomson, Ayrton and Perry. Electr. Rev. 23; 1888-9. 1889 - 2.996 J. J. Thomson and Searle. Phil. Mag. 28; 1889. 1890 - 3.009 Pellat. Jour. de Phys. 10; 1891. 1892 2.990-2.995 2.991 Abraham. Ann. Chim. et Phys. 27; 1829. 1898 - 3.009 Perot and Fabry. Ann. Chim. et Phys. 13; 1807.	1881 1882 1883	-	2.99 2.87 2.963	Stoletow. Exner. J. J. Thomson.	Jour. de Phys. ; 1881. Wien. Ber. ; 1882. Phil. Trans. ; 1883.
" 3.005-3.015 2.92 Thomson, Ayrton and Perry. 1888 - 2.92 Thomson, Ayrton and Perry. 1889 2.995-3.010 3.000 Rosa. 1890 - 2.996 J. J. Thomson and Searle. 1891 - 3.009 Pellat. 1892 2.990-2.995 2.991 Abraham. 1896 - 3.001 Humuzescu. 1898 - 2.997 3 Perot and Fabry.	" 1886	3.016–3.031 2.999–3.009	3.015	Colley.	Wied. Ann. 28; 1886.
1889 2.995-3.010 3.000 Rosa. Phil. Mag. 28; 1889. 1890 - 2.996 J. J. Thomson and Searle. Phil. Trans.; 1890. 1891 - 3.009 Pellat. Jour. de Phys. 10; 1891. 1892 2.990-2.995 2.991 Abraham. Ann. Chim. et Phys. 10; 1897. 1896 - 3.001 Hurmuzescu. Ann. Chim. et Phys. 10; 1897. 1898 - 2.997.3 Perot and Fabry. Ann. Chim. et Phys. 13; 1898.				Thomson, Ayrton	
1892 2.990-2.995 2.991 Abraham. Ann. Chim. et Phys. 27; 1829. 1896 - 3.001 Hurmuzescu. Ann. Chim. et Phys. 10; 1897. 1898 - 2.9973 Perot and Fabry. Ann. Chim. et Phys. 13; 1898.	1890	2.995–3.010 –	ž .996	Rosa. J. J. Thomson and Searle.	Phil. Mag. 28; 1889. Phil. Trans.; 1890.
	1892 1896 1898	2.990–2.995 – –	2.991 3.001 2.9973	Abraham. Hurmuzescu. Perot and Fabry.	Ann. Chim. et Phys. 27; 1829. Ann. Chim. et Phys. 10; 1897. Ann. Chim. et Phys. 13; 1898.
1696 - 3.026 Webster. Phys. Rev. 6; 1898. 1899 - 3.009 Lodge and Glaze- Phys. Rev. 6; 1898. 1904-7 2.99706-2.99741 2.9971 Rosa and Dorsey. Bull. Bur. Standards 3; 1907.		- - 2.99706-2.99741	U J	brook.	Phys. Rev. 6; 1898. Cam. Phil. Soc. 18; 1899. Bull. Bur. Standards 3; 1907.

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY = V.

The last of the above determinations is the result of an extended series of measurements upon various forms of condensers, and is believed to be correct within 1/100 per cent. This, however, assumes that the International Ohm is 10^9 c.g.s. units. The value of V is therefore subject to one-half the error of the International Ohm.

•

TABLE 293.

ABSOLUTE MEASUREMENTS OF CURRENTS AND OF THE ELECTRO-MOTIVE FORCE OF STANDARD CELLS.

			Electro	motive e* of		chemical nt of Silv		
Date.	Observer.	Method.	Clark Cell at 15° C.	Westoo Cell at 20 ^o C.	Filter Paper Volta- meter.	Porous Cup Volta- meter.	No- Septum Volta- meter.	References.
2 Pog 3 J. 6 4 Wi	Clark F. Kohlrausch Mascart F. and W. Kohlrausch Rayleigh and Sedgwick Gray Koepsel Potier and Pellat Kahle † Patterson and Guthe Carhart and Guthe Carhart and Guthe Carhart and Guthe Carhart and Leduc Van Dijk and Kunst Guthe Yan Dijk and Kunst Guthe Yan Dijk and Kunst Guthe Yanet, Laporte and Jouaust ‡ Janet, Laporte and Jouaust ‡ Janet, Laporte and Jouaust ‡ Janet, Laporte and Jouaust ‡ Haga and Boerema Rosa, Dorsey and Miller Rosa, Vinal and McDaniel Haga and Boerema C. Roy. Soc. May 30th, 1872 (Val t 15.5 C.). g. Ann. vol. 140, p. 170 (anode Phys. vol. 157, p. 1, 1886.	Current Balance Electrodynamometer Tangent Galvanometer Current Balance With the above Tangent Galvanometer uses in B. A. volts 14 An 15 Bu wrapped in cloth). 16 An 283. 17 Ph 18 Ph	Cell at 15° C. Volts. 1.4573 1.4562 - 1.4335 - 1.4333 1.4334 - 1.4325 - 1.4333 1.4334 - 1.4323 - 1.4323 - 1.4323 - 1.4329 - - - - - - - - - - - - - - - - - - -	Cell at 20 ^o C. Volts. - I.01853 - I.01853 I.01853 I.01836 I.01836 I.01837 I.01835 I.01832 I.01832 I.01832 I.01832 I.01834 I.01834 I.01834 I.01835 I.018555 I.018555 I.018555 I.018555 I.018555 I.018555 I.018555 I.0	Volta- meter. Mg. 1.1363 - 1.11794 1.11794 1.11740 - 1.1175 1.11823 - 1.11823 - 1.11827 1.11821 - 1.11821 - 1.11821 - 1.11821 - 1.11821 - 1.11821 - 1.1192 - - - - - - - - - - - - - - - - - - -	Volfa- meter. Mg. 	Volta- meter. Mg. -} -} 1.1156 1.1183 - 1.1183 - 1.1183 - - - - - - - - - - - - - - - - - - -	2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 23 24 25 20 25 20 25 20 25 20 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25
6 Phi 7 Ani 8 J. c 9 Zs 10 Phy 11 Phy 12 Phi 13 C.	 Trans. A, vol. 775, p. 417, 188 Mag. vol. 22, p. 389, 1886. a. d. Phys. vol. 31, p. 250, 1887. le Phys. vol. 9, p. 387, 1890. Instr. vol. 17, p. 97, 143-4, vol rs. Rev. vol. 9, p. 288, 1899. Trans. A, vol. 79, p. 81, 2092. Trans. A, vol. 790, p. 81, 2092. R. vol. 136, p. 1649. (Muslin an sed.) 	20 Bu 21 Bu . 18, p. 276. 22 Bu Ag ₂₀). 23 Pr 24 Bu 25 Bu	153, p. 71 Il. Int. So Il. Int. So Il. Int. So Il. Int. So C. Ak. W Il. Bureau Il. Bulleti	oc. Electr. oc. Electr. oc. Electr. iss. Amst 1 Standar in Standa	vol. 8, p vol. 8, p vol. 8, p er. vol. 1, ds, vol. 8 rds. vol. 8	. 523, 190 . 535, 190 . 573, 190 3, p. 587. , p. 269, 2 3, p. 367.	98. 98. 98. 1912. 1912.	. vol.

* The values given in these columns are not strictly absolute volts since they were in most cases determined in terms of an absolute ampere and an international ohm. Hence they may be called "semi-absolute." No absolute determinations of the ohm have been made in recent times, but some are in progress. \uparrow Other values usually given as Kahle's results and officially used by the Reichsanstalt are voltameter determinations. To include them here would necessitate including many others similarly made. The value 1.1183 includes 5 filter paper determinations out of 26 observations. \uparrow These values been corrected for the difference between the French ohm at this time and that in use elsewhere. (C. R. vol. 153, p. 718.)

Measurements prior to Van Dijk (1906) and the subsequent filter paper voltameter determinations are now only of historical interest, but the large amount of work done in recent years makes these early determinations of especial inter-electrolyte make it impossible to apply corrections. The values for the cell are not readily comparable owing to varia-tions in the voltage of the cell itself and the unit of resistance. See Dorn, Wiss. Abhl. der Phys. Tech. Reich., vol. II, p. 257. Since 1911 the voltage adopted for the Weston Normal Cell at 20° C. is 1.0183 international volts in all the leading countries. The international volt is to be distinguished from the absolute volt since it is based on the definition of the mercury ohm and the silver voltameter, taking the electrochemical equivalent of silver to be 1.11800 mg per coulomb. The difference between the international volt and the absolute volt is negligible for practical purposes. The tempera-ture coefficient of the Weston Normal Cell (saturated type) is given in Tahle 294. The new value of the Weston cell was adopted in the United States on January 1. 1011. adopted in the United States on January 1, 1911.

SMITHSONIAN TABLES.

261

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

		(a) Double Fluid C	BLLS.		
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F. in volts.
Bunsen	Amalgamated zinc	$ \left\{ \begin{array}{l} 1 \text{ part } H_2SO_4 \text{ to } \\ 12 \text{ parts } H_2O \end{array} \right\} $	Carbon	Fuming H ₂ NO ₈ .	1.94
"	46 66	66	"	HNO ₈ , density 1.38	1.86
Chromate .	16 6	$ \left\{ \begin{array}{l} 12 \text{ parts}K_2Cr_2O_7\\ \text{to}\ 25 \text{ parts}\ \text{of}\\ H_2SO_4 \text{ and } 100\\ \text{parts}\ H_2O \end{array} \right\} $	66	{ I part H ₂ SO ₄ to } { I2 parts H ₂ O . }	2.00
".	66 66	$ \left\{ \begin{array}{l} \text{I part } H_2 SO_4 \text{ to} \\ \text{I 2 parts } H_2 O \end{array} \right\} $	"	$ \left\{ \begin{array}{l} 12 \text{ parts } K_2 Cr_2 O_7 \\ 10 100 \text{ parts } H_2 O \end{array} \right\} $	2.03
Daniell* .	66 68	$ \left\{ \begin{array}{l} I \text{ part } H_2SO_4 \text{ to} \\ 4 \text{ parts } H_2O \end{array} \right\} $	Copper	Saturated solution of CuSO4+5H2O	1.06
".	66 66	$\left\{ \begin{array}{c} 1 \text{ part } H_2SO_4 \text{ to} \\ 12 \text{ parts } H_2O \end{array} \right\}$	"	46	1.09
".	46 66	$ \left\{ \begin{array}{l} 5\% \text{solution} \text{of} \\ \text{ZnSO}_4 + 6\text{H}_2\text{O} \end{array} \right\} $	"	"	1.08 •
".	66 C6		66	"	1.05
Grove	66 66	$ \left\{ \begin{array}{l} \text{I part } H_2SO_4 \text{ to} \\ \text{I 2 parts } H_2O \end{array} \right\} $	Platinum	Fuming HNO ₈	1.93
"	" "	Solution of ZnSO ₄	"	HNO_{8} , density 1.33	1.66
"	66 64	{ H ₂ SO ₄ solution, } density 1.136 . }	"	Concentrated HNO ₈	1.93
"	cc çe	H_2SO_4 solution, density 1.136.	"	HNO ₈ , density 1.33	1.79
"	" "	{H ₂ SO ₄ solution, } density 1.06 . }	"	66	1.71
"	"""	H_2SO_4 solution, density 1.14 .	"	HNO8, density 1.19	1.66
"•••	" "	H_2SO_4 solution, density 1.06 . }	"	« « «	1.61
"	66 66	NaCl solution	"	" density 1.33	1.88
Marié Davy	66 EG	$ \left\{ \begin{array}{c} 1 \text{ part } H_2 SO_4 \text{ to} \\ 12 \text{ parts } H_2 O \end{array} \right\} $	Carbon	Paste of protosul- phate of mercury and water	1.50
Partz	66 66	Solution of MgSO ₄	. "	Solution of K ₂ Cr ₂ O ₇	2.06

* The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force. 8MITHEONIAN TABLES.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solutioo.	Positive pole.	E. M. F. in volts.
		(b) SINGLE FLUID CELLS.	· · · · · · · · · · · · · · · · · · ·	
Leclanche	Amal. zinc	Solution of sal-ammo- }	Carbon. Depolari- zer: manganese peroxide with powdered carbon	1.46
Chaperon Edison-Lelande . Chloride of silver Law Dry cell (Gassner) Poggendorff " J. Regnault	" " Zinc " " Amal.zinc " "	$ \left\{ \begin{array}{c} \text{Solution of caustic} \\ \text{potash} & \dots & \end{array} \right\} \\ \left\{ \begin{array}{c} \text{23 \% solution of sal} \\ \text{ammoniac} & \dots & \end{array} \right\} \\ \left\{ \begin{array}{c} \text{ammoniac} & \dots & \end{array} \\ \left\{ \begin{array}{c} \text{23 \% solution of sal} \\ \text{ammoniac} & \dots & \end{array} \right\} \\ \left\{ \begin{array}{c} \text{1 pt} \text{ZnO}, \text{1 pt}, \text{NH}_4\text{Cl}, \\ \text{3 pts}, \text{plaster of paris}, \\ \text{2 pts}, \text{ZnCl}_{2,\text{and water}} \\ \text{to make a paste} & \dots \\ \text{Solution of chromate} \\ \text{of potash} & \dots & \end{array} \\ \left\{ \begin{array}{c} \text{12 parts} \text{K}_2\text{Cr}_2\text{O}_7 + \\ \text{25 parts} \text{H}_2\text{SO}_4 + \\ \text{10 op arts} \text{H}_2\text{O} + \\ \text{12 parts} \text{K}_2\text{O}_4 + \\ \text{12 parts} \text{CaSO}_4 + \\ \text{12 parts} \text{CaSO}_4 + \\ \text{12 parts} \text{CaSO}_4 - \\ \end{array} \right\} $	Copper. Depolar- izer : CuO }	0.98 0.70 1.02 1.37 1.3 1.08 2.01
Volta couple	Zinc	H_2O	Copper	0.98
		(C) STANDARD CELLS.		
Weston normal . Clark standard .	} am'lgam∫	{ Saturated solution of }	$ \begin{bmatrix} Mercury. \\ Depolarizer: paste \\ of Hg_2SO_4 and \\ CdSO_4 \dots \\ Mercury. \\ Depolarizer: paste \\ of Hercury \\ Of Her$	1.0183* at 20° C
	(am'igam)	ZnSO ₄ §	$ \left\{ \begin{array}{ccc} \text{of } Hg_2SO_4 & \text{and} \\ ZnSO_4 & \ddots & . \end{array} \right\} $	at 15°C
		(d) Secondary Cells.		
Lead accumulator	Lead	H_2SO_4 solution of density 1.1 }	РЬО2	2.2† (1.68 to
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	"	0.85, av- erage 1.3.
Main	Amal. zinc Amal. zinc	ZnSO ₄ solution H_2SO_4 density ab't 1.1	" in H_2SO_4 . "	2.36 2.50 (1.1, mean
Edison	Iron	KOH 20 % solution .	A nickel oxide .	{ of full { discharge.

** E. M. F. hitherto used at Bureau of Standards. See p. 251. The temperature formula is $E_t = E_{20} - 0.0000406$ (t-20)-0.00000095 (t-20)² + 0.00000001 (t-20)³. The value given is that adopted by the Chicago International Electrical Congress in 1893. The temperature formula is $E_t = E_{15} - 0.00019$ (t-15) - 0.00007 (t-15)².

† F. Streiatz giv	es the following	value of th	he temper	ature var	iation $\frac{dE}{dt}$	at differ	ent stage	s of charge	::
	E. M. F. dE/dtX10 ⁵	1.9 223 140	1.9828 228	2.0031 335	2.0084	2.0105 255	2.0779 130	2.2070 73	

Dolezalek gives the following relation between E. M. F. and acid concentration : Per cent H₂SO₄ 64.5 52.2 35.3 21.4 5.2 E.M.F., 0^o C 2.37 2.25 2.10 2.00 1.89

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.
Distilled water		.269 to .100 127 .103 .070 475 396 - - -	.148 653 - - 	.171 139 - - - 189 - - -	<pre>{ .285 } to to .345 } .246856 .059</pre>	.177 225 - - 334 364 - -	$\begin{cases}105 \\ to \\ +.156 \\536 \\ - \\ - \\565 \\637 \\238 \\430 \\444 \end{cases}$
distilled water: I to 20 by weight I to 10 by volume I to 5 by weight 5 to I by weight Concentrated sulphuric acid Concentrated nitric acid . Mercurous sulphate paste . Distilled water containing } trace of sulphuric acid }	{ about } 035} 01 to } 01 to } 01 to } 01 01 01 01 01 01 01 01	- - 1.113 - -		- - - - - - - - - - -	- - - 1.3 to 1.6 .672 -	- - 25 - - -	

* Everett's " Units and Physical Constants: " Table of

POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about 16° C.

	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution : saturated at 16°.5 C.	Copper sulphate solution : saturated at 15° C.	Zinc sulphate solution : sp. gr. 1.25 at 16 ⁰ .9 C.	Zinc sulphate solution : saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong uitric acid.
Distilled water	.100	.231	-	-	-	043	-	.164	-	-
Alum solution : saturated } at 16°.5 C.	-	014	-	6 -	-	-	-	-	-	-
Copper sulphate solution : { sp. gr. 1.087 at 16°.6 C. }	-		-	-	-	-	.090	-	-	-
Copper sulphate solution : { saturated at 15° C }	-	-	-	043	-	-	-	.095	.102	-
Sea salt solution : sp. gr. { 1.18 at 20°.5 C.	~	435		-	-	-	-	-	-	-
Sal-ammoniac solution : }	-	348	-	-	-	-	-	-	-	-
Zinc sulphate solution : { sp. gr. 1.125 at 16°.9 C. }	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution : { saturated at 15°.3 C.	284	-	-	200	-	095	-	-		-
One part distilled water + 3 parts saturated zinc sulphate solution	-	-	-	- '	-	—.102	-	-	-	-
I to 20 by weight	-	-	-	-	-	-	-	-	-	-
I to IO by volume	358	-	-	-	-	-	-	-	-	-
I to 5 by weight	•429	-	-	-	-	-	. –	-	-	-
5 to I by weight	-	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	• _	-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid . Mercurous sulphate paste .	_	_	- •475	-	-	-	-	-	-	-
Distilled water containing { trace of sulphuric acid. }	-	-	-	-	-	-	-	-	-	.078

Ayrton and Perry's results, prepared by Ayrton.

TABLE 296.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Solids with Solids in Air.*

The following results are the "Volta differences of potential," as measured by an electrometer. They represent the difference of the potentials of the air near each of two metals placed in contact. This should not be confused with the junction electromotive force at the junction of two metals in metallic contact, which has a definite value, proportional to the coefficient of Peltier effect. The Volta difference of potential has been found to vary with the condition of the metallic surfaces and with the nature of the surrounding gas. No great reliance, therefore, can be placed on the tabulated values.

The temperature of the substances during the experiment was about 18° C.

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	Zinc amal- gam.	Brass.
Carbon	0	.370	.485	.858	.113	•795	1.096†	1.208†	. 414†
Copper	370	o	.146	•542	238	.456	·7 50	.894	.087
Iron	485†	146	о	.401†	369	.313†	.600†	•744†	064
Lead	858	542	401	o	—.77 I	099	.210	·357†	472
Platinum	113†	.238	.369	. 7 7 I	o	.690	.981	1.125†	.287
Tin	— ∙795†	458	313	.099	690	o	.281	.463	372
Zinc	-1.096†	750	600	216	981	.281	0	.144	679
" amalgam	—1.20 8†	894	744	357†	—1.125†	463	144	0	822
Brass	414	087	•064	.472	287	.372	.679	.822	o

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temperature, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were those ordinarily obtained in commerce.

* Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini * for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	a of the solution in a molecules per liter.	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.			
No. of molecules.	Salt.		Differe	ence of potential in centivolts.						
0.5 1.0 1.0 0.5 1.0	H ₂ SO ₄ NaOH KOH Na ₂ SO ₄ Na ₂ S ₂ O ₈	0.0 32.1 42.5 1.4 5.9	36.6 19.5 15.5 35.6 24.1	51.3 31.8 32.0 50.8 45.3	51.3 0.2 1.2 51.4 45.7	100.7 80.2 77.0 101.3 38.8	121.3 95.8 104.0 120.9 64.8			
1.0 1.0 0.5 0.5 0.5	KNO3 NaNO3 K2CrO4 K2Cr2O7 K2SO4	11.8‡ 11.5 23.9‡ 72.8 1.8	31.9 32.3 42.8 61.1 34.7	42.6 51.0 41.2 78.4 51.0	31.1 40.9 40.9 68.1 40.9	81.2 95·7 94.6 123.6 95·7	105.7 114.8 121.0 132.4 114.8			
0.5 0.25 0.167 1.0 1.0	(NH4)2SO4 K4FeC6N6 K6Fe2(CN)2 KCNS NaNO8	0.5 6.1 41.0§ 1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 <u> </u>	125.7 87.8 124.9 72.5 104.6?			
0.5 0.125 1.0 0.2 0.167	SrNO ₈ Ba(NO ₈)2 KNO3 KClO3 KBrO3	14.8 21.9 — ‡ 15–10‡ 13–20‡	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3 111.3	119.3 121.5 115.0 120.9 120.8			
I.0 I.0 I.0 I.0 I.0	NH₄Cl KF NaCl KBr KCl	2.9 2.8 	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6			
0.5 - 1.0 0.5 0.5	Na2SO3 NaOBr C4H8O6 C4H8O6 C4H4O8 C4H4KNaO8	8.2 18.4 5.5 4.1 7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6 ‡ 54.4§ 57.6 42-47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7			

* "Rend. della R. Acc. di Roma," 1890.

† Amalgamated.

1 Not constant.

§ After some time.

|| A quantity of bromine was used corresponding to NaOH = r.

TABLE 298.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C. difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power Q = dE/dt = A + Bt, where A is the thermoelectric power at $o^{\circ} C$. B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect. This coefficient in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb $= QT/\beta$, in which Q is in volts, T is the absolute temperature of the junction, and $\mathcal{I} = 4.19$. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation, $BT\theta/\beta$, in which B is in volts per degree C., T is the mean absolute temperature by the coefficient of the Thomson effect. This coefficient, in calories per coulomb, $= BT\theta/\beta$, in which B is in volts per degree C., T is the mean absolute temperature of the junctions, and θ is the difference of the punctions. (BT) is Sir W. Thomson's "Specific Heat of electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the cold junction the holt. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric power, in the following table are with respect to lead as the other metal of the thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric power, in t

The table has been compiled from the results of Becquerel, Matthiessen and Tait; in reducing the results, the electromotive force of the Grove and Daniell cells has been taken as 1.95 and 1.07 volts. The value for constantin was reduced from results given in Landolt-Börnstein's tables. The thermoelectric powers of antimony and bismuth alloys are given by Becquerel in the reference given below.

Substance.	A Microvolts.	B Microvolts.	Thermoeler at mean junctions (r 20 ⁰ C.	ctric power temp. of nicrovolts). 50° C.	Neutral point <u>A</u> . B	Author- ity.
Aluminum Antimony, comm'l pressed wire "axial "equatorial ordinary	0.76 	0.0039 	$\begin{array}{c} 0.68 \\ -22.6 \\ -26.4 \\ -17.0 \\ 12.95 \\ 39.0 \\ 65.0 \\ 45.0 \\ -3.48 \\ 22. \\ -3.48 \\ -22. \\ -3.48 \\ -1.52 \\ -3.48 \\ -22. \\ -3.48 \\ -1.52 \\ -3.48 \\ -22. \\ -22. \\$	$\begin{array}{c} 0.56 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$ \begin{array}{c} 195 \\ -236 \\ $	ТМ""ВТВМ"""ВТВМ-ТМ""Г"МВ"-ТМВ"Т""

TABLES 298 (continued)-299. - THERMOELECTRIC POWER.

TABLE 298. - Thermoelectric Power (continued).

Substance.	A Microvolts.	<i>B</i> Microvolts.	at mean	ctric power temp of nicrovolts). 50° C.	Neutral point $-\frac{A}{\bar{B}}$.	Author- ity.
Palladium"Phosphorus (red)"(hardened)"(malleable)"wire"another specimenPlatinum-iridium alloys: 85% Pt+15% Ir 90% Pt+10% Ir 95% Pt+5% IrSeleniumSilver"(pure hard)"Tellurium"Tin (commercial)"""Zinc""pure pressed	$\begin{array}{c} 6.18 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0.0355 - - 0.0074 0.0109 - - - - - 0.0055 - - - 0.0325 - - - - - - - - - - - - -	-5.63-6.26-8072.41-3.00-50250250016016010.1	-5.23		Т В М " Т " " М Т М В Т М В Н Н Н " М " " " " " " " " " " " " " " " " " "
 B Ed. Becquerel, "Ann. de C M Matthiesen, "Pogg. Ann." T Tait, "Trans. R. S. E." vol B Haken, Ann. der Phys. 32, e. m. units.) 	vol. 103, r . 27. reduc	educed by . ed by Mase	Fleming Jen cart.		eβ=0.04,	Tea 1.7

TABLE 299. - Thermoelectric Power of Alloys.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as - 1.9.

Substance.	Relative quantity.	Thermoelec. tric power in microvolts.	Substance.	Relative quantity.	Thermoelec- tric power in microvolts.	Substance.	Relative quantity.	Thermoelec- tric power in microvolts.
Antimony Cadmium Antimony Cadmium Zinc Antimony Cadmium Bismuth Antimony Zinc Bismuth Antimony Cadmium Lead Zinc Antimony Cadmium Zinc	№ 5 806 696 4 2 1 806 696 696 696 696 696 806 406 806 406 11 1 1 1 1 1 1	<u>FE</u> 227 146 137 95 8.1 76 46	Antimony Zinc Tin Antimony Cadmium Zinc Antimony Tellurium Antimony Bismuth Antimony Iron Antimony Magnesium Antimony Lead Bismuth Bismuth	2 1 1 1 12 10 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 11 8 12 1 13 8 14 1 15 8 16 1 17 1 18 1 19 1	43 35 10.2 8.8 2.5 1.4 0.4 43.8 33.4	Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Tin Bismuth Selenium Bismuth Zinc Bismuth Arsenic Bismuth Bismuth sulphide	2 5 4 5 1 8 10 1 12 1 12 1 10 1 12 1 10 1 12 1 10 1 12 1 12 1 12 1 13 12 14 1	$\begin{array}{c} -51.4 \\ -51.4 \\ -63.2 \\ -68.2 \\ -66.9 \\ 60 \\ -24.5 \\ -31.1 \\ -46.0 \\ 68.1 \end{array}$
Tin	I		Antimony					

269

TABLES 300, 301.

TABLE 300. - Thermoelectric Power against Platinum.

One junction is supposed to be at 0°C; + indicates that the current flows from the 0° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Tempera- ture, ^o C.	Au.	Ag.	90%Pt+ 10%Pd.	10%Pt+ 90%Pd.	Pd.	90%Pt+ 10%Rh.	90%Pt+ 10%Ru.	Ir.	Rh.
-185 - 80 + 100 + 200 + 300 + 400 + 500	$-0.15 \\ -0.31 \\ +0.74 \\ +1.8 \\ +3.0 \\ +4.5 \\ +6.1 \\ +7.9 \\ +12.0 \\ +14.3 \\ +16.8 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$-0.16 \\ -0.30 \\ +0.72 \\ +1.7 \\ +3.0 \\ +4.5 \\ +6.2 \\ +10.6 \\ +13.2 \\ +16.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} -0.11 \\ -0.09 \\ +0.26 \\ +0.62 \\ +1.0 \\ +1.5 \\ +1.9 \\ +2.4 \\ +2.9 \\ +3.4 \\ +3.8 \\ +4.3 \\ +4.8 \\ - \\ - \end{array}$	$\begin{array}{c} +0.24 \\ +0.15 \\ -0.19 \\ -0.31 \\ -0.37 \\ -0.35 \\ +0.12 \\ +0.61 \\ +1.2 \\ +2.1 \\ +3.1 \\ +4.2 \\ - \end{array}$	$\begin{array}{c} +0.77\\ +0.39\\ -0.56\\ -1.20\\ -2.8\\ -3.8\\ -4.9\\ -7.9\\ -9.6\\ -11.5\\ -13.5\\ $	$ \begin{array}{c} - \\ + 2.3 \\ + 3.2 \\ + 4.1 \\ + 5.1 \\ + 6.2 \\ + 7.2 \\ + 9.5 \\ + 10.6 \\ + 13.1 \\ + 15.6 \\ \end{array} $	- 0.539 + 1.60	$- 0.28 \\ - 0.05 \\ + 1.5 \\ + 2.5 \\ + 4.8 \\ + 6.1 \\ + 10.8 \\ + 10.8 \\ + 14.5 \\ + 18.6 \\ + 23.1 \\ - 23.$	$\begin{array}{r} -0.24 \\ -0.31 \\ +0.65 \\ +1.5 \\ +2.6 \\ +3.7 \\ +5.1 \\ +6.5 \\ +8.1 \\ +9.9 \\ +11.7 \\ +13.8 \\ +20.4 \\ +25.6 \end{array}$

* Holborn and Day.

TABLE 301 .- Thermal E. M. P. of Pure Platinum Against Platinum-Rhodium Alloye, in Millivolts.*

				10 p. ct.						
1	1 p. ct.	5 p. ct.	Low.	High.	Stan- dard.	15 p. ct.	20 p. ct.	30 p. ct.†	40 p. ct.†	100 p. ct.‡
100° 200 300 400 500 600 700 800 1000 1000 1100 1200 1300 1400 1500	0.21 0.42 0.63 1.05 1.45 1.65 1.45 2.05 2.25 2.45 2.65 2.65 3.06 3.26	0.555 1.18 1.853 2.553 3.222 3.92 4.62 5.33 6.05 6.79 7.533 8.29 9.06 9.826 10.56 11.31	0.63 1.41 2.28 3.21 4.17 5.16 6.19 7.25 8.35 9.47 10.64 11.82 13.02 14.22 13.02 14.22 15.43 16.63	0.64 1.43 2.32 3.26 4.23 5.24 6.28 7.35 8.46 9.60 10.77 11.97 13.18 14.39 15.61 16.82	0.64 1.43 2.32 3.25 4.23 5.23 6.27 7.33 8.43 9.57 10.74 11.93 13.13 14.34 15.55	0.65 1.50 2.41 3.455 5.71 6.94 8.23 9.57 10.96 12.40 13.87 15.38 16.98 18.41 19.94	 3.50 4.60 5.83 7.18 8.60 10.09 11.65 13.29 14.96 16.65 18.39 20.15 21.90	2.34 3.50 4.74 6.06 7.49 9.01 10.67 12.42 14.33 16.39 18.51 20.67 	 2.45 3.64 4.93 6.31 7.80 9.37 11.09 12.94 14.99 17.13 19.51 21.73 	0.65 1.51 2.57 3.76 5.08 6.55 8.14 9.87 11.74 13.74 13.74 13.74 13.74 13.74 13.74 13.74 13.10 20.46
1700 1755	3.46 3.56	12.05 12.44	17.83 18.49	18.03 18.70	17.95 18.61	21.47 22.31	23.65 24.55	••••	•••••	••••

* Carnegie Institution, Pub. 157, 1911. ‡ Holborn and Day, mean value, 1899. † Holborn and Wien, 1892.

• •

SMITHGONIAN TABLES.

270

TABLES 302-304.

TABLE 302. - Peltier Effect.

The coefficient of Peltier effect may be calculated from the constants A and B of Table 298, as there shown. Experimental results, expressed in slightly different units, are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

	Calorieș per ampere-hour.											
	Sb.‡	Sb. com- mercial.	Bi. pure.	Bi. Ş	Ğ	German Silver.	це	Ni.	Pt.	Ag.	Zn.	
Jahn*	-	-	-	- '	62	-	—3.61	4.36	0.32	41	58	
Le Rouxt .	13.02	4.8	19.1	25.8	0.46	2.47	2.5	-	-	-	•39	

"Wied. Ann." vol. 34, p. 767.
"Ann. de Chim. et de Phys." (4) vol. 10, p. 201.
Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.
Becquerel's bismuth is 10 parts Bi + 1 part Sb.

Temperature.	0 ⁰	20 ⁰	130 ⁰	240 ⁰	320 ⁰	560 ⁰	
Fe-Constantan	3.1	3.6	4.5	6.2	8.2	12.5	∫ in Gram. Cal.∎X-10 ⁸
Ni-Cu	1.92	2.15	2.45	2.0б	1.91	2.38	per coulomb.

TABLE 304. - Peltier Electromotive Porce in Millivolts.

Metal against Copper.	Sb.	Fe.	Cd.	Zn.	Ag.	An.	Pb,	Sn.	Al.	Pt.	.Pd.	Ni.	ä
Le Roux .	—5. 64	-2.93	53	45						-			+22.3
Jahn		-3.68	72	68	48					+.37	-	+5.07	
Edlund		-2.96	16	—.01	+.03	+.33	+.50	+.56	+.70	+1.02	+2.17	-	+17.7
Caswell				-	+.03		-	-	+.70	+.85	-	+6.0	+16.1

Le Roux, 1867; Jahn, 1888; Edlund, 1870-71; Caswell, Phys. Rev. 33, p. 381, 1911.

VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM.

Date.	Observer,	Method.	Value of B. A. unit in olims.	Value of Sie- mens unit, B. A. unit.	Value of ohm in cms. of Hg.
1882 1883 1884 1887 1887 1887	Lord Rayleigh Lord Rayleigh Mascart Rowland Kohlrausch	Rotating coil Lorenz method Induced current Mean of several methods Damping of magnets	0.98651 .98677 .98611 .98644 .98660	0.95412 .95412 .95374 .95349 .95338	106.24 106.21 106.33 106.32 106.32
1888 1890 1890 1891 1894 1895 1895 1897 1899	Glazebrook Wuilleumeier Duncan and Wilkes Jones Himstedt Ayrton and Jones . Guillet	Induced currents Mean effect of induced currents Lorenz method Lorenz method Mean effect of induced current Mean effect of induced cur Mean effect of induced cur a calibrated Icoco-ohm co	.98665 .98686 .98634 - - (.98634) rent, using pil	.95352 .95355 .95341 _ _ _ _ _	106.29 106.31 106.34 106.31 106.33 106.28 106.27 106.20
		Means	0.98651	0.95366	106.288
1883 1884 1884 1884 1884 1884	Wild Wiedemann H. F. Weber H. F. Weber Roiti	Damping of magnet Earth inductor Induced current Rotating coil . Mean effect of induced cur		- - -	106.03 106.19 105.37 106.16
1885 1885 1889 1911	Himstedt Lorenz Dorn Nat. Phys. Lab	German silver coils certified Mean effect of induced cur German silver coils certified Lorenz method Damping of magnet 2 phase	bymakers rent, using	-	105.89 105.98 105.93 106.24 106.27

The legal value of the ohm is the resistance of a column of mercury of uniform cross-section, weighing 14.4521 gms., and having a length of 106.30 cms. This is known as the international ohm. Mercury ohms conforming to these specifications have been prepared in recent years at the Physikalisch-Technische Reichsanstalt, the National Physical Laboratory, and the Bureau of Standards. The wire standards of resistance at the above-named laboratories agree in value to within two parts in 100000. Hence there is a very close agreement in the values of precision resistances calibrated at these laboratories.

SPECIFIC RESISTANCE OF METALLIC WIRES.

This table is modified from the table compiled by Jenkin (1862) from Matthiessen's results by taking the resistance of silver, gold, and copper from the observed metre gramme value and assuming the deosities found by Matthiessen, namely, 10.468, 19.265, and 8.95.

Substance.	Resistance at o ^o C. of a wire one cm. long, one sq. cm. in section.	Resistance at o ^o C. of a wire oue metre long, one mm. in diam.	Resistance at o° C. of a wire one metre long, weighing one gram.	Resistance at 0° C. of a wire one foot long, roo in in diam.	Resistance at o ^o C. of a wire one foot long, weighing one grain.	Percentage increase of resistance for 1° C. in- crease of temp. at 20° C.
Silver annealed	1.460 X 10-8	0.01859	.1 523	8.781	.2184	0.377
" hard drawn	1.585 "	0.02019	.1659	9.538	.2379	-
Copper annealed	1.584 "	0.02017	.1421	9.529	.2037	0.388
" hard drawn	1.619 "	0.02062	.1449	9.74I	.2078	-
Gold annealed	2.088 "	0.02659	.4025	12.56	.577 I	0.365
" hard drawn	2.125 "	0.02706	.4094	12.78	.5870	-
Aluminium annealed	2.906 "	0.03699	.0747	17.48	.1071	-
Zinc pressed	5.613 "	0.07146	.4012	33.76	•5753	0.365
Platinum annealed	9.035 "	0.1150	1.934	54-35	2.772	-
Iron " · .	9.693 "	0.1234	·7551	58.31	1.083	-
Nickel "	12.43 "	0.1 583	1.057	74.78	1.515	-
Tin pressed	13.18 "	0.1678	.9608	79.29	1.377	0.365
Lead "	19.14 "	0.2437	2.227	115.1	3.193	0.387
Antimony pressed	35.42 "	0.4510	2.379	213.1	3.410	0.389
Bismuth "	130.9 "	1.667	12.86	787.5	18.43	0.354
Mercury "	94.07 "	1.198	12.79	565.9	18.34	0.072
Platinum-silver, 2 parts Ag, I part Pt, by weight	24.33 "	0.3098	2.919	146.4	4.186	0.031
German silver	20.89 "	0.2660	1.825	125.7	2.617	0.044
Gold-silver, 2 parts Au, 1 part Ag, by weight	10.84 "	0.1380	1.646	65.21	2.359	0.065

SPECIFIC RESISTANCE OF METALS.

The resistance is here given as the resistance in microhms per cm. cube when the specific resistance of mercury at 0° is taken as 94.1 microhms.

Substance.	State.	Temperature, °C.	Resistance.	Authority.
Aluminum	с. р.		0.64	Niccolai, 1907.
"	"	100.	1.53	
"	"	о.	2.62	66 16
"	"	+ 100.		
"		400.	3.86 8.0	
		20.	2.828	See p. 284.
Antimony		-190.	10.5	Eucken, Gelhoff.
"		0.	38.6	Mean.
66	liquid	+860.	120.	de la Rive.
Arsenic	nquia	0.	35.	Matthiessen.
Bismuth		18.	55. 119.0	Jäger, Diesselhorst.
"		100.	160.2	" " "
Cadmium	drawn	—160.	2.72	Lees, 1908.
"	4	18.		
	"	100.	7.54	Jäger, Diesselhorst.
66	liquid		9.82	Mean.
Cæsium	liquid	318.	34.1	
4	1	—187.	5.25	Guntz, Broniewski.
Calcium	00 5 0000	0.	19. 19.	Mean.
Chromium	99.5 pure	20.	10.5	Moissan, Chavanne
Cobalt	an 8	0.	2.6	Shukow.
	99.8 pure	20.	9.7	Reichardt, 1901.
Copper	annealed	20.	1.724	See p. 284.
	hard-drawn	20.	I.77	
65	electrolytic	<u> </u>	.144	Dewar, Fleming,
"		+ 205.	2.92	Dickson.
Calling	pure	400.	4.10	Niccolai, 1907.
Gallium		<u>_</u> 0.	53.	Guntz, Broniewski.
Gold	99.9 pure	183.	0.68	D, F, D, 1898.
		0.	2.22	Mean.
	pure, drawn	18.	2.42	J, D, 1900.
	99.9 pure	194.5	3.77	D, F, D, 1898.
Indium		0.	8.37	Erhardt, 1881.
Iridium		<u> </u>	1.92	Broniewski, Hack-
"		0.	6.10	spill, 1911.
		+100.	8.3	- u - u
$\operatorname{Iron}_{"}$	pure, soft	-205.3	.652	D, F, D, 1898.
"	- u · u - u · u		5.32 8.85	
		0.	8.85	
44		+98.5	17.8	
		196.1	21.5	** ** ** **
		400.	43.3	Niccolai, 1907.
	cast	ord.	19.1	Kohlrausch.
"	"	yel. ht.	I04.	"
		wh. ht.	114.	"
"	piano-wire	о.	11.8	Strouhal, Barus,'83.
4	temp.glass, hard	o.	45.7	66 16 6C
44	" " yellow	0.	27.	
"	" " blue	o.	20.5	66 <u>86</u> 66
	" " soft	o.	15.9	66 66 86
Lead	cold-pressed	-183.	6 .ó2	D, F, D, 1898.
	" "	— <u>7</u> 8.	I4.I	<i>u u u u</i>
66	** **	o.	20.4	
"	** **	90.4	28.0	
**	46 B6	196.1	36.9	
46		318.	94.	Vincentini, Omodei.
Lithium, , , , ,	solid	—ĭ87.	1.34	Guntz, Broniewski.
			- 37	and a still working

SMITHSONIAN TABLES.

274

SPECIFIC RESISTANCE OF METALS.

The resistance is here given as the resistance in microhms per cm. cube when the specific resistance of mercury at 0° C is taken as 94.1 microhms.

Substance.	State.	Temperature, °C.	Resistance.	Authority.
Lithium, continued		0.	8.55	Guntz, Broniewski.
		99.3	12.7	_ " "
"""	liquid	230.	45.2	Bernini, 1905.
Manganese		-	5.0+	Shukow.
Magnesium	free from zn.	-183.	1.00	Dewar, Fleming,
"	** ** **	- 78.	2.97	Dickson, 1898.
**	66 66 68	0.	4.35	D, F, D, 1898.
"	66 66 66	98.5	5.99	
66	pure	400.	11.9	Niccolai, 1907.
Mercury	solid	-183.5	6.97	D, F, D, 1898.
"	"	-I47.5	10.57	" "
**	44	-102.9	15.04	a 44
"	"	- 50.3	21.3	" "
66	"	- 39.2	25.5 80.6	« <i>(</i> (,
61	"	- 36.1	80.6	"
"	liquid	0.0	94.07	"""
46	uî –	IO.	94.92	Strecker, 1885.
"	"	20.	95.74	"""
	"	50.	98.50	Grimaldi, 1888.
"	**	100.	103.25	Vincentini,Omodei,
		200.	114.27	1890.
66	"	350.	135.5	"
Nickel	pure	-182.5	1.44	Fleming, 1900.
66	- "	- 78.2	4.31	
46 6	"	0.	6.93	" "
66	"	94.9	11.1	" "
"		400.	60.2	Niccolai, 1907.
Osmium		20.	9.5	Blau, 1905.
Palladium	very pure	-183.	2.78	Dewar, Fleming,'96
		— 7 8 .	7.17	
66	46 66	о.	10.21	4 4 4 4
66	" "	98.5	13.79	
Platinum	wire	-203.1	2.44	D, F, D.
66	**	- 97.5	6.87	
"	**	0.	10.96	
44		100.	14.85	
**		400.	26.0	Niccolai, 1907.
Rhodium		-186.	0.70	Broniewski, Hack-
		- 78.3	3.09	spill, 1911.
		о.	4.69	
**		100.	6.60	1
Rubidium	solid	<u> </u>	2.5	Hackspill, 1910.
66	"	0.	11.6	"
44	liquid	40.	19.6	
Silver	electrolytic	183.	0.390	D, F, D, 1898.
	"	- 78.	1.021	4 44 44 44
"	**	0.	1.468	
	"	98.15	2.062	
46	"	192.1	2.608	
66	"	400.	3.77	Niccolai, 1907.
66	999.8 pure	18.	1.629	Jäger, Diesselhorst
Silicium			58. <u>+</u>	Matthiesen 7857
Strontium		20.	24.8	Matthiessen, 1857.
Sodium	solid	178.	0.80.	Guntz, Broniewski,
"		- 78.3	2.86	1909.
	66	0.	4.48	"
"	66 ,	50.	5.32	
∎1				

SMITHSONIAN TABLES.

٠. د

TABLES 307, 308.

SPECIFIC RESISTANCE OF METALS.

TABLE 307 (concluded).

The resistance is here given as the resistance in microhms per cm. cube when the specific resistance of mercury at 0° C. is taken as 94.1 microhms.

Substance.	State.	Temperature, C.	Resistance.	Authority.
Tantalum	Pure - Pure - - - - - - - - - - - - -	19.6° -183. -78. 98.5 -183. -78. 0. 91.45 176. -183. -78. 0. 91.45 176. -183. -78. 0. 91.45 176. -193. -78. 0. 91.45 176. -193. -103.	14-6 21-5 4-08 11.8 17-60 24-7 3-19 3-40 8-8 13-0 18-2 23-6 1-52 3-34 5-75 8-00 10-37 37-2	Pirani. Matthiessen, 1852. Dewar, Fleming, Dickson, 1868. """"""" Shukow. D, F, D, 1868. """" """ """ """ """ """ "" "" "" "" ""

TABLE 308. - Temperature Resistance Coefficients.

If R_0 is the resistance at the temperature t_0 , and R_t at the temperature t, then R_t may over small ranges of temperature be approximately represented by the formula $R_t = R_0 (1 + at)$.

Substance.	Temperature.	a.	See at feot.	Substance.	Temperature.	a.	Bee ai foot.
Substance. Aluminum " Bismuth Cadmium Copper " Gold " annealed " " " Iron, pure " " " " " " " " " " " " " " " " " "	$18-100^{\circ} C.$ $t_{0} = 25^{\circ}$ 100 500 $0-100$ see p. 284-85 $t_{0} = 100^{\circ}$ 400 $18-100$ $t_{0} = 100^{\circ}$ 500 1000 $0-100$ $t_{0} = 25^{\circ}$ 100 500	0.0039 .0034 .0040 .0050 .00458 .0042 .0038 .0042 .0038 .0042 .00362 .0035 .0049 .0062 .0052 .0052 .0052 .0052	at feot. I 2 4 4 4 - - - 2 4 4 4 4 4 5 2 4 4 4 4 4 4 4 5 4 5 4 5	Nickel	$\begin{array}{c} \text{o-100}^{\circ} \text{ C.} \\ t_0 = 25^{\circ} \\ 1000 \\ 5000 \\ 10000 \\ \text{o-1000} \\ \text{o-1000} \\ \text{o-1000} \\ t_0 = 25^{\circ} \\ 1000 \\ 5000 \\ \text{o-1000} \\ 18-1000 \\ 18-1000 \\ 18-1000 \\ 10000 \\ \text{o-1000} \end{array}$	0.0062 0.0043 .0033 .0037 .0037 .0037 .0037 .0040 .0030 .0036 .0044 .0033 .0044 .0045 .0057 .0089 .0040	3 2 4 4 3 4 4 4 3 4 4 4 2 4 4 4 6 1 4 4 3
	$1000 glass, h'd blue piano wire 18-100 0-100 t_0 = 25° 100 500 600 0-15 t_0 = 25° 100 500 1000 1000 1000 0000 0000 0000$.0050 .0016 .0033 .0032 .0043 .0038 .0050 .0045 .0036 .0100 .00088 .0033 .0034 .0050 .0048	4 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Advance	$t_{0} = 12^{\circ}$ 50 100 200 12 25 100 200 500 12 25 100 250 475 500	+.000220 00008 00007 +.00007 +.00007 +.00002 000020 +.00027 +.000027 +.000027 +.000027 000042 000042 000042 000042 000042 0000042 0000042 0000042 0000042 0000042 0000042 000002 000022 000002 000022 000022 000022 000022 000022 000022 000022 000022 000022 000022 000002 000002 000022 000002 00002 00002	2

5, Glazebrook Phil. Mag. 20, p. 343, 1885; 6, Pirani.

CONDUCTIVITY OF THREE-METAL AND MISCELLANEOUS ALLOYS.

		_			_
Metals and alloys.	Composition by weight.	<u>Co</u> 10 ⁴	<i>a</i> × 10 ⁶	δ× 109	Authority.
Gold-copper-silver """" "" "	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.06	574 529 1830	924 93 7280	I I I
Nickel-copper-zinc	$ { { 12.84 Ni + 30.59 Cu + } \\ { 6.57 Zn by volume } } $	4.92	444	51	I
Brass	Various	12.2–15.6 12.16 14.35	I−2×10 ⁸ - -		2 3 3
German silver	Various	3-5	-	-	2
es 66 · · · ·	{14.03 Ni+.30 Fe with trace of cobalt and manganese .	3.33	360	-	4
Aluminum bronze		7.5-8.5	$5-7 imes 10^{2}$	-	2
Phosphor bronze		10-20	-	-	2
Silicium bronze		41	-	_	5
Manganese-copper	30 Mn + 70 Cu	1.00	40	-	4
Nickel-manganese-copper	$_{3}$ Ni + 24 Mn + 73 Cu	2.10	-30	-	4
Nickelin	$ \left\{ \begin{array}{l} 18.46 \text{ Ni} + 61.63 \text{ Cu} + \\ 19.67 \text{ Zn} + 0.24 \text{ Fe} + \\ 0.19 \text{ Co} + 0.18 \text{ Mn} \end{array} \right\} $	3.01	300	-	4
Patent nickel	$\left\{\begin{array}{c} 25.1 \text{ Ni} + 74.41 \text{ Cu} + \\ 0.42 \text{ Fe} + 0.23 \text{ Zn} + \\ 0.13 \text{ Mn} + \text{trace of cobalt} \end{array}\right\}$	2.92	190	-	4
Rheotan	$ \left\{ \begin{array}{l} 53.28 \mathrm{Cu} + 25.31 \mathrm{Ni} + \\ 16.89 \mathrm{Zn} + 4.46 \mathrm{Fe} + \\ 0.37 \mathrm{Mn} & \cdot & \cdot & \cdot \\ \end{array} \right\} $	1.90	410	-	4
Copper-manganese-iron . """""	91 Cu + 7.1 Mn + 1.9 Fe . 70.6 Cu + 23.2 Mn + 6.2 Fe 69.7 Cu + 29.9 Ni + 0.3 Fe .	4.98 1.30 2.60	I 20 22 I 20		6 6 7
Manganin Constantan	84 Cu + 12 Mn + 4 Ni 60 Cu + 40 Ni	2.3 2.04	6 8	-	2 7
	Siemens. ⁵ Van de ssner and Lindeck. ⁶ Blood.		⁶ Feussner. ⁷ Jaeger-Di		st.

Conductivity in mhos or $\frac{1}{\text{ohms per cm. cube}} = C_{\theta} = C_{\theta} (1-at+bt^2).$

TABLE 310.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C₀ were obtained from the original results by assuming silver $=\frac{10^6}{1.585}$ mbos. The conductivity is taken as $C_t = C_o (1 - at + bt^2)$, and the range of temperature was from o^o to 100^o C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together. It is pointed out that, with a few exceptions, the percentage variation between o^o and too^o can be calculated from the

formula $P = P_e \frac{l}{l}$, where l is the observed and l' the calculated conducting power of the mixture at 100° C.,

and P. is the calculated mean variation of the metals mixed.

	Weight %	Vo lume %	С.			Variation	per 100 ⁰ C.					
Alloys.	of first	named.	<u>C</u> ₀ 10 ⁴	<i>a</i> X 10 ⁶	ė́ × 10 ⁹	Observed.	Calculated.					
GROUP 1.												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.04 82.41 78.06 64.13 24.76 23.05 7.37	83.96 83.10 77.71 53.41 26.06 23.50 10.57	7.57 9.18 10.56 6.40 16.16 13.67 5.78	3890 4080 3880 3780 3780 3780 3850 3500	8670 11870 8720 8420 8000 9410 7270	30.18 28.89 30.12 29.41 29.86 29.08 27.74	29.67 30.03 30.16 29.10 29.67 30.25 27.60					
		G	ROUP 2.									
Lead-silver (Pb ₂₀ Ag) .	95.05	94.64	5.60	3630	7960	28.24	19.96					
Lead-silver (PbAg) .	48.97	46.90	8.03	1960	3100	16.53	7.73					
Lead-silver (PbAg ₂) .	32.44	30.64	13.80	1990	2600	17.36	10.42					
Tin-gold $(Sn_{12}Au)$	77-94	90.32	5.20	3080	6640	24.20	14.83					
"" $(Sn_{\delta}Au)$	59-54	79.54	3.03	2920	6300	22.90	5.95					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92.24	93.57	7.59	3680	8130	28.71	19.76					
	80.58	83.60	8.05	3330	6840	26.24	14.57					
	12.49	14.91	5.57	547	294	5.18	3.99					
	10.30	12.35	6.41	666	1185	5.48	4.46					
	9.67	11.61	7.64	691	304	6.60	5.22					
	4.96	6.02	12.44	995	705	9.25	7.83					
	1.15	1.41	39.41	2670	5070	21.74	20.53					
Tin-silver	91.30	96.52	7.81	3820	8190	30.00	23.31					
	53.85	75.51	8.65	3770	8550	29.18	11.89					
Zinc-copper †	36.70	42.06	13.75	1 370	1 340	12.40	11.29					
""" † · · ·	25.00	29.45	13.70	1 270	1 240	11.49	10.08					
"" † · · ·	16.53	23.61	13.44	1 880	1800	12.80	12.30					
"" † · · ·	8.89	10.88	29.61	2040	3030	17.41	17.42					
"" † · · ·	4.06	5.03	38.09	2470	4100	20.61	20.62					

NOTE. - Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{r} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at o⁰ C. and s the corresponding specific resistance, s(a+m) = n.

For platinum alloys Barus's experiments gave $m \equiv -.000194$ and $n \equiv .0378$. For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.00045, n = .00721. Silver "m = -.000112, n = .00538. Copper "m = -.000386, n = .00055.

* From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154. † Hard-drawn.

TABLE 310. - Conducting Power of Alloys.

1		Gr	OUP 3.				
	Weight %	1 1				Variation	per 100° C.
Alloys.		named.	$\frac{C_0}{10^4}$	a× 10 ⁶	<i>b</i> Х 10 ^р		Calculated.
		nameu.					
Gold-copper † " " †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81	21.87 7.41	23.22 7·53
Gold-silver † " *	87.95 87.95	79.86 79.86	13.46 13.61	1090 1140	793 1160	10.09 10.21	9.65 9.59
" " †	64.80 64.80	52.08 52.08	9.48 9.51	673 721	246 495	6.49 6.71	6.58 6.42
66 66 †	31.33 31.33	19.86 19.86	1 3.69 1 3.73	885 908	531 641	8.23 8.44	8.62 8.31
Gold-copper † " " †	34.83 1.52	19.17 0.71	12.94 53.02	864 3320	570 7300	8.07 25.90	8.18 25.86
Platinum-silver † " " † " " †	33-33 9.81 5.00	19.65 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	3.10 7.08 11.29	3.21 7.25 11.88
Palladium-silver †	25.00	23.28	5.38	324	154	3.40	4.21
Copper-silver † "" † " † " † " †	98.08 94.40 76.74 42.75 7.14	98.35 95.17 77.64 46.67 8.25	56.49 51.93 44.06 47.29 50.65	3450 3250 3030 2870 2750	7990 6940 6070 5280 4360	26.50 25.57 24.29 22.75 23.17	27.30 25.41 21.92 24.00 25.57
" " †	1.31	1.53	50.30	4120	8740	26.51	29.77
Iron-gold † ""† ""†	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	27.92 17.55 3.84	14.70 11.20 13.40
Iron-copper †	0.40	0.46	24.51	1 5 50	2090	13.44	. 14.03
Phosphorus-copper † . " † .	2.50 0.95	=	4.62 14.91	476 1320	145 1640	=	-
Arsenic-copper † ""† ""†	5.40 2.80 trace		3.97 8.12 38.52	516 736 2640	989 446 4830		

* Annealed.

† Hard-drawn.

TABLE 311. - Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

B+S Gage	18	16	14	12	10	8	6	5	4	3	2	r	0	00	0000
Amperes	3	. 6	12	17	24	33	46	54	65	76	90	107	127	1 50	210
500,000 ci insulated al $I = ad^{\frac{3}{2}}$, wh 5230; platin	. wire	, cap	acity	=84	,% of hes. a	cu. for (Pree cu. is	ce gi 10,24	vesa 44;a	s for 1., 75	mula 85; p	tor tus t., 517:	sion of 2; Gei	Dare v	wires

TABLE 312.

RESISTANCE OF METALS AND

- The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Fleming.*
- When the temperature is raised above 0° C. the coefficient decreases for the pure metals, as is shown by the experiexperiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is shown in the tables of resistance of alloys. (Cf. Table 262.)

Temperature =	1000	200	o°	— 80 ⁰	
Metal or alloy.	Specific resistance in c. g. s. units.				
Aluminium, pure hard-drawn wire	4745	3505	3161	-	
Copper, pure electrolytic and annealed	1920	1457	1349	-	
Gold, soft wire	2665	2081	1948	1400	
Iron, pure soft wire	13970†	9521	8613	-	
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	19300	13494	12266	7470	
Platinum, annealed	10907	8752	8221	6133	
Silver, pure wire	2139	1647	1559	1138	
Tin, pure wire	1 3867	10473	9575	668 I	
German silver, commercial wire	35720	34 7 07	34524	33664	
Palladium-silver, 20 Pd + 80 Ag	15410	14984	14961	14482	
Phosphor-bronze, commercial wire	907 1	8588	8479	8054	
Platinoid, Martino's platinoid with 1 to 2% } .	44590	43823	43601	43022	
Platinum-iridium, 80 Pt $+$ 20 Ir \cdot .	31848	29902	29374	27 504	
Platinum-rhodium, 90 Pt + 10 Rh	18417	14586	1 37 55	10778	
Platinum-silver, 66.7 Ag $+$ 33.3 Pt	27404	26915	26818	26311	
Carbon, from Edison-Swan incandescent } .	-	4046×108	4092×108	4189×108	
Carbon, from Edison-Swan incandescent } .	3834×108	3908×108	3955×108	4054×108	
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6168×108	6300×108	6363×108	6495×108	

* " Phil. Mag." vol. 34, 1892.

† This is given by Dewar and Fleming as 13777 for 96°.4, which appears from the other measurements too high. SMITHSONIAN TABLES.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The results show that the coefficient of change with temperature the alloys. The resistance of carbon was found by Dewar and Fleming to increase continuously to the lowest

ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and shown by these temperature. This gives the actual change of resistance per degree, a constant; and hence the percentage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures not far from

	· · · ·			
Temperature =	- 100°	- 182°	— 197°	Mean value of temperature co- efficient between
Metal or alloy.	Specific resistance io c. g. a. units.			- 100° and + 100° C.*
Aluminum, pure hard-drawn wire	1928	894	-	.00446
Copper, pure electrolytic and annealed	7 57	272	178	431
Gold, soft wire	1207	604	-	375
Iron, pure soft wire	4010	1067	608	57 ⁸
Nickel, pure (prepared by Mond's process) from compound of nickel and carbon monoxide)	6110	1900	-	538
Platinum, annealed	5295	2821	2290	341
Silver, pure wire	962	472	-	377
Tin, pure wire	567 1	2553	-	428
German silver, commercial wire	33280	32 51 2	-	o35
Palladium-silver, 20 Pd + 80 Ag	14256	1 3797	-	039
Phosphor-bronze, commercial wire	7883	7371	-	070
Platinoid, Martino's platinoid with 1 to 2% } .	42385	41454	-	025
Platinum-iridium, 80 Pt + 20 Ir	26712	24440	-	087
Platinum-rhodium, 90 Pt + 10 Rh	9834	7134	-	312
Platinum-silver, 66.7 Ag + 33.3 Pt	26108	25537	-	024
Carbon, from Edison-Swan incandescent } .	4218×108	4321×10 ⁸	-	-
Carbon, from Edison-Swan incandescent $\left. \right\}$. lamp	4079×10 ⁸	4180×108	-	031
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp }.	6533×10 ⁸	-	-	029

* This is a in the equation $R = R_0$ (1 + at), as calculated from the equation $a = \frac{R_{100} - R_{-100}}{200 R_0}$.

•

SMITHSONIAN TABLES.

L

TABLES 313, 314.

TABLE 313. --- Variation of Electrical Resistance of Glass and Porcelain with Temperature.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.*

Cest-tube glass """" Bohemian glass	•••	- 2.458	13.86 14.24	044 055	.000065	0°-250°
Bohemian glass	• •		14.24	055		
•					1000.	37-131
1 (1		2.43	16.21	043	.000 0394	60-174
ine glass (Japanese manufact	ture).	2.55	13.14	031	000021	10-85
66 66 68 68		2.499	14.002	025	—.0000б	35-95
Soda-lime glass (French flask)		2.533	14.58	049	.000075	45-120
Potash-soda lime glass .		2.58	16.34	042 ⁵	.0000364	66-193
Arsenic enamel flint glass	• •	3.07	18.17	055	.000088	105-135
lint glass (Thomson's electro jar)	meter	3.172	18.021	036	0000091	100-200
Porcelain (white evaporating d	lish) .	_)	15.65	042	.00005	68 -290
	Goda-lime glass (French flask) Potash-soda lime glass Arsenic enamel flint glass Flint glass (Thomson's electro jar) Porcelain (white evaporating o	Goda-lime glass (French flask) Potash-soda lime glass Arsenic enamel flint glass Flint glass (Thomson's electrometer jar) Porcelain (white evaporating dish).	Boda-lime glass (French flask) 2.533 Potash-soda lime glass 2.53 Arsenic enamel flint glass 3.07 Flint glass (Thomson's electrometer jar) 3.172 Porcelain (white evaporating dish) -	3.17214.0023.17214.0023.17214.583.17218.0213.17218.0213.17215.65	Soda-lime glass (French flask) 2.533 14.58 049 Potash-soda lime glass 2.58 16.34 0425 Arsenic enamel flint glass 3.07 18.17 055 Flint glass (Thomson's electrometer jar) 3.172 18.021 036 Porcelain (white evaporating dish) $ 15.65$ 042	Soda-lime glass (French flask) 2.533 14.58 049 $.000075$ Potash-soda lime glass 2.58 16.34 0425 $.0000364$ Arsenic enamel flint glass 3.07 18.17 055 $.0000364$ Flint glass (Thomson's electrometer jar) 3.172 18.021 036 0000091

Number of	spec	imen	=		3	4	5	7	8	9
Silica .			•		61.3	57.2	70.05	75.65	54.2	55.18
Potash .				•	22.9	21.1	1.44	7.92	10.5	13.28
Soda .	•		•		Lime, etc.	Lime, etc.	14.32	6.92	7.0	-
Lead oxide			•		by diff.	by diff.	2.70	-	23.9	31.01
Lime .	•				1 5.8	16.7	* 10.33	8.48	0.3	0.35
Magnesia				•	-	-		0.36	0.2	0.06
Arsenic oxide				•	- /	-	-		3.5	-
Alumina, iron	oxi	ide, e	etc.	•	-	-	1.45	0.70	0.4	0.6 7

* T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

TABLE 314. - Temperature Resistance Coefficients of Glass, Porcelain and Quartz dr/dt.

Temperature.	450 ⁰	5000	575 ⁰	600 ⁰	700 ⁰	750 ⁰	8000	9000	10000
Glass Porcelain Quartz	—32. _	6. - -	-1.5 -16. -	8 9.8 -	0.17 2.8	0.1 1.6 10.	0.06 70 6.40	—0.30 —2.60	0.12 1.00

Somerville, Physical Review, 31, p. 261, 1910.

TABULAR COMPARISON OF WIRE GAGES.

Gage No.	American Wire Gage (B. & S.) Mils.	American Wire Gage (B. & S.) mm.	Steel Wire Gage* Mils.	Steel Wire Gage* mm.	Stuhs' Steel Wire Gage Mils.	(British) Standard Wire Gage Mils.	Birmingham Wire Gage (Stuhs') Mils.	Gage No.
$\begin{array}{c} 0 & 0 & 0 & 0 \\ 5 & 4 & 3 & 2 \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \begin{array}{c} 0 & 0 & 0 \\ \end{array} \\ \end{array} \\ \end{array}	460. 410. 305. 325. 289. 204. 182. 162. 144. 128. 114. 102. 01. 72. 64. 57. 51. 45. 20.1 17.9 14.2 15.9 14.2 15.9 14.2 15.9 14.2 15.9 14.2 15.9 14.2 15.9 14.2 15.9 14.2 15.9 14.2 15.9 3.5 3.1 10.0	11.7 10.4 9.3 8.3 7.3 6.5 5.2 4.0 4.1 3.7 3.3 2.01 2.30 2.30 2.30 2.30 2.30 2.30 2.30 1.83 1.45 1.29 1.15 1.02 0.01 81 72 57 57 57 57 57 57 57	$\begin{array}{c} 490.0\\ 401.5\\ 430.5\\ 393.8\\ 362.5\\ 393.8\\ 363.5\\ 262.5\\ 243.7\\ 225.3\\ 207.0\\ 192.0\\ 177.0\\ 162.0\\ 148.3\\ 135.0\\ 120.5\\ 105.5\\ 10$	12.4 11.7 10.0 0.2 8.4 7.2 6.7 6.2 5.7 5.3 4.9 4.5 4.5 4.5 4.5 4.5 4.5 4.5 2.03 1.59 1.37 1.21 1.04 8.81 1.57 1.21 1.04 8.81 -52 -46 -52 -46 -52 -40 -52 -40 -52 -52 -40 -52 -52 -40 -52 -52 -52 -40 -52 -52 -52 -52 -52 -52 -52 -52	227. 210. 210. 207. 204. 207. 201. 109. 104. 104. 105. 188. 185. 195.	$\begin{array}{c} 500.\\ 464.\\ 432.\\ 400.\\ 372.\\ 324.\\ 300.\\ 252.\\ 212.\\ 176.\\ 164.\\ 126.\\ 104.\\ 92.\\ 64.\\ 56.\\ 480.\\ 72.\\ 232.\\ 212.\\ 176.\\ 164.\\ 360.\\ 72.\\ 232.\\ 212.\\ 20.\\ 164.\\ 360.\\ 32.\\ 24.\\ 20.\\ 18.\\ 12.4.\\ 12.4.\\ 12.4.\\ 12.4.\\ 10.8.\\ 10.0.\\ 5.2.\\ 44.4.\\ 3.6.\\ 3.2.\\ 24.\\ 20.\\ 18.\\ 13.6.\\ 10.0.\\ 5.2.\\ 44.4.\\ 3.6.\\ 3.2.\\ 24.\\ 20.\\ 18.\\ 13.6.\\ 10.0.\\ 5.2.\\ 44.4.\\ 3.6.\\ 3.2.\\ 24.\\ 20.\\ 16.\\ 3.2.\\ 24.\\ 20.\\ 16.\\ 3.2.\\ 24.\\ 20.\\ 16.\\ 3.2.\\ 24.\\ 20.\\ 16.\\ 3.2.\\ 24.\\ 20.\\ 16.\\ 3.2.\\ 24.\\ 20.\\ 16.\\ 3.2.\\ 24.\\ 20.\\ 1.0.$	454. 425. 340. 302. 284. 2238. 220. 203. 165. 148. 134. 130. 109. 05. 83. 72. 65. 58. 49. 42. 32. 20. 18. 21. 20. 18. 21. 22. 20. 22. 20. 23. 24. 25. 24. 25. 24. 25. 25. 26. 27. 27. 28. 27. 28. 27. 28. 27. 28. 27. 28. 27. 28. 27. 27. 28. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27	0 0 0 0 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 3 4 5 6 7 8 9 0 1 1 1 2 3 3 4 5 6 7 8 9 0 1 1 1 2 3 3 4 5 6 7 8 9 0 1 1 1 2 3 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• The Steel Wire Gage is the same gage which has been known by the various names: "Washhurn and Moen," "Roeb-ling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage. Taken from Circular No. 31. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

TABLES 316-322.

WIRE TABLES.

TABLE 316. -- Introduction. Mass and Volume Resistivity of Copper and Aluminum.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the coöperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and takes the Resistivity at 20° C. of an annealed copper wire one meter long weighing one gram as equal to 0.15328 ohm. This standard corresponds to a conductivity of $58. \times 10^{-5}$ cgs. units, and a deusity of 8.89, at 20° C.

In the various units of mass and volume resistivity this may be stated as

0.15328 ohm (meter, gram) at 20° C. 875.20 ohms (mile, pound) at 20° C. 1.7241 microhm-cm. at 20° C. 0.67879 microhm-inch at 20° C. 10.371 ohms (mil, foot) at 20° C.

The temperature coefficient for this particular resistivity is $a_{20} = 0.00393$ or $a_0 = 0.00427$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C. is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

 $a_t = \frac{0.000597 + 0.00005}{\text{resistivity in ohms (meter, gram) at t^{\circ} C}.$

The density is 8.89 grams per cubic centimeter at 20° C., which is equivalent to 0.3212 pounds per cubic inch.

The values in the tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

The aluminum tables are based on a figure for the conductivity published by the U. S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give :

Mass resistivity, in ohms (meter, gram) at 20° C.						0.0764
" " " (mile, pound) at 20° C.						436.
Mass per cent conductivity						200.7%
Volume resistivity, in michrom-cm. at 20° C.	•					2.828
" " in microhm-inch at 20° C.						1.113
Volume per cent conductivity						61.0%
Density, in grams per cubic centimeter						2.70
Density, in pounds per cubic inch	•				•	0.0975
Mass per cent conductivity		:	:	:	:	2.828 1.113 61.0%

WIRE TABLES.

TABLE 317 .- Temperature Coefficients of Copper for Different Initial Temperatures (Centigrade) and Different Conductivities.

Ohms (meter. gram) at 20° C.	Per cent conductivity.	αο	a 15	a20	a ₂₅	a30	a ₅₀
0.161 34	95%	0.004 03	0.003 80	0.C03 73	0.003 67	0.003 60	0.003 36
.159 66	96%	.004 08	.003 85	.003 77	.003 70	.003 64	.003 39
.158 02	97%	.004 13	.003 89	.003 81	.003 74	.003 67	.003 42
.157 53	97.3%	.004 14	.003 90	.003 82	.003 75	.003 68	.003 43
.156 40	98%	.004 17	.003 93	.003 85	.003 78	.003 71	.003 45
.154 82	99%	.004 22	.003 97	.003 89	.003 82	.003 74	.003 48
. 153 28	100%	.004 27	.004 01	.003 93	.003 85	.003 78	.003 52
.151 76	101%	.004 31	.004 05	.00 397	.003 89	.003 82	.003 55

Nore. - The fundamental relation hetween resistance and temperature is the following:

$$R_t = R_{t_1}(I + a_{t_1}[t - t_1]),$$

where a_{t_1} is the "temperature coefficient," and t_1 is the "initial temperature" or "temperature of reference." The values of a in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (*n* is considered to be expressed decimally: e.g., if per cent conductivity = oo ner cent n = oo) conductivity = 99 per cent, n = 0.99.)

$$a_{t_1} = \frac{1}{\frac{1}{n(0.00393)} + (t_1 - 20)}$$

TABLE 319Reduction	of	Observations	to	Standard	Temperature.	(Copper.)
--------------------	----	--------------	----	----------	--------------	-----------

	Correcti	ons to reduce	Resistivity t	o 20º C.	Factors to re	educe Resista	nce to 20 ⁰ C.	
Temper- ature C.	Ohm (meter, gram).	Microhm— cm.	Ohm (mile, pouod).	Microhm— inch.	For 96 per cent con- ductivity.	For 98 per cent con- ductivity.	For 100 per cent con- ductivity.	Temper- ature C.
0	+0.011 94	+0.1361	+ 68.20	+0.053 58	1.0816	1.0834	1.0853	0
5	+ .008 96	+ .1021	+ 51.15	+ .040 18	1.0600	1.0613	1.0626	5
10	+ .005 97	+ .0681	+ 34.10	.026 79	1.0392	1.0401	1.0409	10
11	+ .005 37	+ .0612	+ 30.69	' .024 II	1.0352	1.0359	1.0367	11
12	+ .004 78	+ .0544	+ 27.28	+ .02I 43	1.0311	1.0318	1.0325	12
13	+ .004 18	+ .0476	+ 23.87	+ .0I8 75	1.0271	1.0277	1.0283	13
14	+ .003 58	+ .0408	+ 20.46	+ .016 07	1.0232	1.0237	1.0242	14
15	+ .002 99	+ .0340	+ 17.05	+ .013 40	1.0192	1.0196	1.0200	15
16	+ .002 39	+ .0272	+ 13.64	+ .010 72	1.0153	1.0156	1.0160	16
17	+ .001 79	+ .0204	+ 10.23	+ .008 04	1.0114	1.0117	1.0119	17
18	+ .001 19	+ .0136	+ 6.82	+ .005 36	1.0076	1.0078	1.0079	18
19	+ .000 60	+ .0068	+ 3.41	+ .002 68	1.0038	1.0039	1.0039	19
20 21 22	0 000 60 001 19	0068 0136	- 3.41 - 6.82	0 002 68 005 36	1.0000 0.9962 .9925	1.0000 0.9962 .9924	1.0000 0.9961 .9922	20 21 22
23	001 79	— .0204	- 10.23	008 04	.9888	.9886	.9883	23
24	002 39	— .0272	- 13.64	010 72	.9851	.9848	.9845	24
25	002 99	— .0340	- 17.05	013 40	.9815	.9811	.9807	25
26	003 58	0408	20.46	— .016 07	.9779	.9774	.9770	26
27	004 18	0476	23.87	— .018 75	.9743	.9737	.9732	27
28	004 78	0544	27.28	— .021 43	.9707	.9701	.9695	28
29	005 37	0612	- 30.69	024 11	.9672	.9665	.9658	29
30	005 97	0681	- 34.10	026 70	.9636	.9629	.9622	30
35	008 96	1021	- 51.15	040 18	.9464	.9454	•9443	35
40 45 50	011 94 014 93 017 92	1361 1701 2042	- 68.20 - 85.25 - 102.30	053 58 066 98 080 37	.9298 .9138 .8983	.9285 .9122 .8964	.9271 .9105 .8945 .8791	40 45 50
55 60 65	020 90 023 89 026 87	2382 2722 3062	119.35 136.40 153.45	093 76 107 16 120 56	.8833 .8689 .8549	.8812 .8665 .8523	.8642 .8497	55 60 65
70	029 86	3403	-170.50	133 95	.8413	.8385	.8358	70
75	032 85	3743	-187.55	147 34	.8281	.8252	.8223	75

WIRE TABLE, STANDARD ANNEALED COPPER.

TABLE 319.

American	Wire	Gage (B. & S.).	English	Units.
----------	------	--------	-----------	---------	--------

Gage	Diameter	Cross-Sec	tion at 20° C.		Ohms per	1000 Feet.*	
No.	in Mils. at 20° C.	Circular Mils.	Square Inches.	$(=32^{\circ C} \mathbf{F})$	$(=68^{\circ} \text{ F})$	$(=^{50^{\circ} C}_{122^{\circ} F})$	$75^{\circ} C$ (= 167° F)
0000	460.0	211 600.	0.1662	0.045 16	0.049 01	0.054 79	0.059 61
000	409.6	167 800.	.1318	.056 95	.061 80	.069 09	.075 16
00	364.8	133 100.	.1045	.071 81	.077 93	.087 12	.094 78
0	324.9	105 500.	.082 89	.090 55	.098 27	.1099	.1195
I	289.3	83 690.	.065 73	.1142	.1239	.1385	.1507
2	257.6	66 370.	.052 13	.1440	.1563	.1747	.1900
3	229.4	52 640.	.041 34	.1816	.1970	.2203	.2396
4	204.3	41 740.	.032 78	.2289	.2485	.2778	.3022
5	181.9	33 100.	.026 00	.2887	.3133	.3502	.3810
6	162.0	26 2 50.	.020 62	.3640	.3951	.4416	.4805
7	144.3	20 820.	.016 35	.4590	.4982	.5569	.6059
8	128.5	16 510.	.012 97	.5788	.6282	.7023	.7640
9	114.4	13 090.	.010 28	.7299	.7921	.8855	.9633
10	101.9	10 380.	.008 155	.9203	.9989	1.117	1.215
11	90.74	8234.	.006 467	1,161	1.260	1.408	1.532
12	80.81	6530.	.005 129	1.463	1.588	1.775	1.931
13	71.96	5178.	.004 067	1.845	2.003	2.239	2.436
14	64.08	4107.	.003 225	2.327	2.525	2.823	3.071
15	57.07	32 57.	.002 558	2.934	3.184	3.560	3.873
16	50.82	2 583.	.002 028	3.700	4.016	4.489	4.884
17	45.26	2048.	.001 609	4.666	5.064	5.660	6.158
18	40,30	1624.	.001 276	5.883	6.385	7.138	7.765
19	35.89	1288.	.001 012	7.418	8.051	9.001	9.792
20	31.96	1022.	.000 802 3	9.355	10.15	11.35	12.35
21	28.45	810.1	.000 636 3	11.80	12.80	14.31	15.57
22	25.35	642.4	.000 504 6	14.87	16.14	18.05	19.63
23	22.57	509.5	.000 400 2	18.76	20.36	22.76	24.76
24	20.10	404.0	.000 317 3	23.65	25.67	28.70	31.22
25	17.90	320.4	.000 251 7	29.82	32.37	36.18	39.36
26	15.94	254.1	.000 199 6	37.61	40.81	45.63	49.64
27	14.20	201.5	.000 1 58 3	47-42	51.47	57·53	62.59
28	12.64	159.8	.000 12 5 5	59.80	64.90	72·55	78.93
29	11.26	126.7	.000 099 53	75.40	81.83	91.48	99.52
30	10.03	100.5	.000 078 94	95.08	103.2	115.4	125.5
31	8.928	79.70	.000 062 60	1 19.9	1 30.1	145.5	158.2
32	7.950	63.21	.000 049 64	1 51.2	164.1	183.4	199.5
33	7.080	50.13	.000 039 37	190.6	206.9	231.3	251.6
34	6.305	39.75	.000 031 22	240.4	260,9	291.7	317.3
35	5.615	31.52	.000 024 76	303.1	329.0	367.8	400.1
36	5.000	25.00	.000 019 64	382.2	414.8	463.7	504.5
37	4.453	19.83	.000 015 57	482.0	523.1	584.8	636.2
38	3.965	15.72	.000 012 35	607.8	659.6	737·4	802.2
39	3.531	12.47	.000 009 793	766.4	831.8	929.8	1012.
40	3.145	9.888	,000 007 766	966.5	1049.	1173.	1276.

* Resistance at the stated temperatures of a wire whose length is 1000 feet at 20° C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

	. I		_		Feet per	Ohm.*	
Gage No.	Diameter in Mils. at 20 ⁰ C.	Pounds per 1000 Feet.	Feet per Pound.	0° C (≔32° F)	20° C (==68° F)	50° C (=122° F)	75° C (=167° F)
0000	460.0	640.5	1.561	22 140.	20 400.	18 250.	16 780.
000	409.6	507.9	1.968	17 560.	16 180.	14 470.	13 300.
00	364.8	402.8	2.482	13 930.	12 830.	11 480.	10 550.
0	324.9	319.5	3.130	11 040.	10 180.	9103.	8367.
I	289.3	253.3	3.947	87 58.	8070.	7219.	6636.
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3	229.4	1 59.3	6.276	5 508.	5075.	4540.	4173.
4	204.3	1 26.4	7.914	4 368.	4025.	3600.	3309.
5	181.9	1 00.2	9.980	3464.	3192.	2855.	2625.
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9	114.4	39.63	25.23	1 370.	1262.	1 1 29.	1038.
10	101.9	31.43	31.82	1087.	1001.	895.6	823.2
11	90.74	24.92	40.12	861.7	794.0	7 10.2	652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	1 5.68	63.80	541.9	499.3	446.7	410.6
14	64.08	1 2.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	197.5	176.7	. 162.4
18	40.30	4.917	203.4	170.0	1 56.6	140.1	1 28.8
19	35.89	3.899	256.5	134.8	124.2	111.1	102.1
20	31.96	3.092	323.4	106.9	98.50	88.11	80.99
21	28.46	2.452	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
25	17.90	0.9699	1031.	33.53	30.90	27.64	25.40
26	15.94	.7692	1300.	26.59	24.50	21.92	20.15
27	14.20	.6100	1639.	21.09	19.43	17.38	1 5.98
28	12.64	.4837	2067.	16.72	15.41	13.78	12.67
29	11.26	.3836	2607.	13.26	12.22	10.93	10.05
30 31 32	10.03 8.928 7.950	.3042 .2413 .1913	3287. 4145. 5227.	10.52 8.341 6.614	9.691 7.68 6.095	6.875 5.452	6.319
33 34 35	7.080 6.305 5.615	.1517 .1203 .095 42	6591. 8310. 10 480.	5.245 4.160 3.299		3.429 2.719	3.152 2.499
36 37 38	5.000 4.453 3.965	.075 68 .060 01 .047 59	13 210. 16 660. 21 010.	2.616 2.075 1.645	2.411 1.912 1.516	1.710	1.572 1.247
39 40	3.531	.037 74 .029 93	26 500. 33 410.	1.305 1.035		0	0.9886 .7840

• Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

TABLE 319 (continued).

ENGLISH.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

	Diameter		Ohms per Pound.		Pounds per Ohm.
Gage No.	in Mils at 20° C.	$(=32^{\circ} \text{ F.})$	$(=68^{\circ} \text{ F.})$	50° C. (= 122° F.)	$(=68^{\circ} \text{ F.})$
0000	460.0	0.000 070 51	0.000 076 52	0.000 085 54	13 070.
000	409.6	.000 1121	.000 1217	.000 1360	8219.
00	364.8	.000 1783	.000 1935	.000 2163	5169.
0	324.9	.000 2835	.000 3076	.000 3439	3251.
I	289.3	.000 4507	.000 4891	.000 5468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	1286.
3	229.4	.001 140	.001 237	.001 383	808.6
4	204.3	.001 812	.001 966	.002 198	508.5
5	181.9	.002 881	.003 127	.003 495	319.8
6	162.0	.004 581	.004 972	.005 558	201.1
7	144.3	.007 284	.007 905	.008 838	126.5
8	128.5	.011 58	.012 57	.014 05	79·55
9	114.4	.018 42	.019 99	.022 34	50.03
10	101.9	.029 28	.031 78	.035 53	31.47
11	90.74	* .046 56	.050 53	.056 49	19.79
12	80.81	.074 04	.080 35	.089 83	12.45
13	71.96	.1177	.1278	.1428	7.827
14	64.08	.1872	.2032	.227 1	4.922
15	57.07	.2976	.3230	.3611	3.096
16	50.82	•4733	.5136	.5742	1.947
17	<u>4</u> 5.26	•7525	.8167	.9130	1.224
18	40.30	1.197	1.299	1.452	0.7700
19	35.89	1.903	2.065	2.308	.4843
20	31.96	3.025	3.283	3.670	.3046
21	28.46	4.810	5.221	5.83 6	.1915
22	25.35	7.649	8.301	9.280	.1205
23	22.57	12.16	13.20	14.76	.075 76
24	20 .10	19.34	20.99	23.46	.047 65
25	17.90	30.75	33·37	37.31	.029 97
26	15.94	48.89	53.06	59.32	.018 85
27	14.20	77.74	84.37	94.32	.011 85
28	12.64	123.6	134.2	1 50.0	.007 454
29	11.26	196.6	213.3	2 38.5	.004 688
30	10.03	312.5	339.2	379.2	.002 948
31	8.928	497.0	539-3	602.9	.001 854
32	7.950	790.2	857.6	958.7	.001 166
33	7.080	125 6.	1 364.	1 524.	.000 7333
34	6.305	1998.	2168.	2424.	.000 4612
35	5.615	3177.	3448.	3854.	.000 2901
36	5.000	5051.	5482.	6128.	.000 1824
37	4.453	8032.	8717.	9744-	.000 1147
38	3.965	12 770.	13 860.	15490.	.000 072 15
39	3.531	20 310.	22 040.	24 640.	.000 045 38
40	3.145	32 290.	35 040.	39 170.	.000 028 54

TABLE 320.

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.) Metric Unite.

	Diameter	Cross Section		Ohms per K	lilometer.*	
Gage No.	in mm. at 20° C.	in mm. ² at 20° C.	٥° C.	20 ⁰ C.	50° C.	75° C.
0000	11.68	107.2	0.1482	0.1608	0.1798	0.1956
000	10.40	85.03	.1868	.2028	.2267	.2466
00	9.266	67.43	.2356	.2557	.2858	.3110
0	8.252	53.48	.2971	.3224	•3604	.3921
I	7.348	42.41	.3746	.4066	•4545	.4944
2	6.544	33.63	.4724	.5127	•5731	.6235
3	5.827	26.67	.5956	.6465	.7227	.7862
4	5.189	21.15	.7511	.8152	.9113	.9914
5	4.621	16.77	.9471	1.028	1.149	1.250
6	4.115	1 3.30	1.194	1.296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	2.061	2.304	2.506
9	2.906	6.634	2.395	2.599	2.905	3.161
10	2.588	5.261	3.020	3.277	3.663	3.985
11	2.305	4.172	3.807	4.132	4.619	5.025
12	2.053	3.309	4.801	5.211	5.825	6.337
13	1.828	2.624	6.054	6.571	7•345	7.991
14	1.628	2.081	7.634	8.285	9.262	10.08
15	1.450	1.65C	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.024	0.8231	19.30	20.95	23.42	25.48
19	0.9116	.6527	24.34	26.42	29.53	32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
21	.7230	.4105	38.70	42.00	46.95	51.08
22	.6438	.3255	48.80	52.96	59.21	64.41
23	.5733	.2582	61.54	66.79	74.66	81.22
24	.5106	.2047	77.60	84.21	94.14	102.4
25	•4547	.1624	97.85	106.2	118.7	129.1
26	•4049	.1288	123.4	133.9	149.7	162.9
27	.3606	.1021	155.6	168.9	188.8	205.4
28	.3211	.080 98	196.2	212.9	238.0	258.9
29	.2859	.064 22	247.4	268.5	300.1	326.5
30	.2546	.050 93	311.9	338.6	378.5	411.7
31	.2268	.040 39	393.4	426.9	477.2	519.2
32	.2019	.032 03	496.0	53 ⁸ .3	601.8	654.7
33	.1798	.025 40	625.5	678.8	7 58.8	825.5
34	.1601	.020 14	788.7	856.0	956.9	1041.
35	.1426	.015 97	994.5	1079.	1207.	1313.
36	.1270	.012 67	1254.	1361.	1 522.	1655.
37	.1131	.010 05	1581.	1716.	1919.	2087.
38	.1007	.007 96;	1994.	2164.	2419.	2632.
39	.089 6	9 .006 318		2729.	3051.	3319.
40	.079 8	7 .005 010		3441.	3847.	4185.

*Resistance at the stated temperatures of a wire whose length is τ kilometer at 20° C.

TABLE 320 (continued).

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.) Metric Units (continued).

	Diameter	Kilograms	Meters		Meters p	er Ohm.*	
Gage No.	in mm. at 20° C.	Kilometer.	per Gram.	°° C.	20° C.	50° C.	75° C.
0000	11.68	953.2	0.001 049	6749.	6219.	5563.	5113.
000	10.40	755.9	.001 3 23	5352.	4932.	4412.	4055.
00	9.266	599-5	.001 668	4245.	3911.	3499•	3216.
0	8.252	475·4	.002 103	3366.	3102.	2774.	2550.
1	7.348	377.0	.002 652	2669.	2460.	2200.	2022.
2	6.544	299.0	.003 345	2117.	1951.	1745.	1604.
3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
5	4.621	149.1	.006 706	1056.	972.9	870.2	799.9
6	4.115	118.2	.008 457	837.3	771.5	690.1	634.4
7	3.665	93.78	.010 66	664.0	611.8	547·3	503.1
8	3.264	74 . 37	.013 45	526.6	485.2	434.0	399.0
9	2.906	58.98	.016 96	417.6	384.8	344.2	316.4
10	2.588	46.77	.021 38	331.2	305.1	273.0	250.9
11	2.305	37 . 09	.026 96	262.6	242.0	216.5	199.0
12	2.053	29.42	.034 00	208.3	191.9	171.7	1 57.8
13	1.828	23.33	.042 87	165.2	152.2	136.1	12 5.1
14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	103.9	95 .7 1	85.62	78.70
16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47.74	42.70	39.25
19	0.9116	5.803	.1723	41.09	37.86	33.86	31.13
20	.8118	4.602	.2173	32.58	30.02	26.86	24.69
21	.7230	3.649	.2740	25.84	23.81	21.30	19.58
22	.6438	2.894	·3455	20.49	18.88	16.89	15.53
23	.5733	2.295	·4357	16.25	14.97	13.39	12.31
24	.5106	1.820	· 5494	12.89	11.87	10.62	9.764
25	.4547	1.443	.6928	10.22	9.417	8.424	7.743
26	.4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	.5709	1.752	4.042	3.725	3·332	3.063
30	.2546	.4527	2.209	3.206	2.954	2.642	2.429
31	.2268	.3590	2.785	2.542	2.342	2.095	1.926
32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
33	.1798	.2258	4.429	1.599	1.473	1.318	1.211
34	.1601	.1791	5.584	1.268	1.168	1.045	0.9606
35	.1426	.1420	7.042	1.006	0.9265	0.8288	.7618
36	.1270	.1126	8.879	0.7974	.7347	.6572	.6041
37	.1131	.089 31	11.20	.6324	.5827	.5212	.4791
38	.1007	.070 83	14.12	.5015	.4621	.4133	.3799
39	.089 69	.056 17	17.80	•3977	.3664	.3278	.3013
40	.079 87	.044 54	22.45	•3154	.2906	.2600	.2390

* Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

TABLE 320 (continued).

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). Metric Units (continued).

Gage	Diameter in mm,		Ohms per Kilogram.		Grams per Ohm.
No.	at 20° C.	°° C.	20 ⁰ C.	50 ⁰ C.	20° C.
0000	11.68	0.000 155 4	0.000 168 7	0.000 188 6	5 928 000.
000	10.40	.000 247 2	.000 268 2	.000 299 9	3 728 000.
00	9.266	.000 393 0	.000 426 5	.000 476 8	2 344 000.
0	8.252	.000 624 9	.000 678 2	.000 758 2	I 474 000.
I	7.348	.000 993 6	.001 078	.001 206	927 300.
2	6.544	.001 580	.001 715	.001 917	583 200.
3	5.827	.002 512	.002 726	.003 048	366 800.
4	5.189	.003 995	.004 335	.004 846	230 700.
5	4.621	.006 352	.006 893	.007 706	145 100.
6	4.115	.010 10	.010 96	.012 25	91 230.
7	3.665	.016 06	.017 43	.019 48	57 380.
8	3.264	.025 53	.027 71	.030 98	36 080.
9	2.906	.040 60	.044 06	.049 26	22 690.
10	2.588	.064 56	.070 07	.078 33	14 270.
11	2.305	.1026	.1114	.1245	8976.
12	2.053	.1632	.1771	.1980	56.45
13	1.828	.2595	.2817	.3149	3550.
14	1.628	.4127	.4479	.5007	2233.
15	1.450	.6562	.7122	.7961	1404.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	349-3
19	0.9116	4.194	4.552	5.089	219.7
20	.8118	6.670	7.238	8.092	138.2
21	.7230	10.60	11.51	12.87	86.88
22	.6438	16.86	18.30	20.46	54.64
23	•5733	26.81	29.10	32.53	34.36
24	.510б	42.63	46.27	51.73	21.61
25	•4547	67.79	73.57	82.25	13.59
26	•4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	5.376
28	.3211	272.5	295.8	330.6	3.381
29	.2859	433·3	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	1.337
31	.2268	1096.	1189.	1329.	0.8410
32	.2019	1742.	1891.	2114.	.5289
33	.1798	2770.	3006.	3361.	.3326
34	.1601	4404.	4780.	5344.	.2092
35	.1426	7003.	7601.	8497.	.1316
36	.1270	11140.	12090.	13510.	.082 74
37	.1131	17710.	19220.	21480.	.052 04
38	.1007	28150.	30560.	34160.	.032 73
39	.089 69	44770 .	48590.	54310.	.020 58
40	.079 87	71 180.	77260.	86360.	.012 94

TABLE 321.-ALUMINUM WIRE TABLE.

ENGLISH.

Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).

American Wire Gage (B. & S.). English Unite.

		Cros	s Section.	Ohms	Pounds		
Gage	Diameter	Circular	Square	per	per	Pounds	Feel
Nn.	in Mils.	Mils.	Inches.	1000 Feet.	1000 Feet.	per Ohm.	per Ohm.
0000	460.	212 000.	0.166	0.0804	195.	2420.	12 400.
000	410.	168 000.	.132	.101	154.	1 520.	9860.
00	365.	133 000.	.105	.128	122.	957•	7820.
0	325.	106 000.	.0829	.161	97.0	60 2.	6200.
I	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3	229.	52 600.	.0413	.323	48.4	150.	3090.
4	204.	41 700.	.0328	.408	38.4	94.2	2450.
5	182.	33 100.	.0260	.514	30.4	59.2	1950.
6	162.	26 300.	.0206	.648	24.1	37.2	1 540.
7	144.	20 800.	.0164	.817	19.1	23.4	1 220.
8	128.	16 500.	.0130	1.03	15.2	14.7	970.
9	114.	13 100.	.0103	1.30	12.0	9.26	770.
10	102.	10 400.	.008 15	1.64	9.55	5.83	610.
11	91.	8230.	.006 47	2.07	7.57	3.66	484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.	.004 07	3.29	4.76	1.45	304.
14	64.	4110.	.003 23	4.14	3.78	0.911	241.
15	57.	3260.	.002 56	5.22	2.99	·573	191.
16	51.	2580.	.002 03	6.59	2.37	.360	152.
17	45	2050.	.001 61	8.31	1.88	.227	120.
18	40.	1620.	.001 28	10.5	1.49	.143	95·5
19	36.	1290.	.001 01	13.2	1.18	.0897	75·7
20	32.	1020.	.000 802	16.7	0.939	.0564	60.0
21	28.5	810.	.000 636	21.0	.745	.0355	47.6
22	25.3	642.	.000 505	26.5	.591	.0223	37.8
23	22.6	509.	.000 400	33·4	.468	.0140	29.9
24	20.1	404.	.000 317	42.1	.371	.008 82	2 3.7
25	17.9	320.	.000 252	53.1	.295	.005 55	1 8.8
26	15.9	254.	.000 200	67.0	.234	.003 49	1 4.9
27	14.2	202.	.000 1 58	84.4	.185	.002 19	11.8
28	12.6	160.	.000 126	106.	.147	.001 38	9.39
29	11.3	127.	.000 099 5	134.	.117	.000 868	7.45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3 .72
33	7.1	50.1	.000 039 4	339.	.0461	.000 136	2.95
34	6.3	39.8	.000 031 2	428.	.0365	.000 085 4	2.34
35	5.6	31.5	.000 024 8	540.	.0290	.000 053 7	1.85
36	5.0	25.0	.000 019 6	681.	.0230	.000 033 8	1.47
37	4.5	19.8	.000 015 6	858.	.0182	.000 021 2	1.17
38	4.0	15.7	.000 012 3	1080.	.0145	.000 013 4	0.924
39	3.5	12.5	.000 009 79	1 360.	.0115	.000 008 40	.733
40	3.1	9.9	.000 007 77	17 20.	.0091	.000 005 28	.581

Hard-Drawn Aluminum Wire at 20° 0.

American Wire Gage (B. & S.) Metric Units.

Gage	Diameter	Cross Section	Ohms per	Kilograms per	Grams per	Ohms per
No.	in mm.	in mm. ²	Kilometer.	Kilometer.	Ohm.	Meter.
0000	11.7	107.	0.264	289.	I 100 000.	3790.
000	10.4	85.0	•333	230.	690 000.	3010.
00	9.3	67.4	•419	182.	434 000.	2380.
0	8.3	53·5	.529	144.	273 000.	1890.
1	7.3	42.4	.667	114.	172 000.	1 500.
2	6.5	33.6	.841	90.8	108 000.	1 1 90.
3	5.8	26.7	1.06	72.0	67 900.	943.
4	5.2	21.2	1.34	57.1	42 700.	748.
5	4.6	16.8	1.69	45.3	26 900.	593.
6	4.1	13.3	2.13	35.9	16 900.	470.
7	3.7	10.5	2.68	28.5	10 600.	373.
8	3.3	8.37	3.38	22.6	6680.	296.
9	2.91	6.63	4.26	17.9	4200.	235.
10	2.59	5.26	5.38	14.2	2640.	186.
11	2.30	4.17	6.78	11.3	1660.	148.
12	2.05	3.31	8.55	8.93	1050.	117.
13	1.83	2.62	10.8	7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	0.823	34•4	2.22	64.7	29.1
19	0.91	.653	43•3	1.76	40.7	23.1
20	.81	.518	54.6	1.40	_25.6	18.3
21	.72	.411	68.9	1.11	16.1	14.5
22	.64	.326	86.9	0.879	10.1	11.5
23	.57	.258	1 10.	.697	6.36	9.13
24	.51	.205	1 38.	·553	4.00	7.24
25	-45	.162	174.	.438	2.52	5.74
26	-40	.129	220.	.348	1.58	4.55
27	.36	.102	277.	.276	0.995	3.61
28	.32	.0810	349.	.219	.626	2.86
29	.29	.0642	440.	.173	.394	2.27
30	.25	.0509	555.	.138	.248	1.80
31	.227	.0404	700.	.109	.156	1.43
32	.202	.0320	883.	.0865	.0979	1.13
33	.180	.0254	1110.	.0686	.0616	0.899
34	.160	.0201	1400.	.0544	.0387	.712
35	.143	.0160	1770.	.0431	.0244	.565
36	.127	.0127	2230.	.0342	.01 53	.448
37	.113	.0100	2820.	.0271	.009 63	•355
38	.101	.0080	3550.	.0215	.006 06	.262
39	.090	.0063	4480.	.0171	.003 81	.223
40	.080	.0050	5640.	.0135	.002 40	•177

TABLES 323, 324.

DIELECTRIC STRENGTH.

TABLE 323 Stead	ly Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.
-----------------	---

Spark length. cm.	R = 0. Points.	R = 0.25 cm.	R = 0.5 cm.	R=1 cm.	R = 2 cm.	R = 3 cm.	$R = \infty$. Plates.
0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.8 1.0 1.5 2.0 3.0 4.0 5.0	- - - - 4680 5310 5970 6300 6840 8070 8670 8670 9960 10140 11250 12210 13050	- - - 5010 8610 11140 14040 15990 17130 18960 20670 22570 24570 24570 28380 29580	1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060	1 530 2430 3240 3990 4 560 8 490 11 340 14 340 17 220 20070 247 80 27 8 10 37 260 4 54 80	2340 3060 3810 4560 8370 11190 14250 16630 20070 25830 20850	4500 7770 10560 13140 16470 19380 26220 32760	4350 7590 10650 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earbart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 324. — Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length. cm.	R = 1 cm.	R = 1.92	R = 5	R = 7.5	<i>R</i> =10	R=15
0.08 .10 .15 .20 .25	3770 4400 5990 7510 9045	4380 5940 7440 8970	4330 5830 7340 8850	4290 5790 7250 8710	4245 5800 7320 8760	4230 5780 7330 8760
0.30 .35 .40 .45 .50	10480 11980 13360 14770 16140	10400 11890 13300 14700 16070	10270 11670 13100 14400 15890	10130 11570 12930 14290 15640	10180 11610 12980 14330 15690	101 50 11 590 12970 14320 1 5690
0.6 .7 .8 0.9 1.0	18700 21350 23820 26190 28380	18730 21380 24070 26640 29170	18550 21140 23740 26400 28950	18300 20980 23490 26130 28770	18350 20990 23540 26110 28680	18400 21000 23550 26090 28610
I.2 I.4 I.6 I.8 2.0	32400 35850 38750 40900 42950	34100 38850 43400 -	33790 38850 43570 48300	33660 38580 43250 47900 52400	33640 38620 43520	33620 38580

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

TABLES 325, 326.

DIELECTRIC STRENGTH.

, cii	Alter- pt.		Steady pot	tentials.		ġ	Alter- it.	Steady potentials.	
Spark length, cm. Dull points. Alter- nating current.		Ball electrodes.		Cup electrodes.		Spark length,	ints. Alter- 5 current.	Ball ele	ctrodes.
Spark	ull pe natin	R=1 cm.	R=2.5 cm.	Projection.		park	Dull points. nating curr	R=1 cm.	P
	A			4.5 mm.	1.5 mm.	ŝ	_Ă_	K=1 cm.	R=2.5 cm.
0.3	-	i _	-	-	11280	6.0	61000		86830
0.5	-	17610	17620	-	17420	7.0	-	52000	
0.7	-	-	23050	-	22950	8.0	67000	52400	90200
1.0	12000	30240	31390	31400	31260	10.0	73000	74300	91930
1.2	-	33800	36810	_	36700	12.0	82600	· · · <u>-</u>	93300
I.5	-	37930	44310		44510	14.0	92000	-	94400
2.0	29200	42320	56000	56500	56530	15.0	-	-	94700
2.5	-	45000	65180	-	68720	16.0	101000	-	101000
3.0	40000	46710	71200	80400	81140	20.0	119000		
3- 5 4.0	_	-	75300	-	92400	25.0	140600		
	48 500	49100	78600	101700	103800	30.0	165700		
4.5	_	-	81 540	-	114600	35.0	190900		1
5.0	56500	50310	83800	-	126500				
5-5	-	-	-	-	135700				

TABLE 325. - Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Mül-ler, Ann. d. Phys. 28, p. 585, 1909.

The specially constructed elec-trodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diame-ter and having a height of 4.5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satis-factory linear relation between the spark lengths and the voltage throughout the range studied.

s

 $\mathcal{N}_{\mathrm{end}}$

۱I

TABLE 326. - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths l.

Pressure. cm. Hg.	<i>ໄ</i> ≕0.04	<i>i</i> ≠0.06	<i>l</i> =0.08	<i>l</i> =0.10	2=0.20	2=0 30	<i>l</i> =0.40	<i>i</i> =0.50
2		-	-	-	744	939	1110	1266
4		483	567	648	1015	1350	1645	1915
6		582	690	795	1290	1740	2140	2505
10		771	933	1090	1840	2450	301 5	3580
15 25 35 45	1110 1375 1640	1060 1420 1820 2150	1280 1725 2220 2660	1490 2040 2615 3120	2460 3500 450 5 547 5	3300 4800 6270 765 0	4080 6000 7870 9620	48 5 0 7120 9340 11420
55-	1820	2420	302 5	3610	6375	8950	11290	13455
65	2040	2720	34 0 0	4060	7245	10210	12950	15470
75	2255	3035	380 5	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Laodolt-Börnstein-

Meyerhoffer). For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO₂ in cylindrical air condensers, see Wien, Ana. d. Phys. 29, p. 679, 1909.

TABLES 327, 328.

DIELECTRIC STRENGTH.

TABLE 327. - Dielectric Strength of Materials.

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

Substance.	Kilovolts per cm	Substance.			Substance.	Kilovolts per cm.
Ebonite Empire cloth "paper Fibre Glass Granite (fused) . Guttapercha Impregnated jute . Leatheroid Linen, varnished . Liquid air Mica : Thickness. Madras 0.1 mm. "I.0 " Bengal 0.1 " "I.0 " Canada 0.1 " "I.0 " South America . Micanite	$\begin{array}{c} 300-1100\\ 80-300\\ 450\\ 20\\ 200-300\\ 300-1500\\ 90\\ 80-200\\ 20\\ 30-60\\ 100-200\\ 40-90\\ 1600\\ 300\\ 2200\\ 700\\ 1500\\ 500\\ 1500\\ 400 \end{array}$	Oils : Castor "Cottonseed Lard " Linseed, raw " " Lubricating . Neatsfoot " Olive " Paraffin " Sperm, mineral " " natural " Turpentine	I.O " 	190 130 70 140 185 90 190 50 200 90 200 90 170 75 215 160 180 85 195 90 160 110	Blotting Manilla Paraffined Varnished Paraffine : Melted Melt point. Solid 43° " 47° " 52° " 70° Presspaper Rubber	770 150 25 500 100-250 75 350 400 230 450 45-75 160-500 90-130 140 80

TABLE 328. - Potentiels in Volts to Produce a Spark in Kerosene.

Spark length.	Electrodes Balls of Diam. d.								
* mm. ~	0.5 cm.	I CM.	2 Cm.	3 cm.					
0,1	3800	3400	27 50	2200					
.2	7,500	6450	4800	3500					
-3	10250	9450	7450	4600					
•4	11750	10750	9100	5600					
.5 .6	1 30 50	12400	11000	6900					
.6	14000	13550	12250	8250					
.8	15500	15100	13850	10450					
1.0	16750	16400	15250	12350					

Determinations of the dielectric strength of the same substance by different observers do not agree well. For a discussion of the sources of error see Mościcki, Electrotechn. Z. 25, 1904. For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 65, 1893.

TASLES 329, 330.

TABLE 329. - Electrical Resistance of Straight Wires with Alternating Currents of Different Frequencies.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in	Frequency n =-								
millimeters.	60	100	1 000	10 000	100 000	1 000 000			
0.05	-	-	-	_		*1.001			
0.1	-	-	-	-	*1.001	1.008			
0.25	-	-	-	-	1.003	I.2 47			
0.5	-		. –	*1.001	I.047	2. 240			
1.0	-	-	-	1.008	1.503	4.19			
2	-	-	1.001	1.120	2.756				
3	-	-	1.006	1.437	4.00				
4	-		1.021	1.842					
5		*1.001	1.047	2.240					
7.5	1.001	1.002	1.210	3.22	1				
10	1.003	1.008	1.503	4.19					
15	1.016	1.038	2.136		}				
20	1.044	1.120	2.756 3.38						
25	1.105	1.247	3.38		1 1				
40	1.474	1.842							
100	3.31	4.19	1						

Values between 1.000 and 1.001 are indicated by *1.001.

The change of resistance of wires other than copper (iron wires excepted) may be calculated from the above table, making use of the fact that the change of resistance is a function of the argument $p = 2\pi r \sqrt{2n\lambda}$ where r = radius of cross-section, n = frequency, $\lambda =$ conductivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 330. - Electrical Resistance for High Frequencies.

For which the high frequency resistance will be less than 1 per cent greater than direct current resistance.

Wave-length.		or Advance ire.	Manganin	Platinum	Copper	
	Diameter.	Maximum Current.	Diameter.	Diameter.	Diameter.	
<i>m</i> .	mm.	amp.	mm.	mm.	mm.	
100	0.30	3.5	0.29	0.13	0.006	
200	0.46	4.5	0.40	0.29	0.045	
300	0.57	5.5	0.50	0.27	0.09	
400	0.66	7.0	0.60	0.30	0.10	
600	0.83	8.o	0.75	0.37	0.15	
800	o.98	10.0	0.88	0.42	0.20	
1000	1.10	11.5	0.99	0.50	0.21	
1200	1.20	12.5	1.10	0.57	0.22	
1 500	1.30	14.0	1.21	0.63	0.26	
2000	1.52	17.0	1.38	0.73	0.30	
3000	1.80 24.0		1.62	0.80	0.33	

Advance wire is practically identical electrically with constantan, while for high resistance German silver the values are nearly the same as for manganin. The column of the table under maximum current gives the approximate current which may be carried by the various sizes without undue heating. The current capacity of the manganin is very nearly the same.

From Austin, Jour. Wash. Acad. of Sci. 2, p. 190, 1911.

TABLE 331.

WIRELESS TELECRAPHY.

Wave-Length in Meters, Frequency in periods per second, and Oscillation Constant LC in Microhemies and Microfarsds.

Meters.	n	LC	Meters.	п	LC	Meters.	n	LC
100 110 120 130 140 150 160 170 180 190	3,000,000 2,727,000 2,308,000 2,308,000 2,143,000 2,000,000 1,875,000 1,875,000 1,667,000 1,579,000	0.00282 0.00341 0.00405 0.00476 0.00552 0.00633 0.00721 0.00813 0.00912 0.01016	600 610 620 630 640 650 650 650 670 680 680 690	500,000 491,800 485,500 468,700 461,500 454,500 447,800 441,200 434,800	0.101 0.105 0.108 0.111 0.115 0.119 0.123 0.120 0.130 0.134	1100 1110 1120 1130 1140 1150 1160 1170 1180 1190	272,700 270,300 265,500 263,100 260,900 258,600 256,400 254,200 252,100	0.341 0.347 0.353 0.359 0.366 0.372 0.379 0.385 0.392 0.399
200 210 220 230 240 250 250 250 270 280 290	I, 500,000 I, 429,000 I, 364,000 I, 250,000 I, 250,000 I, 154,000 I, 1 11,000 I,071,000 I,034,000	0.0113 0.0124 0.0136 0.0149 0.0162 0.0176 0.0190 0.0205 0.0221 0.0237	700 710 720 730 740 750 760 770 780 790	428,600 422,500 416,700 405,400 405,400 400,000 394,700 389,600 384,600 379,800	0.138 0.142 0.146 0.150 0.154 0.158 0.163 0.167 0.171 0.176	1200 1210 1220 1230 1240 1250 1260 1250 1280 1290	250,000 247,900 245,900 243,900 241,900 240,000 238,100 236,200 234,400 232,600	0.405 0.412 0.419 0.426 0.433 0.440 0.447 0.454 0.454 0.461 0.468
300 310 320 330 340 350 350 370 380 390	1,000,000 937,700 909,100 882,400 859,100 833,300 810,800 789,500 769,200	0.0253 0.0270 0.0288 0.0307 0.0326 0.0345 0.0365 0.0365 0.0385 0.0406 0.0428	800 810 820 830 840 850 850 850 870 880 880 890	37 5,000 370,400 361,400 357,100 352,900 348,800 344,800 344,800 340,900 337,100	0.180 0.185 0.189 0.194 0.199 0.203 0.208 0.213 0.218 0.223	1300 1310 1320 1330 1340 1350 1360 1370 1380 1390	230,800 229,000 225,600 223,900 223,900 222,200 220,600 218,900 217,400 215,800	0.476 0.483 0.490 0.498 0.505 0.513 0.521 0.529 0.536 0.544
400 410 420 430 440 450 460 470 480 490	750,000 731,700 714,300 697,700 681,800 666,700 652,200 638,300 625,000 612,200	0.0450 0.0473 0.0496 0.0520 0.0545 0.0570 0.0596 0.0596 0.0622 0.0649 0.0676	900 910 920 930 940 950 950 950 970 980 990	333,300 329,700 326,100 322,600 319,100 315,900 312,500 309,300 306,100 303,000	0.228 0.233 0.238 0.243 0.254 0.259 0.265 0.270 0.276	1400 1410 1420 1430 1440 1450 1460 1470 1480 1490	214,300 212,800 201,300 209,800 208,300 206,900 205,500 204,100 202,700 201,300	0.552 0.559 0.567 0.576 0.584 0.592 0.600 0.608 0.608 0.617 0.625
500 510 520 530 540 550 550 550 550 550 570 580 590	600,000 588,200 566,000 555,600 545,500 545,500 533,700 526,300 517,200 508,500	0.0704 0.0732 0.0761 0.0821 0.0851 0.0853 0.0915 0.0947 0.0981	1000 1010 1020 1030 1040 1050 1060 1070 1080 1090	300,000 297,000 291,100 291,300 288,400 285,700 285,700 285,400 280,400 277,800 277,800	0.281 0.287 0.293 0.299 0.305 0.310 0.316 0.322 0.328 0.335	I 500 I 510 I 520 I 530 I 540 I 550 I 550 I 550 I 570 I 580 I 590	200,000 198,700 197,400 196,100 194,800 193,600 192,300 191,100 189,900 188,700	0.633 0.642 0.650 0.659 0.668 0.676 0.685 0.694 0.703 0.712

Prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

TABLE 331 (concluded).

WIRELESS TELEGRAPHY.

Wave-Length, Frequency and Oscillation Constant.

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1600 1610 1620 1630 1640 1650 1660 1670 1680 1690	187, 500 186, 300 185, 200 184, 100 182, 900 181, 800 180, 700 179, 600 178, 600 177, 500	0.721 0.730 0.739 0.748 0.757 0.766 0.776 0.785 0.794 0.804	2000 2100 2200 2300 2400 2500 2500 2600 2700 2800 2900	I 50,000 I 42,900 I 36,400 I 25,000 I 25,000 I 25,000 I 15,400 I 11,100 I 07,100 I 03,400	1.13 1.24 1.36 1.49 1.62 1.76 1.90 2.05 2.21 2.37	6000 6100 6200 6300 6400 6500 6600 6600 6600 6600 6600 66	50,000 49,180 48,550 47,620 46,870 46,150 45,450 44,780 44,120 43,480	10.1 10.5 10.8 11.1 11.5 11.9 12.3 12.6 13.0 13.4
1700 1710 1720 1730 1740 1750 1760 1770 1780 1790	176,500 173,400 174,400 173,400 172,400 171,400 170,500 169,400 168,500 167,600	0.813 0.823 0.833 0.842 0.852 0.862 0.872 0.882 0.892 0.902	3000 3100 3200 3300 3400 3500 3500 3700 3800 3800 3900	100,000 96,770 90,910 88,240 85,910 83,330 81,080 78,950 76,920	2.53 2.70 2.88 3.07 3.26 3.45 3.65 3.85 4.06 4.28	7000 7100 7200 7300 7400 7500 7600 7600 7700 7800 7900	42,860 42,250 41,670 41,100 40,540 40,000 39,470 38,960 38,960 38,460 37,980	13.8 14.2 14.6 15.0 15.4 15.8 16.3 16.7 17.1 17.6
1800 1810 1820 1830 1840 1850 1860 1870 1880 1890	166,700 165,700 163,900 163,900 163,000 162,200 161,300 160,400 159,600 158,700	0.912 0.923 0.933 0.943 0.953 0.963 0.974 0.985 0.995 1.006	4000 4100 4200 4300 4400 4500 4600 4700 4800 4900	75,000 73,170 71,430 69,770 68,180 66,670 65,220 63,830 62,500 61,220	4.50 4.73 4.96 5.20 5.45 5.70 5.96 6.22 6.49 6.76	8000 8100 8200 8300 8400 8500 8500 8500 8500 8500 8500 8800 8800	37,500 37,040 36,590 36,140 35,710 35,200 34,880 34,480 34,480 34,090 33,710	18.0 18.5 18.9 19.4 19.9 20.3 20.8 21.3 21.8 22.3
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990	1 57,900 1 57,100 1 56,300 1 54,600 1 54,600 1 53,800 1 53,100 1 52,300 1 51,500 1 50,800	1.016 1.026 1.037 1.048 1.059 1.070 1.081 1.092 1.103 1.114	5000 5100 5200 5300 5400 5500 5600 5700 5800 5700 5800 5900	60,000 58,820 57,660 55,560 54,550 52,630 52,630 51,720 50,830	7.04 7.32 7.61 8.21 8.51 8.83 9.15 9.47 9.81	9000 9100 9200 9300 9400 9500 9500 9500 9500 9700 9800 9800 9900	33,330 32,970 32,610 31,910 31,590 31,250 30,930 30,930 30,610 30,310 30,000	22.8 23.3 24.3 24.9 25.4 25.9 26.5 27.0 27.6 28.1

TABLE 332.

WIRELESS TELECRAPHY.

Radiation Resistances for Various Wave-Lengths and Antenna Heights.

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by $E = \text{constant} (h^2/\lambda^2) I^2$, where h is the length of the oscillator, λ , the wave-length and I the current at its center. For a flat-top antenna $E = 1600 (h^2/\lambda^2) I^2$ watts; $1600 h^2/\lambda^2$ is called the radiation resistance.

$h = Wave-Length \lambda$	40 Ft.	60 Ft.	80 Ft.	100 Ft.	120 Ft.	160 Ft.	200 Ft.	300 Ft.	450 Ft.	600 Ft.	1200 Ft.
m	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm
200 300 600 1000 1200 1500 2000 2500 2500 3000 4000 5000 6000 7000	6.0 2.7 1.5 0.66 0.37 0.24 0.17 0.11	13.4 6.0 3.4 1.5 0.84 0.54 0.24 0.13	24.0 10.6 6.0 2.7 1.5 0.95 0.66 0.42 0.42 0.15 0.11 0.06	37.0 16.5 9.3 4.1 2.3 1.5 1.03 0.66 0.37 0.24 0.17 0.09	54.0 23.8 13.4 6.0 3.4 2.1 1.5 0.95 0.54 0.34 0.24 0.13	95.0 42.4 23.8 10.6 6.0 3.8 2.6 1.7 0.95 0.61 0.42 0.24	16.4 9.2 6.0 4.1 2.6 1.5 0.95 0.66 0.37 0.24 0.12	37-4 21.0 13.5 9-3 6.0 3-4 2.2 1.5 0.84 0.53 0.27	84.0 30.0 21.0 13.4 7.5 4.8 3.4 1.9 1.20 0.84 0.61	149.0 84.0 37.0 24.0 13.4 8.6 6.0 3.4 2.2 1.5	215.0 149.0 95.0 54.0 34.0 24.0 13.4 8.6 6.0 4.4

(h == height to center of capacity of conducting system.)

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 1911.

TABLE 333.

INTERNATIONAL ATOMIC WEIGHTS. ELECTROCHEMICAL EQUIVALENTS.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 35, p. 1807, 1913). The Electrochemical equivalent of Silver is 0.001180 gram. sec.⁻¹ amp.⁻¹. (See definition of International Ampere, p. xxxiii.) The electrochemical equivalent for any other element is

 $\frac{\text{atomic weight element}}{\text{atomic weight silver}} \times \frac{.0011180}{\text{valency}} \text{ gm. sec.}^{-1} \text{ amp.}^{-1}.$

The equivalent for iodine has been recently (1913) determined at the Bureau of Standards as 1.3150. The valencies given are only those commonly shown by the elements.

Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.	Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.
Aluminum	Al	27.1	3.	Mercury	Hg	200.6	1, 2.
Antimony	Sb	120.2	3, 5.	Molybdenum	Mo	96.0	4, 6.
Argon	A	39.88	0.	Neodymium	Nd	144.3	3.
Arsenic	As	74.96	3, 5.	Neon	Ne	20.2	0.
Barium	Ba	137.37	2.	Nickel	Ni	58.68	2, 3.
Bismuth Boron Bromine Cadmium Cæsium	Bi B Cd Cs	208.0 11.0 79.92 112.40 132.81	3, 5. 3. 1. 2. 1.	(ation) Niton (Ra eman- Nitrogen Osmium Oxygen Palladium	Nt. N Os O Pd	222.4 14.01 190.9 16.00 106.7	3, 5. 6, 8. 2. 2, 4.
Calcium	Ca	40.07	2.	Phosphorus	P	31.04	3, 5.
Carbon	C	12.00	4.	Platinum	Pt	195.2	2, 4.
Cerium	Ce	140.25	3, 4.	Potassium	K	39.10	1.
Chlorine	Cl	35.46	1.	Praseodymium	Pr	140.6	3.
Chromium	Cr	52.0	2, 3, 6.	Radium	Ra	226.4	2.
Cobalt	Co	58.97	2, 3.	Rhodium	Rh	102.9	3.
Columbium	Cb	93.5	5.	Rubidium	Rb	85.45	1.
Copper	Cu	63.57	1, 2.	Ruthenium	Ru	101.7	6, 8.
Dysprosium	Dy	162.5	3.	Samarium	Sa	150.4	3.
Erbium	Er	167.7	3.	Scandium	Sc	44.1	3.
Europium	Eu	1 52.0	3.	Selenium	Se	79.2	2, 4, 6.
Fluorine	F	19.0	1.	Silicon	Si	28.3	4.
Gadolinium	Gd	1 57.3	3.	Silver	Ag	107.88	1.
Gallium	Ga	69.9	3.	Sodium	Na	23.00	1.
Germanium	Ge	72.5	4.	Strontium	Sr	87.63	2.
Glucinum Gold Hellum Holmium Hydrogen	Gl Au He Ho H	9. 1 197.2 3.99 163.5 1.008	2. 1, 3. 0. 3. 1.	Sulphur Tantalum Tellurium Terbium Thallium Thorium	S Ta Te Tb Tl Th	32.07 181.5 127.5 159.2 204.0 232.4	2, 4, 6. 5. 2, 4, 6. 3. 1, 3. 4.
Indium	In	114.8	3.	Thulium	Tm	168.5	3.
Iodine	I	126.92	1.	Tin	Sn	119.0	2, 4.
Iridium	Ir	193.1	4.	Titanium	Ti	48.1	4.
Iron	Fe	55.84	2, 3.	Tungsten	W	184.0	6.
Krypton	Kr	82.92	0.	Uranium	U	238.5	4, 6.
Lanthanum	La	139.0	3.	Vanadium	V	51.0	3, 5.
Lead	Pb	207.10	2, 4.	Xenon	Xe	130.2	o.
Lithium	Li	6.94	1.	Ytterbium	Yb	173.0	3.
Lutecium	Lu	174.0	3.	Yttrium	Yt	89.0	3.
Magnesium	Mg	2 4.32	2.	Zinc	Zn	65-37	2.
Manganese	Mn	54.93	2, 3, 7.	Zirconium	Zr	90.6	4.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has fur-nished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their elec-trochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner : –

Let $K_{18} =$ conductivity of the solution at 18° C. relative to mercury at 0° C.

 $K_{18}^{**} = \text{conductivity of the solution water at 18° C. relative to mercury at 0° C.}$ Then $K_{18}^{**} = K_{18}^{**} = \text{conductivity of the electrolyte in the solution measured.}$

 $\frac{k_{10}}{10} = \mu =$ conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

TABLE 334. - Value of k₁₈ for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCI	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K2SO4	MgSO4
0.000001	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 335. — Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 271 may be convenient. They represent grams per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	m	Temp. C.	Density.	Salt dissolved.	Grams per liter.	\$72	Temp. C.	Density.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74-59 53-55 58-50 42-48 104-0 68.0 165.9 101.17 85.08 169.9 65.28 61.29 98.18	I.0 I.0009 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0	1 5.2 18.6 18.4 18.4 18.6 15.0 18.6 18.6 18.7 - 18.3 18.3	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542 - - 1.0367 1.0467	$\begin{array}{c} \frac{1}{2}K_2SO_4 & . \\ \frac{1}{2}Na_2SO_4 & . \\ \frac{1}{2}Li_2SO_4 & . \\ \frac{1}{2}MgSO_4 & . \\ \frac{1}{2}ZnSO_4 & . \\ \frac{1}{2}CuSO_4 & . \\ \frac{1}{2}K_2CO_3 & . \\ \frac{1}{2}Na_2CO_3 & . \\ \frac$	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.0041 1.0014 1.0006	18.9 18.6 18.6 5.3 18.2 18.3 17.9 18.8 18.6 18.6 18.6	1.0658 1.0602 1.045 1.0573 1.0794 1.0776 1.0576 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

SMITHSONIAN TABLES.

* "Wied. Ano." vol. 26, pp. 161-226, 1885.

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10°.

Salt dissolved.	<i>m</i> = 10	5	3	1	0.5	0.1	.05	.03	.o1
$\frac{\frac{1}{2}K_{2}SO_{4}}{KCl} \cdot \cdot$		- 770 752	827 900 825 572	- 919 968 907 752	672 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 351	487 - 1 50 448	658 - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - 60 -	82 82 180 398	146 151 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 532 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 30 660 0.5	- 240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820 12	694 671 510 1899 19	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	600	1420	2010	2780	3017	3244	3330	3369	3416
HNOg	610	1470	2070	2770	2991	3225	3289	3328	3395
MBPO4	148	160	170	200	250	430	540	620	790
KOH	423	990	1314	1718	1841	1986	2045	2078	2124
NHg	0.5	2.4	3.3	8.4	12	31	43	50	92
Salt dissolved.	.006	.002	.001	.0006	.0002	.0001	.00006	.00002	.0000I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1130	1181	1207	1220	1241	1249	1254	1266	1275
	1162	1185	1193	1199	1209	1209	1212	1217	1216
	1176	1197	1203	1209	1214	1216	1216	1216	1207
	1157	1180	1190	1197	1204	1209	1215	1209	1205
	1140	1173	1180	1190	1199	1207	1220	1198	1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031	1074	1092	1102	1118	1126	1133	1144	1142
	1068	1091	1101	1109	1119	1122	1126	1135	1141
	982	1033	1054	1066	1084	1096	1100	1114	1114
	740	873	950	987	1039	1062	1074	1084	1086
	1033	1057	1068	1069	10 7 7	1078	1077	1073	1080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744	- 861	919	953	1001	1023	1032	1047	1060
	773	881	935	967	1015	1034	1036	1052	1056
	933	980	998	1009	1026	1034	1038	1056	1054
	939	979	994	1004	1020	1029	1031	1035	1036
	976	998	1008	1014	1018	1029	1027	1028	1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921	942	952	956	966	975	970	972	975
	891	913	919	923	933	934	935	943	939
	956	1010	1037	1046	988	874	790	715	697*
	3001	3240	3316	3342	3280	3118	2927	2077	1413*
	170	283	380	470	796	995	1133	1328	1304*
HCl · · ·	3438	3455	3455	3440	3340	3170	2968	2057	1254*
HNO ₃ · · ·	3421	3448	3427	3408	3285	3088	2863	1904	1144*
H ₁ H ₃ PO ₄ · · ·	858	945	968	977	920	837	746	497	402*
KOH · · ·	2141	2140	2110	2074	1892	1689	1474	845	747*
NH ₈ · · ·	116	190	260	330	500	610	690	700	560*

* Acids and alkaline salts show peculiar irregularities.

TABLES 337, 338.

LIMITING VALUES OF μ . TEMPERATURE COEFFICIENTS.

TABLE 337. - Limiting Values of µ.

This table shows limiting values of $\mu = \frac{k}{m}$. 10⁸ for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
$\frac{1}{2}$ K ₂ SO ₄ .	1280	$\frac{1}{2}$ BaCl ₂ .	1150	¹ ₂MgSO ₄ .	1080	$\frac{1}{2}H_2SO_4$.	3700
ксі	1220	<u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>	1150	$\frac{1}{2}$ Na ₂ SO ₄ .	1060	нсі.	3500
кі	1220	$\frac{1}{2}$ BaN ₂ O ₆ .	1120	<u></u> ₄ZnCl	1040	HNO ₈	3500
NH₄Cl	1210	$\frac{1}{2}CuSO_4$.	1100	NaCl	1030	<u></u>	1100
KNO8	1210	AgNO ₈ .	1090	$NaNO_8$.	980	кон	2200
-	-	$\frac{1}{2}$ ZnSO ₄ .	1080	$\mathrm{K_{2}C_{2}H_{3}O_{2}}$	940	 ¹ / ₂ Na₂CO ₈ .	1400

If the quantities in Table 336 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 337 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_2SO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 338. - Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
ксі	0.0221	кі	0.0219	$\frac{1}{2}$ K ₂ SO ₄ .	0.0223	¹ / ₂ K₂CO ₈	0.0249
NH_4Cl	0.0226	KNO ₈	0.0216	$\frac{1}{2}$ Na ₂ SO ₄ .	0.0240	$\frac{1}{2}$ Na ₂ CO ₈	0.0265
NaCl	0.0238	NaNO ₈	0.0226	$\frac{1}{2}$ Li ₂ SO ₄ .	0.0242		
LiCl.,.	0.0232	AgNO ₈	0.0221	₽MgSO4 .	0.0236		0.0194 0.0159
$\frac{1}{2}$ BaCl ₂	0.0234	₽Ba(NO8)2	0.0224	$\frac{1}{2}$ ZnSO ₈ .	0.0234	HNO3 12H2SO4	0.0162 0.0125
$\frac{1}{2}$ ZnCl ₂	0.0239	KC108	0.021 9	$\frac{1}{2}CuSO_4$.	0.0229		
$\frac{1}{2}$ MgCl ₂ .	0.0241	$\mathrm{KC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}$.	0.0229	-	-	$\frac{\frac{1}{2}H_2SO_4}{\text{for } m = .001}$	0.01 59

TABLE 339.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, $KHSO_4$ or H_8PO_4 , per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium accetate, and for sodium accetate, built and for solution and the values are concentration of the values have been subtracted. ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

Concentration in gram equivalents

1000 liter

Equivalent conductance in reciprocal ohms per centimeter cube gram equivalents per cubic centimeter

Substance.	Concen- tration.		Equiv	alent cor	ductance	e at the	followi	ng °C i	empera	tures.	
Dubstance.	^T C	180	25 ⁰	50 ⁰	75 ⁰	1000	1280	156 ⁰	2180	281 ⁰	306 ⁰
Potassium chloride .	0 2 10	130.1 126.3 122.4	(152.1) 146.4 141.5	(232.5) 215.2	(321.5) _ 295.2	414 393 377	(519) 	62 5 588 560	825 779 741	1005 930 874	1120 1008 910
66 66 . 66 66	80 100	113.5 112.0	129.0	194.5	264.6	342 336	415	498 490	638	723	720
Sodium chloride .	0	109.0	-	-	-	362 349	-	555 534	760 722	97 0 895	1080
11 11 1 11 11	10	105.6 102.0	-	-	_	336	-	511	685 500	820 674	955 860 680
4 4	80 100	93.5 92.0	-	-	-	301 296	-	450- 442	780	965	1065
Silver nitrate """	0 2 10	115.8 112.2 108.0	-		=	367 353 337		570 539 507	727 673	877 790	935 818
66 66 66 66	20 40	105.1 101.3	-	-	=	326 312	-	488 462	639 599	680	680
66 66	100 100	96.5 94.6	-	-	-	294 289	-	432	552	614	604
Sodium acetate	0	78.1 74.5	-	_	=	285 268	=	450 421	660 578	-	924 801
и и	10 80	71.2 63.4	-	=	-	253 221	=	396	542 452	-	702
Magnesium sulphate	0	114.1 94·3	-	=	-	426 302	-	690 377	1080		
	10	94.3 76.1 67.5	-	-	-	234	-	241 195	143 110		
46 44 -	20 40 80	59.3	-	-	-	160 136	-	158 133	88 75		
	100	52.0 49.8		-	-	130	-	126			
Ammonium chloride	200 0	43.1	152.0 146.5	-	-	(415)	-	(628) 601	(841) 801	=	(1176) 1031
66 66 . 66 66 .	2 10	126.5 122.5		=	1 -	399 382	=	573	758	=	925 828
" . Ammonium acetate .	30 0	118.1 (99.8) –	-	=	(338)		(523) 456			
44 44 . 44 44 .	10 25	91.7 88.2	-	-	-	286	-	430			

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

TABLE 339 (continued).

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

Substance.	Concen- tration.		Equiv	valent co	nductan	ce at tl	ne follov	ving ° C	temper	atures.	
	ta Co	180	250	50 ⁰	75 ⁰	1000	128 ⁰	156 ⁰	2180	2810	3060
Barium nitrate """ """ """ """ """	0 2 10 40 80 100	116.9 109.7 101.0 88.7 81.6 79.1				385 352 322 280 258	1 1 1 1	600 536 481 412 372	840 715 618 507 449	1120 828 658 503 430	1300 824 615 448
Potassium sulphate . """" """" """	0 2 10 40 80	1 32.8 1 24.8 1 1 5.7 1 04.2 97.2 95.0	-			249 455 402 365 320 294 286	-	715 605 537 455 415	1065 806 672 545 482	1460 893 687 519 448	1725 867 637 466 396
Hydrochloric acid """ "" " Nitric acid	100 2 10 80 100 0	379.0 373.6 368.1 353.0 350.6	- - - 421.0		- - - - 706	850 826 807 762 754 826		1085 1048 1016 946 929	1265 1217 1168 1044 1006	1 380 1 332 1 226 1 046	1424 1337 1162 862
	2 10 50	377.0 371.2 365.0 353.7 346.4	413.7 406.0 393.3 385.0	570 559 548 528 516	690 676 649 632	806 786 750 728	945 919 893 845 817	1047 1012 978 917 880	(1230) 1166 -	-	(1380) 1156 454*
Sulphuric acid """"" """	0 2 10 50	383.0 353.9 309.0 253.5	(429) 390.8 337.0 273.0	(591) 501 406 323	(746) 561 435 356	891 571 446 384	(1041) 551 460 417	1176 536 481 448	1505 563 533 502	-	(2030) 637
Potassium hydrogen sulphate	100 2 50 100 0	233.3 455.3 295.5 263.7 338.3	251.2 506.0 318.3 283.1 376	300 661.0 374.4 329.1 510	336 754 403 354 631	369 784 422 375 730	404 773 446 402 839	435 754 477 435 930	483	-	474*
i " " " " " " Acetic acid	2 10 50 100	283.1 203.0 122.7 96.5	311.9 222.0 132.6 104.0	401 273 157.8 122.7	464 300 168.6 129.9	498 308 168 128	508 298 158 120	489 274 142 108	(((9))
Acetic acid	0 10 30 80	(347.0) 14.50 8.50 5.22 4.67		-		(773) 25.1 14.7 9.05 8.10	1111	(900) 22.2 13.0 8.00	(1165) 14.7 8.65 5.34 4.82	-	(1268)
Sodium hydroxide . """"	0 2 20 50	216.5 212.1 205.8 200.6			-	594 582 559 540		835 814 771 738	1060 930 873		3/
Barium hydroxide . """···· """···· """···· ""····	0 2 10 50 100	222 215 207 191.1 180.1	256 	389 359 342 308	(520) 4 449 399	645 591 548 478	(760) 664 549	847 722 593			
Ammonium hydrox-	100 0 10 30	(238) 9.66 5. 66	204.2 (271) - 3.62	291 (404) - -	373 (526) - -	443 (647) 23.2 13.6	503 (764) - -	531 (908) 22.3 13.0	(1141) 15.6	-	(1406)
	100	3.10	3.02	5.35	6.70	7.47	-	7.17	4.82	-	1.33

* These values are at the concentration 80.0.

SMITHSONIAN TABLES.

306

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

Substance.	Concen-	E	quivalent	conduct	ance at t	he follow	ing ° C	emperatu	re.
	tration.	00	18 ⁰	25 ⁰	50 ⁰	75 ⁰	1000	1280	1560
Potassium nitrate	0	80.8 78.6	126.3	145.1	219	299	384	485	580
" "	2		122.5	140.7	212.7	289.9	370.3	460.7	551
" "	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435.4	520.4
"	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
Potassium oxalate	100	67.2	104.5	120.3	180.2	244.I	308.5	379.5	447.3
" "	0	7 9·4	127.6	147.5	230	322	419	538	653
	2	74.9	119.9	139.2	21 5.9	300.2	389.3	489.1	587
	12.5	69.3	111.1	129.2	199.1	275.1	354.1	438.8	524.3
	50	63	101	116.5	178.6	244.9	312.2	383.8	449.5
	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
Calcium nitrate	200	55.8	88.4	102.3	155	210.9	265.1	321.9	372.1
66 66	0	70.4	112.7	130.6	202	282	369	474	575
	2	66.5	107.1 98.6	123.7	191.9	266.7	346.5	438.4	529.8
	12.5	61.6		114.5	176.2	244	314.6	394-5	473-7
	50	55.6	88.6	102.6	1 57.2	216.2	276.8	343	405.I
	100	51.9	82.6	95.8 88.8	146.1	199.9	255.5	31 5.1 288	369.1
Potassium ferrocyanide .	200	48.3 98.4	76.7		135.4 288	184.7	234.4	200	334.7
Fotassium terrocyanide .	0		1 59.6	185.5	200	403	527		
"	0.5	91.6		171.1 158.9	243.8	0050	427.6		
	2.	84.8	137			335.2 271			
"	12.5	71	113.4	131.6 108.6	200.3 163.3	219.5	340 272.4		
	50	58.2	23·7	98.4	103.3	198.1	2/2.4		
	100	53 48.8	84.9 77.8	90.4 90.1		180.6	222.3		
66 66				83.3	135.7 124.8	165.7	203.1		
•	400	45.4	72.1	176			521		
Barium ferrocyanide		91 46.9	150	86.2	277 127.5	393 166.2	202.3		
			75 48.8	56.5	83.1	100.2	129.8		
	12.5	30.4 88	146	171	271	386	512		
Calcium ferrocyanide .	0			86.2	130	300	3**		
	12.5	47.1	75.5		1.30				
	50	31.2 24.1	49.9 38.5	57·4 44·4	64.6	81.9			
· · · · · · · · · · · · · · · · · · ·	100	24.1	35.1	44.4	58.4		84.3		
	200	20.6	32.9	37.8	55	73.7 68.7	77.5		
44 66 · ·	400	20.2	32.2	37.1		67.5	76.2		
Potassium citrate .	400	76.4	124.6	144.5	54 228	320	420		
6 6 6	0.5	-	120.I	139.4		5.			
	2	71	115.4	134.5	210.1	293.8	381.2		
	5	67.6	109.9	128.2	198.7	276.5	357.2		
	12.5	62.9	101.8	118.7	183.6	254.2	326	1	
"	50	54.4	87.8	102.1	1 57.5	215.5	273		
	100	50.2	80.8	03.0	143.7	196.5	247.5		
66 68	300	43.5	69.8	81	123.5	167	209.5		
Lanthanum nitrate	0	75.4	122.7	142.6	223	313	413	534	651
<i>"</i> """	2	68.9	110.8	128.9	200.5	279.8	363.5	457.5	549
ee 64	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	447.8
	50	54	86.1	99.7	1 52.5	207.6	261.4	31 5.8	357.7
"	100	49.9	79.4	01.8	1 39.5	189.1	236.7	282.5	316.3
	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2
	•	_	_				_		

From the investigations of Noyes and Johnston, Jouroal of the American Chemical Society, 31, p. 287, 1909. SMITHSONIAN TABLES.

TABLES 341, 342.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

Ion.	0 ⁰	180	250	50 ⁰	75 ⁰	1000	128 ⁰	156 ⁰
K	40.4	64.6	74.5	115	1 59	206	263	317
Na	26	43.5	50.9	82	1 16	155	203	249
NH4	40.2	64.5	74.5	115	1 59	207	264	319
Ag	32.9	54.3	63.5	101	1 43	188	245	299
Ba	33	55 ²	65	104	1 49	200	262	322
Ca	30	51 ²	60	98	1 42	191	252	312
ALCa	35	61	72	119	1 73	235	312	388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 68 ² 63 ² 60 95	75.5 70.6 40.8 79 73 70 111	116 104 67 125 115 113 173	160 140 96 177 163 161 244	207 178 130 234 213 214 321	264 222 171 303 275	318 263 211 370 336
н	240	314	350	465	565	644	722	777
он	105	172	192	284	360	439	525	592

TABLE 341. - The Equivalent Conductance of the Separate Ions.

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 342.- Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concen- tration in pure water. Equivalents per liter.
t	100h	K _W ×1014	C _{ff} ×10 ⁷
0	-	0.089	0.30
18	(0.35)	0.46	o. 68
25	-	0.82	0.91
100	4.8	48.	6.9
156	18.6	223.	14.9
218	52.7	461.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

SMITHSONIAN TABLES.

308

TABLES 343, 344.

DIELECTRIC CONSTANTS.

TABLE 343. — Dielectric Constant (Specific Inductive Capacity) of Gases. Atmospherio Pressure.

Wave-lengths of the measuring current greater than 10000 cm.

Gas.	Temp. ° C.		c constant red to	
	°C.	Vacuum=1	Air=1	Authority.
Air	0-	1.000590 1.000586	000000.I 000000.I	Boltzmanu, 1875. Klemenčič, 1885.
Ammonia	20	1.00718	1.00659	Bädeker, 1901.
Carbon bisulphide	0	1.00290	1.00231	Klemenčič.
"· · · ·	100	1.00239	1.00180	Bädeker.
Carbon dioxide	0	1.000946	1.000356	Boltzmann.
	0	1.000985	1.000399	Klemenčič.
Carbon monoxide	00	1.000690 1.000695	1.000100 1.000109	Boltzmann. Klemenčič.
Ethylene	0	1.00131	1.00072	Boltzmann.
	0	1.00146	1.00087	Klemenčič.
Hydrochloric acid	100	1.00258	1.00199	Bädeker.
Hydrogen	0	1.000264	0.999674	Boltzmann.
	0	1.000264	0.999678	Klemenčič.
Methane	0	1.000944	1.000354	Boltzmann.
	0	1.000953	1.000367	Klemenčič.
Nitrous oxide (N_2O) " "	0	1.00116	1.00057	Boltzmann.
	0	1.00099	1.00041	Klemenčič.
Sulphur dioxide	0	1.00993	1.00934	Bädeker.
" "	0	1.00905	1.00846	Klemenčič.
Water vapor, 4 atmospheres	145	1.00705	1.00646	Bädeker.

TABLE 344. — Variation of the Dielectric Constant with the Temperature. For variation with the pressure see next table.

If D_{θ} = the dielectric constant at the temperature θ° C., D_{t} at the temperature t° C., and α and β are quantities given in the following table, then

$$D_{\theta} = D_t \left[1 - a(t - \theta) + \beta(t - \theta)^2 \right].$$

The temperature coefficients are due to Bädeker.

Gas.	a	β	Range of temp. ^o C.
Ammonia	5.45 × 10-5	2.59 × 10 ⁻⁷	10 — 110
Sulphur dioxide	6.19 × 10 ⁻⁵	1.86 × 10 ⁻⁷	0 110
Water vapor .	1.4 × 10 ⁻⁴	-	145

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that D - I is approximately proportional to the density.

TABLES 345, 346.

DIELECTRIC CONSTANTS (continued).

Gas.	Temper- ature, ^o C.	Pressure atmos.	Dielectric constant.	Authority.
Air	19 	20 40 60 80 100 20 40 60 80 100 120 140 180 180 10 20 40	1.0108 1.0218 1.0330 1.0548 1.0101 1.0196 1.0294 1.0387 1.0482 1.0579 1.0674 1.0760 1.0845 1.008 1.020 1.060 1.010 1.025 1.070	Tangl, 1907. """ """ Occhialini, 1905. """ """ """ Linde, 1895. """ """ """

TABLE 345. - Ohange of the Dielectric Constant of Gases with the Pressure.

TABLE 346. - Dielectric Constants of Liquids.

A wave-length greater than 10000 centimeters is denoted by ∞ .

Substance.	Temp. °C. Wave lengtl cm.	Dielectric constant.	Author- ity.	Substance.	Temp. ° C.	Wave- length, cm.	Dielectric constant.	Author- ity.
Alcohol: Amyl a a a a a b E thyl a a b a Methyl	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4 30.1 23.0 17.4 16.0 10.8 4.7 2.7 54.6 44.3 35.3 28.4 25.8 24.4 23.0 20.6 8.8 4 5.0 3.07 58.0	I I I I I I I I I I I I I I I I I I I	Alcohol : Methyl """""""""""""""""""""""""""""""""""""	$ \begin{array}{c} -59 \\ 0 \\ +20 \\ 17 \\ -120 \\ -60 \\ 0 \\ +20 \\ 15 \\ -80 \\ 0 \\ 15 \\ 17 \\ 18 \\ 15 \\ 17 \\ 19 \\ 19 \\ 16 \\ \end{array} $	∞ " 75 ∞ " " 1200 73 ∞ 1200 200 200 25 ∞ "	45.3 35.0 31.2 33.2 46.2 33.7 24.8 22.2 12.3 33.8 20.6 21.85 20.7 9.7 10.3 7.07 7.07 6.29 4.81 2.20	I J I I I I I I I I I I I I I 2 5 5 6 7 8 6 2 2 9 10

References on page 311.

DIELECTRIC CONSTANTS OF LIQUIDS.

A wave-length greater than 10000 centimeters is designated by ∞ .

Substance.	Temp. °C.	Wave- length cm.	Diel. const.	Author- ity.	Substance.	Temp. °C.	Wave- length cm.	Diel. const.	Author- ity.	
Anilin Benzol (benzene)	18 18 19 23 20 17 18 17 14 17 18 17 14 17 -80 -40 0 18 20 60 100 140 180 140 192 18 (frozen) 15 15 15 15 15 17 18	8 7 8 4 8 4 8 7 3 8 4 8 7 3 8 4 8 3 7 3 8 4 8 8 7 3 8 4 8 8 7 3 8 8 8 9 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	7.316 2.28 3.18 2.626 2.64 5.2 4.95 1.97 2.24 4.30 3.65 3.12 2.66 4.33 3.65 3.12 2.66 4.33 3.65 2.12 1.53 4.35 19.0 62.0 58.5 2.39.1 2.54 4.26 0.58 2.4 2.64 2.64 2.64 2.64 2.64 2.64 2.64	11 12 13 2 11 12 13 2 10 " " " " " " " " " " " " "	Nitrobenzol " " · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} (frozen) \\ -10 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -10 \\ -10 \\ -10 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$	∞ " " " " " " " " " " " " "	9.9 42.0 37.8 35.1 36.45 34.0 1.949 2.83 4.67 3.11 3.10 2.25 3.02 3.13 1.92 2.85 3.02 3.13 1.92 2.85 3.02 3.17 2.23 3.02 3.17 2.23 3.02 3.17 2.23 2.17 2.37 68 2.51 2.37 81.07 80.6 81.7	2	
1 Abegg-Seitz, 18 2 Drude, 1896. 3 Marx, 1898. 4 Lampa, 1896. 5 Abegg, 1897. 6 Thwing, 1894. 7 Drude, 1898. 8 Francke, 1893. 9 Löwe, 1898.	1 Abegg-Seitz, 1899. 10 Landolt-Jahn, 1892. 18 Hasenöhrl, 1896. 2 Drude, 1896. 11 Turner, 1900. 19 Arons-Rubens, 1892. 3 Marx, 1898. 12 Schlundt. 20 Hopkinson, 1881. 4 Lampa, 1896. 13 Tangl, 1903. 21 Salvioni, 1888. 5 Abegg, 1897. 14 Coolidge, 1899. 22 Tomaszewski, 1888. 6 Thwing, 1894. 15 v. Lang, 1896. 23 Heinke, 1896. 7 Drude, 1898. 16 Nernst, 1894. 24 Marx. 8 Francke, 1893. 17 Calvert, 1900. 25 Fuchs.									

TABLES 347, 348.

DIELECTRIC CONSTANTS OF LIQUIDS (continued).

TABLE 347. - Temperature Coefficients of the Formula :

Substance.	a	β	Temp. range, ^o C.	Autbority.
Amyl acetate Aniline Benzol Carbon bisılphide . " Chloroform Ethyl ether Methyl alcohol Oils : Almond Olive	0.0024 0.00351 0.00106 0.000922 0.00410 0.00459 0.0057 0.00163 0.01067 0.00364	- - - - - - - - - - - - - - - - - - -	range, ° C. - 10-40 - 20-181 22-181 - - -	Löwe. Ratz. Hasenöhrl. Ratz. Tangl. " Ratz. Drude. Hasenöhrl. Heinke, 1896.
Paraffine	0.000738 0.000921 0.000977 0.004474 0.004583 0.00436 0.000817	0.0000072 0.00000046 	- 0-13 20-181 5-20 0-76 4-25 20-181	Hasenöhrl. Ratz. Tangl. Heerwagen. Drnde. Coolidge. Tangl.

 $D_{\theta} = D_{t} [I - a(t - \theta) + \beta(t - \theta)^{2}].$

(See Table 344 for the signification of the letters.)

TABLE 348. - Dielectric Constants of Liquified Gases.

A wave-length greater than 10000 centimeters is designated by ∞ .

Substance.	Temp. ⁰ C.	Wave- length cm.	Dial. constant.	Authority.	Substance.	Temp, °C.	Wave- length cm.	Dial. constant.	Authority.	
Air " Ammonia Carbon dioxide " " " " " " " " " " " " "	$ \begin{array}{c} -191 \\ -34 \\ 14 \\ -5 \\ +15 \\ -20 \\ +10 \\ 0 \\ +10 \\ 21 \\ 10 \\ 90 \\ \end{array} $	80 75 75 130 " " " " " " " " " " " " " " " " " 5 75 75 75 75 80 " " " " "	$\begin{matrix} 1.432 \\ \mathbf{1.47-1.50} \\ \mathbf{21-23} \\ 16.2 \\ 1.608 \\ 1.528 \\ 2.150 \\ 2.030 \\ 1.528 \\ 2.150 \\ 2.030 \\ 1.940 \\ 2.08 \\ 1.88 \\ 2.52 \\ \mathbf{about 95} \\ 5.93 \\ 4.92 \\ 3.76 \end{matrix}$	I 2 3 4 5 " " " " " " " " " " " " " " " " " "	Nitrons oxide N2O """ Oxygen Sulphur dioxide. """ """ Critical.	$ \begin{array}{c} -83 \\ -5 \\ +15 \\ +15 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \\ 140 \\ 154.2 \end{array} $	80 	1.938 1.630 1.578 1.520 1.401 1.465 13.75 14.0 12.5 10.8 9.2 7.8 6.4 4.8 2.1	8 5 ² " 08 40" " " " " " " " " "	
2 Bahn-Kiebitz										

TABLE 349. - Standard Solutions for the Galibration of Apparatus for the Measuring of Dielectric Constants,

Turner.	Turner.		Drn		Nernst.			
Substance.	Diel. const. at 18°.	at 18°.				Ethyl alcohol in water at 19.5°. $\lambda = \infty$.		
Benzol	2.288	Per cent by weight.	Density 16 ⁰ .	Dielectric constant.	Temp. coefficient.		Dielectric	
Meta-xylol Ethyl ether Aniline Ethyl chloride O-nitro toluol Nitrobenzol Water (conduct. 10 ⁻⁶)	2.376 4.36 ⁷ 7.29 ⁸ 10.90 27.71 36.45 81.07	0 20 40 60 80 100	0.885 0.866 0.847 0.830 0.813 0.797	2.26 5.10 8.43 12.1 16.2 20.5	0.1% 0.3 0.4 0.5 0.5 0.6	by weight. 100 90 80 70 60	26.0 29.3 33.5 38.0 43.1	
	I <u></u>	Wa	ter in acetone a	75 cm.	·	<u> </u>		
		0 20 40 60 80 100	0.797 0.856 0.903 0.940 0.973 0.999	20.5 31.5 43.5 57.0 70.6 80.9	0.6% 0.5 0.5 0.5 0.5 0.5 0.4			

TABLE 350. - Dielectric Constants of Solids.

Substance.	Condi- tion.	Wave- leogth, cm.	Dielectric coostant.	Author- ity.	Substance.	Condi- tioa.	Wave- length, cm.	Dielectric coostant.	Author- ity.
Asphalt Barium sul- phate Caoutchonc . Diamond " " Ebonite Glass * Flint (extra heavy) . Flint (very light) Hard crown Mirror . " Lead (Pow- ell) Jena Boron . Barium . Borosili-		length, cm.		I 2 3 1 2 4 50 7 7 7	Substaace. Iodine (cryst.) . Lead chloride . (powder) " nitrate . " sulphate . " molybde- nate . Marble (Carrara) Mica " . Madras, brown " green " ruby . Bengal, yellow " white . " ruby . Canadian am- ber South America Ozokerite (raw) Paper (tele- phone) " (cable) .		length,		Afth 2 5 16 16 16 16 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7 1<
cate . Gutta percha . Ice "	Temp. 5 18 190	- 1200 5000 75	2.85 3.16 1.76–1.88	11 12 13	Paraffine " " "	Melting point. 44-46 54-56 74-76	66 66	2.46 2.32 2.10 2.14 2.16	18 19 20 20 20

References on p. 314.

* For the effect of temperature, see Gray-Dobbie, Pr. Roy. Soc. 63, 1898; 67, 1900. """ wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

1

TABLES 350, 351.

DIELECTRIC CONSTANTS (continued).

	Condi-	Wave-	Diel.	hor-	Substance.	Condi-	Wave-	Diel.	hor-
Substance.	tion.	length, cm.	constant,	Author- ity.	Substance.	tion.	length, cm.	constant.	Author- ity.
Paraffine " Phosphorus: Yellow . Solid . Liquid . Porcelain: Hard (Royal B'l'n) Seger " . Figure " . Selenium . " . Shellac . " .	47.°6 56.°2 - - - - - - - - - - - - - - - - -	61 61 75 80 80 80 " " " " " 75 80 1000 80 " "	2.16 2.25 3.60 4.1 3.85 5.73 6.61 6.84 7.44 6.60 6.13 6.14 3.10 2.95-3.73 3.67	21 21 22 22 22 15 15 15 15 12 23 23 4 24 25	Sulphur Amorphous Cast, fresh "" Cast, old "" Liquid . Strontium sulphate Thallium carbonate "nitrate Wood Red beech . "" Oak	- - - meting- point - - - - - - - - - - - - - - - - - - -	∞ 75 % 75 ∞ 75 ∞ 75 75 75 75 %	3.98 3.80 4.22 4.05 3.95 3.60 3.90 3.42 11.3 17 16.5 dried 4.83-2.51 7.73-3.63 4.22-2.46 6.84-3.64	1 2 1 18 2 18 2 1 2 2 2 2 2 2 2
 v. Pirani, Schmidt, Gordon, 1 Winklema Elsas, 18c Ferry, 18c Hopkinso Arons-Ru Gray-Dob 	12 Thw 13 Abe	marii ying, 18 gg, 18 n-Kie ke, 18 Vilson	e-data). 1894. 397. bitz, 1904. 397. 1.	19 B 20 Zi 21 H 22 So 23 V	/üllner,	n, 1875. ci, 1900. 1902. 1904. -Mason, 19	907.		

TABLE 350. - Dielectric Constants of Solids (continued).

TABLE 351. - Dielectric Constants of Crystals.

D a, D β , D γ are the dielectric constants along the brachy, macro and vertical axes respectively.

Substance.	Wave- length,	Diel. o	Diel. const.		Substance.	Wave- length,	D	iel. con	st,	Author- ity.
Duphante.	cm.	⊥ Axis.	Axis.	ν.Α i		cm.	Da	Dβ	Dγ	Au
UNIAXIAL : Apatite Beryl	75 ∞ " 75 75 75 75 75 75 75	9.50 7.85 7.10 6.05 8.49 8.780 8.50 4.69 4.38 4.27 4.32 89 7.13 6.75 12.8	7.40 7.44 6.05 5.52 7.56 8.29 6.80 8.00 5.06 4.46 4.34 4.60 173 6.54 5.65 12.6	I 4 5 1 4 6 6 1 1 4 1 1 1 1 1	$\begin{array}{c} \text{RHOMBIC:} \\ \text{Arragonite} & . & . \\ \text{Barite} & . & . \\ \text{Barite} & . & . \\ \text{Cælestin} & . & . \\ \text{Cælestin} & . & . \\ \text{Cerussite} & . & . \\ \text{MgSO}_4 + 7H_2O & . \\ \text{K}_2SO_4 & . & . \\ \text{Rochelle salt} & . \\ \text{Sulphur} & . & . \\ ```````````````````````````````````$	∞ 75 ∞ 75 75 75 * " " "	7.65 7.70 25.4 5.26 6.09 6.70 3.81 3.65 3.62 6.65	7.68 10.09 12.20 18.5 23.2 6.05 5.08 6.92 3.97 3.85 3.85 6.70	7.00 7.70 8.30 19.2 8.28 4.48 8.89 4.77 4.66 4.66	
I Schmidt, 2 Starke, 1 3 Curie, 18	897.		5	5 v. F	ling er , 1902. Pirani, 1903. ry, 1897.	7 Bo 8 Bo	orel, 1 ltzma	093. 1111, 18	875.	

PERMEABILITY OF IRON.

TABLE 352. - Permeability of Iron Rings and Wire.

This table gives, for a few specimens of iron, the magnetic induction B, and permeability μ , corresponding to the magneto-motive forces H recorded in the first column. The first specimen is taken from a paper by Rowland,^{\bullet} and refers to a welded and annealed ring of "Burden's Best" wronght iron. The ring was 6.77 cms, in mean diameter, and the bar had a cross sectional area of 0.916 sq. cms. Specimens 2-4 are taken from a paper by Bosanquet,[†] and also refers to soft iron rings. The mean diameters were 21.5, 22.1, and 22.525 cms, and the thickness of the bars 2.535, 1.295, and .7544 cms, respectively. These experiments were intended to illustrate the effect of thickness of bar on the induction. Specimen 3 is from Ewing's book,[‡] and refers to one of his own experiments on a soft iron wire .077 cms, diameter and 30.5 cms, long. experiments on a soft iron wire .077 cms. diameter and 30.5 cms. long.

H	Specimen 1		Specimen 1 2		3 4		5		gh try wn		
	В	μ	В	μ	В	μ	В	μ	В	μ	aratively high ting force re- permeability a thin drawn pecimen 5.
0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0	80 330 1450 4840 9880 12970 14740 16390	400 660 1450 2420 1976 1297 737 328 -	126 377 1449 4564 9900 13023 14911 16217 17148	630 754 1449 2282 1980 1302 746 324 171	65 224 840 3533 8293 12540 14710 16062 17900	325 448 840 1766 1659 1254 735 321 179	85 214 885 2417 8884 11 388 1327 3 1 3890 148 37	425 428 885 1208 1777 1139 664 278 148	22 74 246 950 12430 15020 15790 –	110 148 246 475 2486 1502 789 -	Norz. — The comparatively high value of the magnetizing force re- quired for maximum permeability when the specimen is a thin drawn wire is noticeable in specimen 5.

TABLE 353. - Permeability of Transformer Iron.§

This table contains the results of some experiments on transformers of the Westinghouse and Thomson-Houston types. Referring to the headings of the different columns, M is the total magneto-motive force applied to the iron; M/l the magneto-motive force per centimetre length of the iron circuit; B the total induction through the magnetizing coil; B/a the induction per square centimetre of the mean section of the iron circuit; B the magnetic relactance of the iron circuit; B/Ma the permeability of the iron, a being taken as the mean cross section of the iron.

			First sp	ecimen.			Second	specimen.	
$M = \frac{M}{I}$	$\frac{M}{l}$	В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma	В	$\frac{B}{a}$	M B	Bl Ma
20 40 60 80 120 140 160 180 200 220 260	0.597 1.194 1.791 2.338 2.985 3.582 4.179 4.776 5.373 5.970 6.567 7.761	218×10^8 587 " 878 " 1091 " 1219 " 1330 " 1405 " 1475 " 1532 " 1532 " 1531 " 1618 " 1692 "	1406 3790 5660 7040 7860 8580 9060 9510 9880 10200 10430 10910	$\begin{array}{c} 0.917 \times 10^{-4} \\ 0.681 & `` \\ 0.683 & `` \\ 0.734 & `` \\ 0.819 & `` \\ 0.903 & `` \\ 0.994 & `` \\ 0.994 & `` \\ 1.090 & `` \\ 1.180 & `` \\ 1.270 & `` \\ 1.360 & `` \\ 1.540 & `` \end{array}$	2360 3120 3180 2960 2640 2410 2186 2000 1850 1720 1590 1410	$\begin{array}{c} 16 \times 10^{4} \\ 49 \\ 82 \\ 104 \\ 118 \\ 124 \\ 131 \\ 135 \\ 140 \\ 142 \\ 144 \\ 144 \\ - \end{array}$	1032 3140 5290 6710 7610 8000 8450 8450 8710 9030 9160 9290	1.25×10^{-4} $0.82 $ $0.73 $ $0.77 $ $0.85 $ $0.97 $ $1.07 $ $1.18 $ $1.29 $ $1.41 $ $1.53 $	1730 2640 2970 2820 2560 2036 1830 1690 1540 1410

"Phil. Mag." 4th series, vol. xlv. p. 151.
f Ibid. 5th series, vol. xix. p. 73.
"Magnetic Induction in Iron and Other Metals."

§ T. Gray, from special experiments.

TABLE 353 (continued).

PERMEABILITY OF TRANSFORMER IRON.

	(b) Westinghouse No. 6 Transpormers (about :800 Watts Capacity).														
				First specimen.						Second specimen.					
М	$M = \frac{M}{l}$		$B = \frac{B}{a}$		$\frac{M}{B}$			$\frac{Bl}{Ma}$		В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma		
20 40 60 100 120 140 160 180 200		.62 .23 .85 .46 .70 .31 .93 .55 .16	142 697 862 949 1010 1050 1090 1120 1150	7 " 2 " 7 " 7 " 7 " 7 " 7 " 7 "	1 320 3980 6280 7770 8 550 9106 9 550 9 820 10100 10400	I.36×10 ⁻⁴ 0.91 " 0.86 " 0.93 " I.05 " I.19 " I.33 " I.47 " I.61 " I.74 "		4 2140 3260 3390 3140 2770 2450 2210 1990 1830 1680		3260 615 " 3390 826 " 3140 986 " 2770 1050 " 2450 1100 " 210 1140 " 1990 1170 " 1830 1190 "		1940 5540 7440 8880 9460 9910 10300 10300 10500 10700 -	0.93×10 ⁻⁴ 0.64 " 0.72 " 0.81 " 0.95 " 1.09 " 1.23 " 1.37 " 1.51 "	3140 4490 4030 3590 3060 2670 2430 2180 1970	
	(C) WESTINGHOUSE NO. 4 TRANSFORMER (ABOUT 1200 WATTS CAPACITY). (d) THOMSON-HOUSTON 1500 WATTS TRANSFORMER.											RMBR.			
М	$\frac{M}{l}$		B	$\frac{B}{a}$	$\frac{M}{B}$		<u>Bl</u> Ma	м	$\frac{M}{l}$	<u>r</u>	B	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma	
20 40 60 80 100 120 140	0.69 1.38 2.07 2.76 3.45 4.14 4.83	147 406 573 659 714 748 777	×10 ⁸ " "	1470 4066 5730 6590 7140 7490 7770	1.05 1.21 1.40	0-4 	2140 2940 2770 2390 2070 1810 1610	20 40 60 80 100 120 200 240 280 320 360 400 440	0.4 0.8 1.2 1.6 2.1 2.5 3.3 4.2 5.0 5.8 6.7 7.5 8.4 9.2	468026048260	70×10^8 142 " 214 " 265 " 348 " 456 " 456 " 455 " 524 " 550 " 573 " 591 " 504 "	1560 3160 4770 5910 6890 7760 9100 10200 110200 110200 12270 12780 12780 12180 12470	2.86×10-4 2.81 " 3.02 " 3.45 " 3.92 " 4.39 " 4.39 " 4.39 " 5.35 " 5.35 " 5.35 " 5.35 " 5.35 " 5.32 "	37 30 3780 3790 3520 3280 22710 2430 2190 1690 1690 1570 1460	

TABLEB 354-356. MAGNETIC PROPERTIES OF IRON.

	Electro- lytic	Good Cast	Poor Cast	Steel.	Cast	Electrical Sheets.	
	Iron.	Steel.	Steel.	Steel.	Iron.	Ordioary.	Silicon Steel.
$\begin{array}{c} \textbf{Chemical composi-} \\ \textbf{tion in per cent} \\ \textbf{S} \end{array} \begin{array}{c} \textbf{C} \\ \textbf{Si} \\ \textbf{Mn} \\ \textbf{P} \\ \textbf{S} \end{array}$	0.024 0.004 0.008 0.008 0.001	0.044 0.004 0.40 0.044 0.027	0.56 0.18 0.29 0.076 0.035	0.99 0.10 0.40 0.04 0.07	3.11 3.27 0.56 1.05 0.06	0.036 0.330 0.260 0.040 0.068	0.036 3.90 0.090 0.009 0.006
Coercive force {	2.83 [0.36]	1.51 [0.37]	7.1 (44.3)	16.7 (52.4)	11.4 [4.6]	[1.30]	[0.77]
Residual B }	11400 [10800]	10600 [11000]	10500 (10500)	13000 (7500)	5100 [5350]	[9400]	[9850]
Maximum permeability {	1850 [14400]	3550 [14800]	700 (170)	375 (110)	240 [600]	[3270]	[61 30]
B for H=150 {	19200 [18900]	18800 [19100]	17400 (15400)	16700 (11700)	10400 [11000]	[18200]	[17550]
$4\pi I$ for saturation .	21620 [21630]	21420 [21420]	20600 (20200)	19800 (18000)	16400 [16800]	[20500]	[19260]

TABLE 354. - Magnetic Properties of Iron and Steel.

E. Gumlich, Zs. für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at 800° C in vacuum. Parentheses indicate hardening by quenching from cherry-red.

TABLE	355. — Cast	Iron in	Intense	Fields.

	Soft Cast	Iron.		Hard Cast Iron.					
н	B	I	4	н	В	I	μ		
114 172 433 744 1234 1820 12700 13550 13800 15100	9950 10800 13900 17300 17300 18170 31100 32100 32200 32500 33650	782 846 1070 1200 1280 1300 1465 1475 1488 1472	87.3 62.8 32.1 21.2 14.0 10.0 2.5 2.4 2.4 2.2	142 254 339 684 915 1570 2020 10900 13200 14800	7860 9700 10850 13050 14050 15000 16800 26540 28600 30200	614 752 836 983 1044 1138 1176 1245 1226 1226	55.4 38.2 30.6 19.1 15.4 10.1 8.3 2.4 2.2 2.0		

B. O. Peirce, Proc. Am. Acad. 44, 1909.

TABLE 356. - Corrections for Ring Specimens.

In the case of ring specimens, the average magnetizing force is not the value at the mean radins, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of	Ratio of Ave	rage H to	Ratio of Hysteresis for Uniform		
Radial	H at Mean	Radius.	Distribution to Actual Hysteresis.		
Width to Diameter of Ring.	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section.	Circular Cross-section.	
I/2	1.0986	1.0718	1.112	1.084	
I/3	1.0397	1.0294	1.045	1.033	
I/4	1.0216	1.0162	1.024	1.018	
I/5	1.0137	1.0102	1.015	1.011	
I/6	1.0094	1.0070	1.010	1.008	
I/7	1.0059	1.0052	1.008	1.006	
I/8	1.0052	1.0040	1.006	1.004	
I/10	1.0033	1.0025	1.003	1.002	
I/19	1.0009	1.0007	1.001	1.001	

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

COMPOSITION AND MAGNETIC

This table and Table 358 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel, which is stated in the paper to have been z_{40} . The maximum magnetization is not tabulated; but as stated in the by 4π . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagprevious magnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

No.			Chemical analysis.						
of Test	Description of specimed.	Temper.	Total Carbon.	Manga- nese.	Sulphur.	Silicoa.	Phos- phorus.	Other substances.	
г	Wrought iron	Annealed	-	-	-	-	_	-	
2	Malleable cast iron	"	-	-	-	~	-	- 1	
3	Gray cast iron	-	-	-	-		-	-	
4	Bessemer steel .		0.045	0.200	0.030	None.	0.040	-	
5	Whitworth mild steel .	Annealed	0.090	0.153	0.016		0.042	-	
0	•	{ Oil-hard-	0.320	0.438	0.017	0.042	0.035	-	
7	""'	ened	"	"	"	"	"	-	
8		Annealed	0.890	0.165	0.005	0.081	0.019	_	
		{ Oil-hard-		"	"	"	"		
9		{ ened						-	
10	Hadfield's manganese } .	-	1.005	12.360	0.038	0.204	0.070	-	
11	Manganese steel	Asforged	0.674	4.730	0.023	0.608	0.078	-	
12	-	Annealed	"	"	"	"	"	-	
13	"	{ Oil-hard- } ened	"	"	"	"	"	-	
14	<u>دد</u>	As forged	1.298	8.740	0.024	0.094	0.072	-	
15	" "	Annealed	"	"	"	۰ <i>۴</i> -	"		
16	""	{ Oil-hard- } ened	"	"	u	"	"	-	
17	Silicon steel	As forged	0.685	0.694	"	3.438	0.123		
18	"" · · ·	Annealed	6 6 -	"	"		"	- li	
19	" "	{ Oil-hard-	"	"	"	"	"		
20	Chrome steel) ened						()	
20	" "	As forged Annealed	0.532	0.393	0.020	0.220	0.041	0.621 Cr.	
		(Oil-hard-	"						
22	•••••••	ened	"	"	"	"	"	"	
23	" " · · ·	As forged	0.687	0.028	"	0.134	0.043	1.195 Cr.	
24	" "	Annealed	"	"	"	" ·	""		
25	" "	{ Oil-hard-	"	"	"	"	"	"	
26	Tungston stool	{ ened							
20	Tungsten steel	As forged Annealed	1.357	0.036	None.	0.043	0.047	4.649 W.	
- /	• • •	(Hardened					.		
28	"	{ in cold	"	"	"	"	"	"	
		water			1			1	
		(Hardened				1			
29	" " · · ·	{ in tepid	"	"	66	"	"	"	
		(water							
30	" " (French) .	{ Oil-hard- } ened	0.511	0.625	None.	0.021	0.028	3.444 W.	
31	" "	Very hard	0.855	0.312	_	0.151	0.089		
32	Gray cast iron	_	3.455	0.173	0.042	2.044	0.009	2.353 W. 2.064 C.t	
33	Mottled cast iron	-	2.581	0.610	0.105	1.476	0.435	1.477 C.†	
34	White "" · · ·	-	2.036	0.386	0.467	0.764	0.458	-	
35	Spiegeleisen	-	4.510	7.970	Trace.	0.502	0.128	-	

* Phil. Trans. Roy. Soc. vol. 176. Smithsonian Tableb.

† Graphitic carbon.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force " is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated " was calculated from the formula:—Energy dissipated = coercive force × maximum induction $\div \pi$

1 1				M	lagnetic p	roperties		
No.			Specific	14	ragiictic p	operates	.	Energy dis-
of	Description of	Temper.	electri-		nl	0		Energy dis- sipated per
Test.	specimen.	a cmper.	cal resis-		Residual induc-	Coer-	Demag- netizive	cycle.
1 1				mum in- duction.	tion.	force.	force.	
						Ioneer		
I	Wrought iron	Annealed	.01378	18251	7248	2.30 8.80	-	13356
2	Malleable cast iron	"	.03254	12408	7479	8.80	-	34742
3	Gray cast iron	-	.10560	10783	3928	3.80	-	13037
1 Ã	Bessemer steel	-	.01050	18196	7860	2.96	-	17137
	Whitworth mild steel .	Annealed	.01080		7080	1.63	-	10289
56	" "	"	.01446	18736	9840	6.73	- 1	40120
	"	(Oil-hard-		- 1		11.00		65786
7	•) ened	.01390	18796	11040	11.00	-	
8	" "	Annealed	.01 5 59	161 2 0	10740	8.26	-	42366
	"	(Oil-hard-				10.28	_	99401
9	•	ened	.01095	16120	8736	19.38		9940
	Hadfield's manganese (-60	1 272				l _ 1
10	steel	-	.06554		-	-		
II 11	Manganese steel	As forged	.05368	4623	2202	23.50	37.13	34567
12	" " • • •	Annealed	.03928	10578	5848	33.86	46.10	113963
		S Oil-hard-			2158	27.64	40.29	41941
13	•••••	{ ened	.05556	1	2.30	-//~4	40.29	1 7777
14	""	As forged	.06993		-	-	- 1	-
15	""	Annealed	.06316	1985	540	24.50	50.39	I 5474
-		§ Oil-hard-	.07066		_	1 -	-	-
16	· · · ·) ened						1
17	Silicon steel	As forged	.06163			9.49	12.60	
18	" "	Annealed	1.0618	14701	8149	7.80	10.74	36485
		S Oil-hard	.0619	14696	8084	12.75	17.14	59619
19		{ ened	1				1	
20	Chrome steel	As forged		5 1 5778		12.24	13.87	
21	"" • • • •	Annealed	0194	z 14848	7 570	8.98	12.24	42425
	44 66	∫ Oil-hard-	0270	8 13960	8595	38.15	48.45	169455
22		{ ened	1 .	1	1 -	10 5	1	
23	""	As forged	.0179	1 14680	7 568	18.40		1 22.1
24	· · · · ·	Annealed		9 13233	6489	15.40	19.79	
		∫ Oil-hard-	.0303	5 12868	7891	40.80	56.70	167050
25		i ened		- 1		1.	1 .	
26	Tungsten steel	As forged		9 1 57 18		15.71		
27		Annealed		0 16498	11008	15.30	1 10.93	y
I I '		(Hardene				l _	1 -	- 1
28	"	in cold	.0227	4 -	1 -	-		
1		(water	4			1	1	
1		Hardene		1 1 16 10	9482	30.10	34.70	149500
29		{ in tepid	.0224	9 1 5610	9402	30.10	1 34.75	
11		water						- 101.
	" " (French)	Oil hard-	.0360	4 14480	8643	47.07	64.46	
30		ened Very hard	-			51.20	70.60	197660
31	" " , , ,	very naru	.1140		3161	13.67		
32	Gray cast iron .	1 I I I		6 10546		12.24		41072
33	Mottled cast iron	· _	.0566					36383
34	White	· I – I – I	.1052			- 1	· -'	
35	Spiegeleisen · ·	· -	1	1 30.	ή "			
						_		

TABLES 358-360.

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 357.

TABLE 358.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 357. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- iog force.	Specimea 1 (iron).		Specimen 8 (annealed steel).		Specimen 9 (same as 8 tempered).		Specimen 3 (cast iron).	
H	В	μ	В	μ	В	μ	В	μ
I	_	-	-	-		-	265	265
2	200	100	-	-	-	-	700	350
3	-	- 1	-	- 1		-	1625	542
5	10050	2010	1525	300	7,50	150	3000	600
IO	12550	1255	9000	900	1650	165	5000	500
20	14550	727	11500	575	5 ⁸ 75	294	6000	300
30	15200	507	12650	422	9875	329	6500	217
40	1 5800	395	13300	332	11600	290	7100	177
50	16000	320	1 3800	276	1 2000	240	7350	149
70	16360	234	14350	205	13400	191	7900	113
100	16800	168	14900	149	14500	145	8500	85 63
150	17400	116	1 5700	105	15800	105	9500	63
200	17950	90	16100	8ŏ	10100	80	10190	51

Tables 359-363 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and 0.6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.82. (a) Hard English cast steel yellow tempered at 230° C; density 7.78. (a) Hard English cast steel yellow tempered at 230° C; density 7.78. (a) Hard English cast steel yellow tempered at 230° C; density 7.78. (a) Hard English cast steel yellow tempered at 230° C; density 8.82. (4) Cast cobalt giving the fullowing composition on analysis: Co = 93.1, Ni = 5.8, Fe = 0.8, Cu = 0.2, Si = 0.1, and C = 0.3. The speci-men was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per cubic centimeter, H and S are takeo from the curves published by Du Bois; the others have been calculated using the densities given.

MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C.

TABLE 359.

Soft iron at 0° C.				ł	Sof	it iron at 100	o ^o C.		
H	S	1	B	μ	Н	S	I	В	μ
100 200 400 700 1000 1200	180.0 194.5 208.0 215.5 218.0 218.5	1408 1521 1627 1685 1705 1709	17790 19310 20830 21870 22420 22670	177.9 96.5 52.1 31.2 22.4 18.9	100 200 400 700 1000 1200	180.0 194.0 207.0 213.4 215.0 215.5	1402 1511 1613 1663 1674 1679	17720 19190 20660 21590 22040 22300	177.2 96.0 51.6 29.8 21.0 18.6

MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C.

TABLE 360.

Steel at o ^o C.					S	teel at 100°	С.		
H	S	1	В	μ	H	S	Ι	В	μ
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0 212.0	1283 1408 1500 1552 1583 1595 1650	16240 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1 278 1 395 1 480 1 527 1 543 1 573 1 593 1 612	16170 17730 19000 19890 20380 21270 23020 25260	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1

* "Phil. Mag," 5 series, vol. xxix. † The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face nor-mal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 331.)

MAGNETIC PROPERTIES OF METALS.

TABLE 361. - Cobalt at 100° C.

H	S	Ι	B	μ
200 300 500 700 1000 1500 2500	106 116 127 131 134 138 143	848 928 1016 1048 1076 1104 1144	10850 11960 13260 13870 14520 15380 16870	54.2 39.9 26.5 19.8 14.5 10.3 6.7
4000 6000 9000	145 147 149	1164 1176 1192	18630 20780 23980	4.7 3.5 2.6
At o ^o 7900	C. this lov 154	specime wing rest 1232	n gave th	ie fol- 3.0

				· · · · · · · · · · · · · · · · · · ·
H	S	1	В	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	44I	6043	12.1
700	51.5	454	6409	9.I
1000	53.0	468	6875	6.9
1 500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.1
9000	59.4	524	15585	1.7
12000	59.6	526	18606	1.5
At o ^o C		pecimer		e fol-
		ng resu	lts:	
12300	67.5	595	19782	1.6

TABLE 362. - Nickel at 100° C.

TABLE 363. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
12000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the inductiou in iron and other metals.[†] The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 C. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, dB/dH is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 364. - Lowmoor Wrought Iron.

H	I	В	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 365. - Vicker's Tool Steel.

H	I	B	μ	
12120 14660	1 570 1 5 50 1 580	25480 29650 31620 34550 35820	2.97 2.60 2.36	

TABLE	366	Hadfleld's
Man	ganese	Steel.

H	Ι	В	μ
1930	55	2620	1.36
2380	84	3430	1.44
3350	84	4400	1.31
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 367. - Saturation Values for Steela of Different Kinds.

1		H	Ι	В	4
2 3 4	Bessemer steel containing about 0.4 per cent carbon Siemens-Marten steel containing about 0.5 per cent carbon Crucible steel for making chisels, containing about 0.6 per cent carbon	17600 18000 19470 18330 19620 18700	1770 1660 1480 1580 1440 1590	39880 38860 38010 38190 37690 38710	2.27 2.16 1.95 2.08 1.92 2.07

* " Phil. Mag." 5 series, vol. xxix, 1890. SMITHSONIAN TABLES. † "Phil. Trans. Roy. Soc." 1885 and 1889.

TABLE 368.-MAGNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.

The effect of very small magnetizing forces has been studied by C. Baur * and by Lord Rayleigh.† The following short table is taken from Baur's paper, and is taken by him to iodicate that the susceptibility is finite for zero values of H and for a fioite range increases in simple proportion tn H. He gives the formula $k = 15 + 100 H^3$, or $I = 15 H + 100 H^3$. The experiments were made on an anealed ring of runod bar 1.013 cms. radius, the ring has of 9.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 + 5.1 H, or I = 6.4 H + 5.1 H². The forces were reduced as low as 0.00004 c. g. s., the relation of k to H remaining constant.

F	irst experimen	Second experiment.		
Н	k	Ι	Н	k
.01 580 .03081 .07083 .13188 .23011 .38422	16.46 17.65 23.00 28.90 39.81 58.56	2.63 5.47 16.33 38.15 91.56 224.87	.0130 .0847 .0946 .1864 .2903 .3397	15.50 18.38 20.49 25.07 32.40 35.20

TABLES 369, 370.-DISSIPATION OF ENERGY IN CYCLIC MAGNETIZATION OF MAGNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass through a closed cycle of magnetization dissipation of energy results. Let us suppose the iron to pass from zero magnetization to strong magnetization in one direction and then gradually back through zero to strong magnetization in the other direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the other direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. That this fact involves a dissipation of energy which can be calculated from the open loop formed by the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg ‡ in 1881, reference being made to experiments of Thomson, § where such curves are illustrated for magnetism, and to E. Cohn, || where similar curves are given for thermoelectricity. The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. \P Extensive investigations have since been made by a number of investigators.

TABLE 369. - Soft Iron Wire.

322

(From Ewing's 1885 paper.)

Total induction per sq. cm. B	Dissipation of energy in ergs per cu. cm.	Horse- power wasted per ton at 100 cycles per sec.
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 12000 14000 15000	420 800 1230 1700 2200 2760 3450 4200 5000 5820 5820 5820 5820 5820 5820 5	0.74 1.41 2.18 3.01 3.89 4.88 6.10 7.43 8.84 10.30 11.89 13.53 15.30 17.10

* "Wied. Ann." vol. xi

"Wied. Ann." vol. xii. # "Wied. Ann." vol. xiii. p. 141. # "Wied. Ann." vol. 6.

SMITHSONIAN TABLES.

TABLE 370. - Cable Transformers.

This table gives the results obtained by Alexander Siemens with one of Siemens' cable transformers. The transformer core consisted of 900 suft iron wires 1 mm. diameter and 6 meters long.** The dissipation of energy in watts is for 100 complete cycles per second.

Mean maxi- mum induc- tion density in core. B	Total ob- served dis- sipation of energy in the core in watts per 112 lbs.	Calculated eddy current loss in watts per 112 lbs.	Hysteresis loss of energy in watts per 112 lbs.	Hysteresis loss of energy in ergs per cu. cm. per cycle.
1000	43.2	4	39.2	602
2000	96.2	16	80.2	1231
3000	158.0	36	1 22.0	1874
4000	231.2	64	167.2	2566
5000	309.5	100	209.5	3217
6000	390.1	144	246.1	3779

† "Phil. Mag." vol. xxiii.
 § "Phil. Traus. Roy. Soc." vol. 175.
 ¶ "Proc. Roy. Soc." 1882, and "Traus. Roy. Soc." 1885.
 ** "Proc. Iust. of Elect. Eng." Lood., 1892.

DEMAGNETIZING FACTORS FOR RODS.

TABLE 371.

H = true intensity o. magnetizing field, H' = intensity of applied field, I = in-

In the intensity of magnetizing neid, H' = intensity of applied neid, I = intensity of magnetization, H = H' - NI. Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of I to about I/7 the value when unsaturated; for values of B ($=H+4\pi I$) less than 10000, N is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically correct. tically agree.

			Values	of N× 104.			
				Cylinde	r.	_	
Ratio				I	Ballistic Step	Method.	
Length to Dlameter.	Ellipsoid.	Uniform Magneti-	Magneto- metric	Dubois.	Shuddem Pract	agen for I ical Const	Range of ancy.
		zation.	Method (Mapp).		Diamet	ter.	
				0.158 cm.	0.3175 cm.	1.111 cm.	1.905 cm.
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 266 181 132 101 80 65 54 26 7.5 4-5	- 630 280 160 70 39 25 18 13 9.8 7.8 6.3 2.8 1.57 0.70 0.39	6800 2550 1400 898 460 274 182 131 99 78 63 51.8 25.1 15.2 7.5 7.5	2160 1206 775 393 238 162 118 89 69 55 45 20 11 50 2.8	- - - 388 234 160 116 88 69 56 46 23 12.5	- 350 212 145 106 66 41 21 11	1960 1075 671 343 209 149 106 63 41 21 11

C. R. Mann, Physical Review, 3, p. 359; 1896. H. DuBois, Wied. Ann. 7, p. 942; 1902. C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).

TABLE 372.

Shuddemagen also gives the following, where B is determined by the step method and H = H' - KB.

Ratio of	Values of K×10 ⁶ .					
Length to Diameter.	Diameter 0.3175 cm.	Diameter 1.1 to 2.0 cm.				
15 20 25 30 40 50 60 80 100 150	- - - 18.6 12.7 9.25 5.5 3.66 1.83	85.2 53-3 36.6 27.3 16.6 11.6 8.45 5.05 3.20 1.67				

DISSIPATION OF ENERCY IN THE CYCLIC MACNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e = aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed ± 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the satura-tion value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens. The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	Value of <i>a</i> .
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Iron	Norway iron	.00227 .00326 .00548 .00458 .00425 .00349 .00457 .00318 .00457 .00318 .02792 .07476 .02670 .01899 (.06130 .02700 (.01445 .01305 .01459 .02348 .0122 .0156 .0385
24	Cobalt .	{Rod containing about 2% of iron, also calculated } from Ewing's experiments by Steinmetz	.0120
26	Iron filings	Consisted of thin needle-like chips obtained by milling grooves about 8 mm. wide across a pile of thin sheets clamped together. About 30 % by vol- ume of the specimen was iron. Ist experiment, continuous cyclic variation of m. m. f. 180 cycles per second	.0457 .0396 .0373

"Trans. Am. Inst. Elect. Eng." January and September, 1892.
 † See T. Gray, "Proc. Roy. Soc." vol. lvi.

TABLE 374.

ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method. Loss per cycle per $cc = AB^{z} + bnB^{y}$, where B =flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

	•	Ergs pe	er Gram	ume per C	Cycle.					er Pound a d 10000 G	
Designation.	Thick- ness.	10000 Gausses.		5000 Ga	usses.	x	y	a	rent lage		
	Cm.	Hyste- resis.	Eddy Cur- rents at 60~	Hyste- resis.	Eddy Cur- rents at 60~	1			Eddy Current Loss for Gage No. 29. ‡	Hyste- resis.	Total.
Unannealed											
A	0.0399	1 599	186	562	46	1.51	2.02	0.00490	0.41	4.35	4.76
B	.0326	1156	134	384	36	1.59	1.89	.00358	0.44	3.14 2.81	3.58
C D	.0422 .0381	1032	242 184	356 353	70 48	1.51 1.52	1.79 1.94	.00319	0.47 0.44	2.01	3.28 3.18
2	.0301	1009	104	333	40	1.52	1.94	.00312	0.44	/4	5.10
Annealed											
E	.0476	735 666	236	246	58	1.58	2.02	.00227	0.36	2.00	2.36
F	.0280		100	220	27	1.60	1.88	.00206	0.44	1.81	2.25
G H*	.0394	563	210	193	54	1.54 1.58	1.96 1.90	.00174 .00127	0.47	1.53 1.12	2.00 1.66
	.0307 .0318	412 341	146	138.5	39	1.50	1.90	.00127	0.54 0.70	0.93	1.63
K*	.0310	394	1202	130	55 32	1.61	1.90	.00122	0.54	1.07	1.61
L	.0346	381	184	125	50	1.61	1.88	.00118	0.535	1.035	1.57
B	.0338	354	200	116	57	1.61	1.81	.00110	0.61	0.96	1.57
M	.0335	372	178	127	46	1.55	1.95	.00115	0.55	1.01	1.56
N	.0340	321	210	105	56	1.62	1.90	.00099	0.63	0.87	1.50
Р	.0437	334	184	107	50	1.64	1.88	.00103	0.34	0.91	1.25
Silicon steels			1			1					
	.0361	207	54	98	15	1.63	-	.00094	0.14	0.825	0.965
Q† R	.0315	303 288	42	93	11	1.64	- 1	.00089	0.15	0.78	0.93
S T	.0452	278	72	90	18	1.63	-	ð8000.	0.12	0.755	0.875
Ť	.0338	250	60	78	18	1.68	- 1	.00077	0.18	0,68	0.86
U	.0346	270	42	86	12	1.66	-	.00084	0.12	0.735	0.855 0.855
V*	.0310	251.5		79	13	1.68	1	.00078	0.17	0.005	0.695
W*	.0305	197 200	43	62.3 64.2	12.4	1.67	1 2	.00001	0.10	0.545	0.665
A	.0430	200	1 05	04.2	10.0	1.05		1.0000		- 5-5	1

- German. † English. ‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm. (Gage No. 29), assuming the loss proportional to the thickness.

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

Note. - For formulæ and tables for the calculation of mutual and self inductance see Bulletin Bureau of Standards, vol. 8, p. 1-237, 1912.

TABLE 375.

MAGNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula-

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, l the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be dif-ferent, at different parts of the path, H is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential z, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 376-380. For variation with temperature the following formula is given by Bichat : -

$$R = R_0 (1 - 0.00104 t - 0.000014 t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used :--

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative. The table has been for the most part compiled from the experiments of Verdet,[†] H. Becque

rel,† Quincke, § Koepsel, || Arons, ¶ Kundt,*** Jahn,†† Schönrock,‡‡ Gordon, §§ Rayleigh and Sidgewick, || Perkin, ¶¶ Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

The constancy of this quantity has been verified through a wide range of variation of magnetic field by
H. E. J. G. Du Bois (Wied. Ano. vol. 35), p. 137, 1888.
t "Ann. de Chim. et de Phys." [5] vol. 52, p. 129, 1858.
f "Ann. de Chim. et de Phys." [5] vol. 52, p. 129, 1858.
f "Ann. de Chim. et de Phys." [5] vol. 52, p. 129, 1858.
wied. Ann." vol. 26, p. 450, 1885.
"Wied. Ann." vol. 26, p. 450, 1885.
"Wied. Ann." vol. 23, p. 161, 1885.
"Wied. Ann." vol. 23, p. 228, 1884, and 27, p. 191, 1886.
"Wied. Ann." vol. 43, p. 280, 1891.
"Zeits. für Phys. Chem." vol. 11, p. 753, 1893.
S "Proc. Roy. Soc." 36, p. 4, 1833.
"Jour. Chem. Soc."
** "Jour. de Phys." vols. 8, p. 204, 1879, and 9, p. 204 and p. 275, 1880.

TABLE 376.

MAGNETO-OPTIC ROTATION.

Solids.

Substance.	Formula.	Wave- length.	Verdet's Constant. Minutes.	Temp. C.	Authority.
Amber Blende Diamond Lead borate Selenium Sodium borate Ziqueline	$\begin{array}{c} ZnS\\ C\\ PbB_2O_4\\ Se\\ Na_2B_4O_7\\ Cu_2O \end{array}$	μ 0.589 " 0.687 0.589 0.687	0.0095 0.2234 0.0127 0.0600 0.4625 0.0170 0.5908	18–20° 15 15 15 15 15 15	Quincke. Becquerel. " "
Fluorite	CaFl ₂	0.2534 .3655 .4358 .4916 .589 1.00 2.50 3.00	0.05989 .02526 .01717 .01329 .00897 .00300 .00049 .00030	20 (4 (4 (4) (4) (4) (4) (4) (4) (4) (4) (Meyer, Ann. der Physik, 30, 1909.
Glass, Jena: Medium ph Heavy crow Light flint, Heavy flint " Zeiss, Ultraviolet	n, O1143 . O451 . O500 . S163.	0.589 " " 0.313	0.0161 0.0220 0.0317 0.0608 0.0888 0.0674	18 " " 16	DuBois, Wied. Ann. 51, 1894. Landau, Phys. ZS.
" Quart2, along axis, i.e., plate cut ⊥ to axis	SiO ₂	0.405 0.436 0.2194 .2573 .3609 .4800 .5892	.0369 .0311 0.1587 .1079 .04617 .02574 .01664	20 4 4 4 4 4	9, 1908. Borel, Arch. sc. phys. 16, 1903.
Rock salt	NaCl	.5092 .6439 0.2599 .3100 .4046 .4916 .6708 1.00	.01368 0.2708 .1561 .0775 .0483 .0245 .01050	" 20 " "	Meyer, as above.
Sugar, cane : along axis IIA axis IIA ¹	C ₁₂ H ₂₂ O ₁₁	2.00 4.00 0.451 .540 .626 0.451	.00262 .00069 .0122 .0076 .0066 0.0129	" " 20 " "	Voigt, Phys. ZS. 9, 1908.
Sylvine	KCI	.540 .626 0.4358 .5461 .6708 .90	.0084 .0075 0.0534 .0316 .02012 .01051	41 44 20 44 44 44 44	Meyer, as above.
		1.20 2.00 4.00	.00608 .00207 .00054		

TABLE 377. MACNETO-OPTIC ROTATION. Liquids : Verdet's Constant for $\lambda = 0.589\mu$.

Substance.	Chemical formula.	Density in grams per c. c.	Verdet's constant in minutes.	Temp. C.	Authority.
	0.11.0				Jahn.
Acetone	C ₈ H ₆ O	0.7947	0.0113	20 ⁰ 21	Perkin.
Acids : Acetic	$C_2H_4O_2$ $C_4H_8O_2$	1.0561 0.9663	.0105 .0116		"
" Butyric " Formic	$C_4 H_8 O_2$ $CH_2 O_2$	I.2273	.0105	15	"
" Hydrochloric	HCl	I.2072	.0224	"	"
" Hydrobromic	HBr	1.7859	.0343	"	"
" Hydroiodic	HI	1.9473	.0515	"	"
" Nitric	HNO ₈	1.5190	.0070	13	45
" Sulphuric	H_2SO_4	_	.0121	15	Becquerel.
Alcohols : Amyl	C ₅ H _{II} OH	0.8107	.0128	20	Jahn.
" Butyl	C ₄ H ₈ OH	0.8021	.0124		
" Ethyl	C ₂ H ₅ OH	0.7900	.0112		"
wietnyi	CH ₃ OH	0.7920	.0093		"
горуг	C ₈ H ₇ OH	0.8042	.0120		66
Benzol Bromides : Bromoform	C ₆ H ₆ CHBr ₈	0.8786 2.902 I	.0297 .0317	15	Perkin.
Bromides : Bromoform "Ethyl	$C_{2}H_{5}Br$	1.4486	.031/	15	
" Ethylene	$C_2H_4Br_2$	2.1871	.0268	"	"
" Methyl	CH ₈ Br	1.7331	.0205	0	"
" Methylene	CH ₂ Br ₂	2.497 I	.0276	15	"
Carbon bisulphide	CS_2		.0433	ő	Gordon.
14 Å	"	—	.0420	18	Rayleigh.
Chlorides : Amyl	CHCI	0.8740	.0140	20	Jahn.
" Arsenic	AsCl ₈	—	.0422	15	Becquerel.
" Carbon	CCl ₄	_	.0321		"
" Chloroform	CHCl ₈	1.4823	.0164	20	Jahn.
~ Etnyi	C ₂ H ₅ Cl	0.9169	0.0138	6	Perkin.
Ethylene	$C_2H_4Cl_2$	1.2589	.0166	15	Pageneral
" Methyl " Methylene	CH ₈ Cl	1 2261	.0170 .0162		Becquerel. Perkin.
" Methylene " Sulphur bi-	CH_2Cl_2 S_2Cl_2	1.3361	.0393	"	Becquerel.
" Tin tetra	SnCl ₄	_	.0393	66	if it is a second secon
" Zinc bi-	ZnCl ₂	-	.0437	"	44
Iodides : Ethyl	C ₂ H ₅ I	1.9417	.0296	"	Perkin.
" Methyl	CH ₃ I	2.2832	.0336	"	**
" Propyl	C ₃ H ₇ I	1.7658	.0271	"	¢f.
Nitrates: Ethyl	$C_2H_5O.NO_2$	1.1149	.0091	"	"
" Methyl	$CH_8O.NO_2$	1.2157	.0078	"	"
" Propyl	C ₈ H ₇ O.NO ₂	1.0622	.0100	66 66	**
Paraffins : Heptane	C_7H_{16}	0.6880	.0125	"	"
" Hexane	C_6H_{14}	0.6743	.0125		"
" Pentane Phosphorus, melted	C_5H_{12} P	0.6332	.0118		
Sulphur, melted	S	_	.1316 .0803	33	Becquerel.
Toluene	C ₇ H ₈	0.8581	.0269	114 28	Schönrock.
Water, $\lambda = 0.2496 \mu$	H_2O	0.0001	.1042	-	See Meyer,
0.275			.0776		Ann. der
0.3609	1		.0384		Physik, 30,
0.4046			.0293		1909. Meas-
0.500			.0184		ures by
0.589			.0131		Landau,
0.700			.0091		Siertsema,
1.000			.00410		Ingersoll.
I.300	CU	- 8- 16	.00264		Cal Vanaal
Xylene	C ₈ H ₁₀	0.8746	.0263	27	Schönrock.
	·			l	
WITHSONIAN TABLES.					

MAGNETO-OPTIC ROTATION.

Solutions of acids and salts in water. Verdet's constant for $\lambda = 0.589 \mu$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'emp. *		Verdet's constant in minutes.	Density, grams per c. c.	Chemical formula.	*	Temp. C.	Verdet's constant n minutes.	Density, grams per c. c.	Chemical formula.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20° J		0.0145			J	20 ⁰	0.0129	0.9715	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	" "	1					- 1		1.377.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 B				MnCl ₂					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1			*					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 S				HgCl ₂					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					NICI			• •		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 B	1			INICI2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					VCI	1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20 J				KCI "	1	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 B				NaCl		15			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 "									NH4Br
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" J				"	l T				D.D.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					SrC1.	۱ <i>۲</i>		2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"						4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 V				SpCl	"	"			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>a "</i>			1.3200		"				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					ZnCla					CaBr ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	" "						"			TZD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	" "				KaCrO	"	"			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.0786			"			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 S		1 1 1 1			"	"	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	** **				"	"	"			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 P				NHA	"	"			SrBr ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					"	"	20			W CO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			"	"				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 J				CdI	"	**			$Na_2 CO_8$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					"	v	1 1 5			NIL CI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 B	Í	0.0338	1.6743	KI	11				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.3398	8	1 "				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0182	1.1705	**	1 "	"			CACI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	" J		1	1.1939	NaI	"	**			CuCl2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					"		"			"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 P				NH4NO8	"	"			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 · J					1	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" B									4 CaC12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	" B				$U_2O_8N_2O_5$					CuCla
FeCl2 1.4331 0.0025 15 " $(NH4)_2SO_4$ 1.2200 0.0140 " 1.2141 0.0099 " " NH_4HSO_4 1.4417 0.0085 " 1.2141 0.0099 " " NH_4BSO_4 1.42417 0.0085 " 1.2141 0.0039 " " NH_4BSO_4 1.4717 0.0034							"			44
" 1.2141 0.0099 " " BaSO4 1.1788 0.0134	15 P		Ó.				15			FeC1.
" BaSU4 1.1700 0.0134		. 1		4 1.441		1				
	20 J						"	0.0118	1.1093	"
\mathbf{F}_{2} C1 \mathbf{I}_{2} (0.0133) -0.2026 " " " " 1.0038 0.0133							"			FeeCla
1.1702 - 0.0139					CdSO4		66			1.62018
							"			"
" $1.1702 0.015$ " " $L_{12}SO_4 1.1702 0.015$			1 50				"		1.1681	"
1.2441 0.0130					MnSO ₄		"			"
" K2SU4 1.04/5 0.0113 " " K2SU4 1.04/5 0.01.33					K2SU4			0.0113	1	
" 1.0232 0.0122 " " NaSO4 1.0601 0.0135		1	1 0.0-35	1.000	Na504	1 "	: "	0.0122		"
					<u></u>				Ī	

* J, Jahn, P, Perkin, V, Verdet, B, Becquerel, S, Schönrock; see p. 326 for references.

TABLES 379, 380.

TABLE 379. - Magneto-Optio Rotation.

Substa	ince.			Pressure.	Temp.	Verdet's constant in minutes.	Authority.
Atmospheric air Carbon dioxide Carbon disulphide Ethylene . Nitrogen . Nitrous oxide . Oxygen . Sulphur dioxide "		• • • • • • • • • • • • • • • • • • • •	•	Atmospheric 74 cms. Atmospheric " " 246 cms.	Ordinary 70° C. Ordinary " " 20° C.	6.83×10^{-8} 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " Bichat.

Gazez,

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 380. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

	Magnetic	Verdet's co	nstant.	Wave-length	Kundt's
Name of substance.	susceptibility.	Number.	Authority.	of light in cms.	constant.
Cobalt Nickel Iron Sulphur dioxide . Water Nitric acid Alcohol Ether Arsenic chloride . Faraday's glass .	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} - \\ - \\ - \\ 0.302 \\ (0.377 \\ 0.356 \\ (0.330 \\ 0.315 \\ 1.222 \\ (1.738 \\ (0.313 \\ 1.222 \\ (1.738 \\ (0.313 \\ 1.222 \\ (1.738 \\ (0.313 \\ 1.222 \\ (1.738 \\ (0.313 \\ 1.222 \\ (1.738 \\ (0.313 \\ 1.222 \\ (1.738 \\ (0.313 \\ 1.223 \\ (1.738 \\ (0.313 \\ 1.223 \\ (1.738 \\ (0.313 \\ 1.223 \\ (1.738 \\ (0.313 \\ 1.233 \\ (0.313 \\ $	- Becquerel. Arons Becquerel. De la Rive. " Becquerel. Rayleigh. Becquerel.	6.44 × 10 ⁻⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 -5.4 -5.6 -5.8 -5.8 -14.9 -17.1 -17.7

TABLES 381-383.

TABLE 381. -- Values of Kerr's Constant.*

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

Color of light.	Spectrum	Wave- length	Kerr's constar	t in minutes per	c. g. s. unit of r	nagnetization.
	line.	ne. in cms. X 10 ⁶ Cobalt.		Nickel.	Iroa.	Magnetite.
Red	Lia	67.7	0. 0208	0.0173	0.01 54	+0.0096
Red	_	62.0	0.0198	0.0160	0.01 38	+0.0120
Yellow	D	58.9	0.0193	0.01 54	0.01 30	+0.0133
Green	ь	51.7	0.0179	0.0159		+0.0072
Blue	F	48.6	-0.0180	-0.0163	0.0101	+0.0026
Violet	G	43.1	-0.0182	0.0175	0.0089	-

* H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 382. - Dispersion of Kerr Effect.

Wave-length.	0.5 µ	0.5µ I.0µ		2.04	2.5#
Steel	—II'.	<u> </u>	-14'.	-11'.	9′.0
Cobalt	— 9.5		9.5		6.5
Nickel	— 5.5	4.0	0	+1.75	+3.0

Field Intensity = 10,000 C. G. S. units. (Intensity of Magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

Mirror.	Field (C. G. S.)	.41µ	.44µ	.48µ	.52µ	.56µ	.60µ	.64µ.	.66µ
Iron	21,500	25	—. 26	28	31	36	42	44	45
Cobalt	20,000	36	35		35				36
Nickel	19,000	16	15	13	13	14	14	14	14
Steel	19,200	27	28	—.31		38	40	44	
Invar	19,800	22	23	24	23	23	22	23	23
Magnetite	16,400	07	02	+.04	+.06	+.08	+.06	+.04	+.03

TABLE 383. - Dispersion of Kerr Effect.

Foote, Phys. Rev. 34, p. 96, 1912.

See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

TABLE 384.

MAGNETIC SUSCEPTIBILITY.

If \mathfrak{T} is the intensity of magnetization produced in a substance by a field strength \mathfrak{V} , then the magnetic susceptibility $H = \mathfrak{T}/\mathfrak{V}$. This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if H_0 is the susceptibility of water, $(p/100) H + (1 - p/100) H_0$.

Substaoce.	Suscep- tibility.	C. Temp.	Remarks	Substance.	Suscep- tibility.	Temp. C.	Remarks
Ag	0.19	18°		K ₂ CO ₈	-0.50	200	Sol'n
AgCl Air, 1 Atm	0.28 +0.024	15		Li	+0.38 +0.04	18	
$\substack{\text{Al}\\\text{Al}_2\text{K}_2(\text{SO}_4)_{424}\text{H}_2\text{O}}$	+0.65 	ıð	Crys.	Mg	+0.55 0.40	18	
A, I Atm	-0.10	0		Mn	+11.	18	C alla
As	0.3 0.15	18 18		MnCl ₂ MnSO ₄	+122. +100.	18 18	Sol'n "
B. $B.$ $B.$ $B.$ $B.$ $B.$ $B.$ $B.$	0.71 0.36	18 20		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.001 —1.1	16	
Be	+0.79	15	Powd.	Na	+0.51	18	
Br	-1.4 0.38	18 18		NaCl	0.50 0.19	20 17	Powd.
C, arc-carbon C, diamond	2.0 0.49	18 18		NaCO ₈ . 10 H_2O .	0.46 +1.3	17 18	"
CH ₄ , 1 Atm	+0.001	16		NiCl ₂	+40.	18	Sol'n
CO_2 , 1 Atm CS_2	+0.002	16 18		NiSO4 O2, 1 Atm	+30. +0.120	20 20	
$\begin{array}{cccc} CaO & \ldots & \ldots & \ldots \\ CaCl_2 & \ldots & \ldots & \ldots \end{array}$	0.27 0.40	16 19	Powd.	Os	+0.04	20 20	
CaCO ₈ , marble	-0.7			P, red	-0.50	20	
Cd CeBr ₈	0.17 +6.3	18 18		Pb PbCl ₈	0.12 0.25	20 15	Powd.
Cl_2 , 1 Atm $CoCl_2$	0. <u>59</u> +-90.	16 18	Sol'n	Pd	+5.8 +13.	18 18	Sol'n
CoBr ₂	+47.	18	"	Pt	+1.1	18	
CoI_2 CoSO ₄	+33. +57.	18 19	"	PtCl ₄	0.0 +1.1	22 18	Sol'n
$Co(NO_8)_2$.	+57.	18 18	"	S	0.48 0.30	18 16	
	-0.28	17	Powd.	Sb	-0.94	18	
$\begin{array}{cccc} Cu & \cdot & \cdot & \cdot & \cdot \\ CuCl_2 & \cdot & \cdot & \cdot & \cdot \end{array}$	0.09 +12.	18 20	Sol'n	Si	0.32 0.12	18 18	Crys.
CuSO ₄	+10. +0.16	20 17	Sol'n Powd.	SiO ₂ , Quartz —Glass	0.44 0.5±	20	_
FeCl ₈	+90.	18	Sol'n	Sn	+0.03	20	a v
$\begin{array}{cccccccc} FeCl_2 & \cdot & \cdot & \cdot \\ FeSO_4 & \cdot & \cdot & \cdot & \cdot \end{array}$	+90. +82.	18 20	"	SrCl_2	0.42 +0.93	20 18	Sol'n
Fe ₂ (NO ₈) ₈ FeCn ₆ K ₄	+ 50. 0.44	18	" Powd.	Te	-0.32 +0.18	20 18	
FeCn ₆ K ₈	+9.1	_	"	Ti	+3.1	18	
He, 1 Atm H ₂ , 1 Atm	0.002 0.000	0 16		Va	+1.5 +0.33	18 20	
H ₂ , 40 Atm H ₂ O	<i>0.000</i> 0.79	16 20		Zn	-0.15 -0.40	18	
HC1	-0.80	20		Zr	0.45	18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.78 -0.70	20 20		$\begin{array}{ccc} CH_{3}OH & . & . & . \\ C_{2}H_{5}OH & . & . & . \end{array}$	0.73 0.80		
Hg	0.19 0.4	20 20		$C_{8}H_{7}OH$ $C_{2}H_{5}OC_{2}H_{5}$	0.80 <i>0.60</i>	20	
In	0.1	18		CHCl ₈	0.58	20	
К	+0.15 +0.40	18 20		$C_{6}H_{6}$ Ebonite	0.78 +1.1		
KCl	0.50 0.40	20 20		Glycerine Sugar	-0.64 0.57	22	
КІ КОН	0.38	20 22	Sol'n	Paraffin Petroleum	-0.58		
K_2SO_4	0.35 0.42	22 20	Solu	Toluene	0.91 0.77		
KMnO4 KNO3	+2.0 0.33	20		Wood	0.2-5 0.81		
					0.01		

Values are mostly means taken of values given in Laodolt-Börnstein's Physikalisch-chemische Tabellen. See especially Hooda, Annalen der Physik (4), 32, 1910. SMITHSONIAN TABLES.

TABLES 385-387. RESISTANCE OF METALS. MACNETIC EFFECTS. 333

TABLE 385. -- Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

н	-192°	-135°	-100°	-37°	٥°	+ 18°	+60°	+1000	+183
0	0.40	0.60	0.70	0.88	1.00	1.08	1.25	1.42	1.79
2000	1.16	0.87	0.86	0.96	1.08	1.11	1.26	1.43	1.80
4000	2.32	I.35	1.20	1.10	1.18	1.21	1.31	1.46	1.8
6000	4.00	2.06	1.60	1.29	1.30	1.32	1.39	I.5I	1.8
8000	5.90	2.88	2.00	1.50	I.43	1.42	1.46	1.57	1.8
10000	8.60	3.80	2.43	1.72	1.57	1.54	1.54	1.62	1.89
1 2000	10.8	4.76	2.93	1.94	1.71	1.67	1.62	1.67	1.92
14000	12.9	5.82	3.50	2.16	1.87	1.80	1.70	1.73	I.9/
16000	15.2	ŏ.95	4.11	2.38	2.02	1.93	1.79	1.80	1.90
18000	17.5	8.15	4.76	2.60	2,18	2.06	I.88	1.87	1.99
20000	19.8	9.50	5.40	2.81	2.33	2.20	1.97	1.95	2.0
25000	25.5	13.3	7.30	3.50	2.73	2.52	2.22	2.10	2.00
30000	30.7	18.2	9.8	4.20	3.17	2.86	2.46	2.28	2.1
35000	35.5	20.35	12.2	4.20	3.62	3.25	2.69	2.45	2.2

TABLE 386. — Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at 0° and $\rm H\,{=}\,0.$

н	-190°	-75 ⁰	oo	+18°	+1000	+182°
0 1000 2000 3000 4000 6000 10000 12000 14000 16000 16000 16000 25000 30000 35000	$\begin{array}{c} +0\\ +0.20\\ +0.17\\ 0.00\\ -0.17\\ -0.19\\ -0.18\\ -0.18\\ -0.18\\ -0.18\\ -0.17\\ -0.17\\ -0.12\\ -0.14\\ -0.14\\ -0.12\\ -0.10\end{array}$	$\begin{array}{c} 0 \\ + 0.23 \\ + 0.16 \\ - 0.05 \\ - 0.15 \\ - 0.20 \\ - 0.23 \\ - 0.27 \\ - 0.32 \\ - 0.32 \\ - 0.38 \\ - 0.41 \\ - 0.49 \\ - 0.50 \\ - 0.63 \end{array}$	$\begin{array}{c} 0 \\ +0.07 \\ +0.03 \\ -0.34 \\ -0.060 \\ -0.70 \\ -0.76 \\ -0.82 \\ -0.91 \\ -0.94 \\ -0.98 \\ -1.03 \\ -1.12 \\ -1.32 \end{array}$	$\begin{array}{c} 0 \\ +0.07 \\ +0.03 \\ -0.36 \\ -0.72 \\ -0.83 \\ -0.90 \\ -0.95 \\ -1.00 \\ -1.04 \\ -1.09 \\ -1.13 \\ -1.17 \\ -1.29 \\ -1.40 \\ -1.50 \end{array}$	$\begin{array}{c} 0 \\ +0.96 \\ +0.72 \\ -0.14 \\ -0.70 \\ -1.02 \\ -1.15 \\ -1.23 \\ -1.37 \\ -1.37 \\ -1.44 \\ -1.51 \\ -1.59 \\ -1.76 \\ -1.95 \\ -2.13 \end{array}$	$\begin{array}{c} & & \\$

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 387. -- Ohange of Resistance of Varions Metals in a Transverse Magnetic Field. Room Temperature.

Metal.	Field Strength in Gausses.	Per cent Increase.	Authority.
Nickel " Cobalt Cadmium Zinc Copper Gold Tin Palladium Platinum Lead Tantalum Magnesium Magnesium Manganin Tellurium Antimony Iron Nickel steel	diverse results, crease in weak f	- 1.2 - 1.4 - 1.4 - 0.53 + 0.03 + 0.04 + 0.004 + 0.004 + 0.002 + 0.0005 + 0.0005 + 0.0003 + 0.001 + 0.02 to 0.34 + 0.02 to 0.34 + 0.02 to 0.34 - 0.02 to 0.34	Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Atti Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906. " " " " Dagostino, <i>l. c.</i> Goldhammer, Wied Ann. 31, 1887. Grummach, <i>l. c.</i> Barlow, <i>l. c.</i> Williams, <i>l. c.</i> Williams, <i>l. c.</i>

TABLE 388. - Transverse Galvanomagnetic and Thermomagnetic Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.

E = difference of potential produced; T = difference of temperature produced; I = primary current; $\frac{dt}{dx}$ = primary temperature gradient; B = breadth, and D = thickness, of specimen; H =intensity of field, C. G. S. units.

> Hall effect (Galvanomagnetic difference of Potential), $E = R \frac{HI}{D}$ " Temperature), $T = P \frac{HI}{D}$ Ettingshausen effect (" " " Potential), $E = QHB \frac{dt}{dr}$ Nernst effect (Thermomagnetic . . " Temperature), $T = SHB \frac{dt}{dx}$. . . 46 66

Leauc	enect	(

Substance.	Values of <i>R</i> .	P × 10 ⁸ .	Q × 10 ⁶ .	S X 10 ⁸ .
Tellurium	+400 to 800 + 0.9 " 0.22 +.012 " 0.033 +.010 " 0.026	+200 +2 -0.07	+360000 +9000 to 18000 -700 " 1700 +1600 " 7000	+400 +200 +69
Iron	+.007 " 0.011 +.0016 " 0.0046 -	0.06 +0.01 -	-1000 " 1500 +1800 " 2240 -54 " 240	+39 +13 +13
Iridium	+.00055 +.00040 +.00009 00003		up to —5.0 —5.0 (?) —4.0 (?)	+5
Platinum	0002 00052 00054 00057 to .00071	-	90 to 270	—2 —18
Constantine	0009 00093 0007 to .0012	_	+50 to 130	—3
Silver	0008 " .0015 0023 00094 to .0035 00036 " .0037	-	-46 " 430	4I
Nickel	0045 " .024 017 - up to 16.	+0.04 to 0.19 +5. +3 to 40	+2000 " 9000 +100 + up to 132000	45 200

TABLE 369. - Variation of Hall Constant with the Temperature.

	·	Bian	nuth.1				Antimony. ²						
н	—182 ⁰	90°	23°	+11.5°	+1000	н	-1860	~	+21.50	+580			
1000 2000 3000 4000 5000 6000	62.2 55.0 49.7 45.8 42.6 40.1	28.0 25.0 22.9 21.5 20.2 18.9	17.0 16.0 15.1 14.3 13.6 12.9	13.3 12.7 12.1 11.5 11.0 10.6	7.28 7.17 7.06 6.95 6.84 6.72	1750 3960 6160	0.263 0.252 0.245	0.243	0.217 0.211 0.209	0.203			
					Bismuth	,8							
H	+14.5°	+104 ⁰	0 12	5°	189 ⁰	2120	239 ⁰	259 ⁰	2 69 ⁰	270 ⁰			
890	5.28	2.57	2.1	12 1	1.42	1.24	1.11	0.97	0.83	0.77*			

Barlow, Ann. der Phys. 12, 1903.
 ² Everdingen, Comm. Phys. Lab. Leiden, 58.
 ³ Traubenberg, Ann. der Phys. 17, 1905.
 ⁴ Melting-proint.
 Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

334

RÖNTGEN (X-RAYS) RAYS.

Röntgen rays are produced whenever an electric discharge passes through a highly exhausted tube. The disturbance is propagated in straight lines probably with the velocity of light, affects photographic plates, excites phosphorescence, ionizes gases and suffers neither deviation by magnetic forces nor measurable refraction in passing through media of different densities. With extreme exhaustion in the tube they have an appreciable effect after passing through several millimeters of brass or iron. The quality by which it is best to classify the rays is their hardness which is the greater the greater the exhaustion. It is conveniently measured by the amount of absorption which they suffer in passing through a layer of aluminum or tin foil of standard thickness. The number of ions which the rays produce in 1 sec. in passing through I cu. cm. of a gas depends upon its nature and pressure. The absorption of any substance is equal to the sum of the absorption of the individual molecules and the absorption due to any molecule is independent of the nature of the chemical compound of which it forms a part, of its physical state, and probably of its temperature.

Gas.	Relative i	onization.	Develop	
	Soft rays, Strutt.	Hard rays, Eve.	Density.	
Hydrogen Air Oxygen Carbon dioxide Cyanogen Sulphur dioxide Chloroform Methyl iodide Carbon tetrachloride Hydrogen sulphide	.11 1.00 1.39 1.60 1.05 7.97 31.9 72.0 45.3	.42 I.00 — 2.3 4.6 I3.5 4.9 .9	0.069 1.00 1.11 1.53 1.86 2.19 4.32 5.05 5.31 1.18	

TABLE 390. — Ionization due to Röntgen Rays in Various Gases.

Strutt, Proc. Roy. Soc. 72, p. 209, 1903; Eve, Phil. Mag. 8, p. 610, 1904.

When Röntgen rays pass through matter they produce secondary Röntgen rays as well as cathodic rays. The former are of two types: the first is like the original rays and may be regarded as scattered primary rays; the second type varies with the nature of the material struck and is independent of the primary rays. If the atomic weight of the material struck is less than that of Calcium then the first type alone is present. The higher the atomic weight of the material struck the more penetrating is the secondary radiation given out. This is shown in the following table where λ is the reciprocal of the distance (cm.) in Al. through which the rays must pass in order that their intensity is reduced to 1/2.7 of its original intensity.

Elemeot.	Cr.	Fe.	Co.	Ni.	Cu.	Zn.	As.	Se.	Sr.	Ag.	Sa.
Atomic weight λ	52.	55.8	59.0	58.7	63.6	65.4	75.0	79.2	87.6	108.	119.
	367.	239.	193,	160.	129.	106.	61.	51.	35.2	6.75	4·33

TABLE 391. - Röntgen Secondary Raya.

The secondary cathodic rays seem to be independent of the material struck and of the intensity of the original rays. The velocity of these secondary rays depends upon the hardness of the original rays. The following table gives the thickness in cm. of the gas at 760 mm., c° C. necessary to reduce the energy of the cathodic rays to one half (t) as well as λ as above defined.

TABLE 392	. — Röntgen	Secondary	Cathodio Raya.
-----------	-------------	-----------	----------------

Element.		t	λ			
Element.	Air.	Hydrogen.	Air.	Hydrogen		
Fe Cu Zn As Sn	.0080 .0135 .0164 .0255 .176	.041 .073 .091 1.37	87.2 51.9 42.7 27.4 3 .97	17.0 9.5 7.7 .51		

Beatty, Phil. Mag. 20, p. 320, 1910.

TABLES 393, 394.

RÖNTGEN (X-RAYS) RAYS.

TABLE 393. — Mean Absorption Coefficients, $\frac{\alpha}{d}$.

If I_0 be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t, then $I = I_0 e^{-\lambda x}$ gives the intensity I at the depth x. Because of the greater homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients λ have been divided by the density d.

Radiator.		Absorber.												
Kadiator.	C.	Mg.	Al.	Fe.	Ni.	Cu.	Zn.	Ag.	Sn.	Pt.	Au.			
Cr.	15.3	126.	136.	104.	129.	143.	170.	580.	714.	(517.)	(507.)			
Fe.	10.1	80.	88.	66.	84.	95.	112.	381.	472.	340.	367.			
Co.	8.0	64.	72.	67.	67.	75.	92.	314.	392.	281.	306.			
Ni.	6.6	52.	59.	314.	56.	62.	74.	262.	328.	236.	253.			
Cu.	5.2	41.	48.	268.	63.	53.	61.	214.	272.	194.	210.			
Zn.	4.3	35.	39.	221.	265.	56.	50.	175.	225.	162.	178.			
As.	2.5	19.	22.	134.	166.	176.	204.	105.	132.	106.	106.			
Se.	2.0	16.	19.	116.	141.	150.	175.	88.	112.	93.	100.			
Ag.	.4	2.2	2.5	17.	23.	24.	27.	13.	16.	56.	61.			

Barkla, Sadla, Phil. Mag. 17, p. 739, 1909.

TABLE 394. — X-Ray Spectra and Atomic Numbers.

Kaye has shown that an element excited by sufficiently rapid cathode rays emits characteristic Röntgen radiations. These have been analyzed and the wave-lengths obtained by Moseley (Phil. Mag. 27, p. 703, 1914) using a crystal of potassium ferrocyanide as a grating. The "K" series of elements shows a lines, a and β , the "L" series several. The wave-lengths of the α and β lines of each series are given in the following table. $Q_K = (v/\frac{5}{3} v_0)^{\frac{1}{2}}$; $Q_L = (v/\frac{5}{3} v_0)^{\frac{1}{2}}$ where v is the frequency of the α line and v_0 the fundamental Rydberg frequency. The atomic number for the K series $= Q_K + 1$; for the L series $= Q_L + 7.4$ approximately. $v_0 = 3.29 \times 10^{15}$.

Element.	α line λx 10 ⁸ cm.	Q _K	Atomic Number N	β line λx10 ⁸ cm.	Element.	a line λx10 ⁸ cm.	QL	Atomic Number N	β line λx10 ⁸ cm.
Al Si Cl Ca Ti V Cr Mn Fe Co Ni Cu Zn Cu Zn Yt Zr Cb Mo Ru Pd Ag	8.364 7.142 4.750 3.368 2.758 2.519 2.301 2.111 1.946 1.662 1.549 1.445 0.758 0.721 0.638 0.721 0.638 0.560	12.0 13.0 16.0 19.0 21.0 22.0 24.0 25.0 25.0 27.0 27.0 27.0 27.0 28.0 27.0 27.0 27.0 27.0 27.0 24.0 27.0 24.0 27.0 24.0 27.0 24.0 24.0 24.0 24.0 25.0 24.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	13 14 17 20 22 23 24 25 26 27 28 29 30 39 40 41 42 44 46 47	7.912 6.729 3.463 3.094 2.524 2.297 2.093 1.818 1.765 1.629 1.506 1.402 1.306	Zr Cb Mou Rh Pd Ag Sb La Ce Pr Nd Sa Gd Ho Er Ta W Os Ir Pt Au	6.091 5.749 5.423 4.622 4.385 4.170 3.458 2.676 2.567 (2.471) 2.382 2.208 2.130 2.057 1.914 1.790 1.525 1.486 1.397 1.354 1.316 1.287	$\begin{array}{c} 32.8\\ 33.8\\ 34.8\\ 36.7\\ 37.7\\ 39.6\\ 43.6\\ 49.5\\ 50.5\\ 55.5\\ 55.5\\ 55.5\\ 55.5\\ 56.5\\ 55.5\\ 56.5\\ 56.5\\ 56.5\\ 56.5\\ 56.5\\ 56.6\\ 66.5\\ 68.5\\ 69.6\\ 71.4\end{array}$	40 41 42 44 45 40 47 57 57 58 50 62 63 64 66 68 73 76 77 8 79	5.507 5.187 4.660 4.168 3.245 2.471 2.360 2.265 2.175 2.008 1.925 1.853 1.711 1.591 1.330 1.201 1.151 1.121 1.092

Moseley's summary condensed is as follows: Every element from Al to Au is characterized by an integer N which determines its X-ray spectrum; N is identified with the number of positive units of electricity in its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights except where the latter disagrees with the order of the chemical properties. Known elements correspond with all the numbers between 13 and 79 except 3. There are here 3 possible elements still undiscovered. The frequency of any line in the X-ray spectrum is approximately proportional to A $(N-b)^2$, where A and b are constants. All X-ray spectra of each series are similar in structure differing only in wave-lengths. Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor affected by physical conditions controlling ordinary reactions, viz: temperature, whether solid or With the solid or second sec

With the exception of actinium, radioactive bodies emit a, β , or γ rays. α rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about 1/15 the velocity of light. They are deflected but very slightly by intense electric or magnetic fields. The β rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and identical in type with the cathode rays of a vacuum tube. The γ rays are extremely penetrating produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain chemical reactions such as the formation of ozone or the decomposition of water. All radio active compounds are luminous even at the temperature of liquid air.

Table 398 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is referred for references. In the three radioactive series each successive product (except Ur. Y, and Ra. C₂) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an α particle (helium, atomic weight =4.0) the atomic weight decreases by 4. The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law. $I = I_0e^{-\lambda t}$ where $I_0 =$ radioactivity when t = O, I that at the time t, and λ the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the decay and growth of its products are balanced.

International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910, compared a standard of 21.99 mg. of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of 1 in 300. Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures at Sèvres, near Paris. Arrangements have been made for the preparation of duplicate standards for governments requiring them.

TABLE 395. - Relative Phosphorescence Excited by Radium.

(Becquerel, C. R. 129, p. 912, 1899.)

Without screen, Hexagonal zinc blende . ""Pt. cyanide of barium . ""Diamond . ""Double sulphate Ur and K ""Calcium fluoride .				13.36 1.99 1.14 1.00 .30	With screen	•••••	• • • •	•••••••••••••••••••••••••••••••••••••••	:	.04 .05 .01 .31 .02
---	--	--	--	--------------------------------------	-------------	-------	---------	---	---	---------------------------------

The screen of black paper absorbed most of the α rays to which the phosphorescence was greatly due. For the last column the intensity without screen was taken as unity. The γ rays have very little effect.

TABLE 396. — The Production of α Particles (Helium).

(Geiger and Rutherford, Philosophical Magazine, 20, p. 691, 1910.)

Radioactive substance (1 gram.)	a particles per sec.	Helium per year.
Uranium Uranium in equilibrium with products Thorium Radium Radium iu equilibrium with products	$\begin{array}{c} 2.37 \times 10^{4} \\ 9.7 \times 10^{4} \\ 2.7 \times 10^{4} \\ 3.4 \times 10^{10} \\ 13.6 \times 10^{10} \end{array}$	2.75 × 10 ⁻⁵ cu. mm. 11.0 × 10 ⁻⁵ " " " 3.1 × 10 ⁻⁵ " " " 39 " " " 158 " ' '

TABLE 397. — Heating Effect of Radium and its Emanation.

(Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

	Heating effect in gran	n-calories per hour per	gram radium.	
	a rays.	β rays.	γ rays.	Total.
Radium Emanation . Radium A . Radium B + C	- 25. I 28.6 - 30.5 - 39.4	4.7	- - 6.4	25.1 28.6 30.5 50.5
Totals	. 123.6	4.7	6.4	134.7

Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. 1, 1910; Schweidler and Hess, Ion. 1, p. 161, 1909; Angström, Phys. ZS. 6, 685, 1905, etc.

TABLE 398.

RADIOACTIVITY.

P = 1/2 period = time when body is one-half transformed. $\lambda =$ transformation constant (see previous page). The initial velocity of the α particle is deduced from the formula of Geiger $V^8 = aR$ where R = range and assuming the velocity for RaC of range 7.06 cm. at 20° is 2.06×10^9 cm. per sec., i.e. $v = 1.0777^{1/8}$.

					· · · · · ·	•							
		U	RANIUM-RA	DIUM G	ROUP.								
			Traosforma-			a	rays.						
	Atomic Weights.	½ Period P	tion Constants. $\lambda = \frac{.6931}{P}$	Rays.	Range. 760 ^{mm} , 15 ⁰ C.	Initial Velocity.	Kinetic Energy	Whole no. of ions produced.					
			P		c.m.	c.m. per s.	Ergs.	By an a particle.					
Uranium 1 Uranium 2 Uranium X Ur. Y	238.5 234.5 230.5 230.5 ?	5×10 ⁶ y 10 ⁸ yrs 24.6 d 1.5 d	$1.4 \times 10^{-16} \text{ y}$ $7 \times 10^{-7} \text{ y}$.0282 d .46 d	α α β+γ β	2.50 2.90	1.45×10 ⁹ 1.53 "	.65×105 .72 "	1.26×10 ⁵ 1.37 "					
Ionium Radium	230.5 226.4	2×10 ⁵ yr? 2000 y	3.5×105 y .000346 y	a a+B	3.00 3.30	1.56 " 1.61 "	-75 "	1.40 " 1.50 "					
Ra Emanation	222	3.85 d	.180 d	a	4.16	1.73 "	-79 .92 "	1.50 1.74 " 1.88 "					
Radium A Radium B	218 214	3.0 m 26.8 m	.231 m .0258 m	β+γ	4.75	1.82 "	1.01 "	1.88 "					
Radium C Ra C ₂	214 2107	19.5 m	.0355 m	a+β+γ	6.94	2.06 "	1.31 "	2.37 "					
Ra O, radio-lead Ra E. Ra F. Polooium	210 210 210 210 210	1.4 m 16.5 y 5.0 d 136 d	.495 m .042 y .139 d .00510 d	β slowβ β+γ α	3 ·77	1.68 "	.87"	1.63 "					
	ACTINIUM GROUP.												
Actinium Radio-Act. Actinium X Act. Emanation Actinium A Actinium B Actinium D	A A-4 A-8 A-12 A-10 A-10 A-20	? 19.5 d 10.2 d 3.9 s .002 s 36 m 2.1 m	.0355 d .068 d .178 s .350 s .0193 m .33 m	none $a+\beta$ a a slow β a $\beta+\gamma$	4.80 4.40 5.70 6.50 5.40	1.83×10 ⁶ 1.76 " 1.94 " 2.02 " 1.89 "	1.02×10-5 .94 " 1.15 " 1.25 " 1.10 "	1.89×10 ⁵ 1.79 " 2.10 " 2.27 " 2.02 "					
		4.7 m	.147 m	<u> </u>									
			THORIU	M GROU	P.								
Thorium Mesothorium 1 Mesothorium 2	232 228 228	1.3×10 ¹⁰ y 5∙5 y 6.2 hr	5.3×10–11 .126 yr .112 h	a none $\beta + \gamma$	3.72	1.50×10 ⁹	.69×10-5	1.32×10 ⁵					
Radiothorium Thorium X	228 224	2 yrs 3.65 d	-347 y .190 d	a a+β	3.87	1.70 "	.89 "	1.66 "					
Th. Emanation	220	54 sec	.0128 S	a	5·7 5·5	1.94	1.15 "	2.0 "					
Thorium A Thorium B	210 212	0.14 sec 10.6 h	4.95 S .0654 h	β ₁ γ	5.9	1.97 "	7.19 "	2.2					
Thorium C ₁ Thorium C ₃ Th. D	212 212 208	60 m very short 3.1 m	.0118 m 	α+β α+β β+γ	5.0 8.6	1.85 " 2.22 "	1.05 " 1.53 "	1.9 ⁶¹ 2.9 ⁶¹					
Potassium Rubidium	39.1 85.5	3	?	β β									

TABLE 398 (continued). - RADIOACTIVITY.

URANIUM-RADIUM GROUP. β ravs. γ rays. Absorption Coefficient == # Velocity Light = 1 Absorption $Co-ef_1 = \mu_1$ Remarks. c.m.-1 c.m.-1 Ur 1 1 gram U emits 2.37 \times 10⁴ a particles per sec. Ur 2 Not separable from Ur 1. Ur X β rays show no groups of definite veloc-ities. Chemically allied to Th. Wide range 15, 510 .72 Ur Y Probably branch product. Exists in small quantity. Io Chemically properties of and non-separable from Thorium. Ra 312 .52, .65 Chemically properties of Ba. 1 gr. emits per sec. in equilib. 13.6×10^{10} a particles. Inert gas, density 111 H, boils -65° C, density solid 5-6, condenses low pressure -150° C. Ra Em Ra A Like solid, has + charge, volatile in H, 400°, in O about 550°. Volatile about 400° C. in H. pure by recoil from Ra A. Ra B 13, 80, 890 .36 to .74 4 to 6 Separated Ra C 13, 53 Volatile in H about 430°, in O about 1000°. .80 to .98 .50 Ra C₂ 13 Probably branch product. Separated by recoil from Ra C. Ra D .33, .39 Separated with Pb. not yet separable from .33, .39 it. Volatile below 1000°. Ra E Wide range Easy abs. 43 Ra F Separated with Bi. Probably changes to Рb. Volatile about 1000°. ACTINIUM GROUP. Act Probably branch product Ur. series. Chemically allied to Lanthanum. Rad. Act 140 Act X Chemical properties analogous to Ra. Ac. Em. Inert gas, condenses between -120° and -1 50°. Analogous to Ra A. Volatile above 400°. Act A Act B Very soft 44 Ra B. " 700°. " Ra C. " Act C (Obtained by recoil). Act D 28.5 .217 (Al) THORIUM GROUP. Tb. Volatile in electric arc. Colorless salts not spontaneously phosphorescent. .37 to .66 Mes. Th. 1 Chemical property analogous to Ra from which non-separable. Mes. Th. 2 Rad. Th. 20 to 38.5 ·53 Chemically allied to Th., non-separable from it. Chemically analogous to Ra. Th. X About 330 .47 .51 Inert gas, condenses at low pressure Th. Em. between -120° and -150°. -charged, collected on —electrode. Th. A Chemically analogous to Ra B. Volatile Th. B 110. .63 .72 above 630° C. Weak Chemically analogous to Ra C. Volatile Th. C_1 15.6 above 7.30°. Th.C₂ and Th.D are probably respectively β and α ray products from Th.C₁. Got by recoil from Th.C. Probably Th. C₂ .46 24.8 Th. D .3, .4, .93-5 transforms to Bi. Activity = 1/1000 of Ur. 38, 102 K = 1/ 500 of Ur. 380, 1020 Rb.

 $\mu = \text{coefficient of absorption for } \beta$ rays in terms of cms. of aluminum, μ_I , of the γ rays in cms. of lead so that if J_0 is the incident intensity, J that after passage through d cms., $J = J_0 e^{-d\mu}$.

TABLES 399-401.

RADIOACTIVITY.

TABLE 399.-Stopping Powsrs of Various Substances for a Raya.

s, the stopping power of a substance for the *a* rays is approximately proportional to the square root of the atomic weight, w.

Substance	H ₂	Air	O2	C ₂ H ₂	C ₂ H ₄	Al	N2O	CO ₂	CH ₈ Br	CS ₂	Fe
s	.24	1.0	1.05	1.11	1.35	1.45	1.46	1.47	2.09	2.18	2.26
√w	.26	1.0	1.05	1.17	1.44	1.37	1.52	1.51	2.03	1.95	1.97
Substance	Cu	Ni	Ag	Sn	C ₈ H ₈	C5H12	C₂H₅I	CC1 ₄	Pt	Au	Pb
s	2.43	2.46	3.17	3·37	3·37	3.59	3.13	4.02	4.16	4.45	4.27
√w	2.10	2.20	2.74	2.88	3·53	3.86	3.06	3.59	3.68	3.70	3.78

Bragg, Philosophical Magazine, 11, p. 617, 1906.

TABLE 400. — Absorption of β Rays by Various Substances.

 $\mu,$ the coefficient of absorption for β rays is approximately proportional to the density, D. See Table 398 for μ for Al.

Substance .	B	C	Na	Mg	A1	Si	Р	S	K	Ca
μ/D	4.65	4.4	4.95	5.1	5.26	5.5	6.1	6.6	6.53	6.47
Atomic Wt	11	12	23	24.4	27	28	31	3 ²	39	40
Substance μ/D Atomic Wt	Ti	Cr	Fe	Co	Cu	Zn	Ar	Se	Sr	Zr
	6.2	6.25	6.4	6.48	6.8	6.95	8.2	8.65	8.5	8.3
	48	52	56	59	63.3	65.5	75	79	87.5	90.7
Substance μ/D Atomic Wt	Pd	Ag	Sn	Sb	I	Ba	Pt	Au	Pb	U
	8.0	8.3	9.46	9.8	10.8	8.8	9.4	9.5	10.8	10.1
	106	108	118	120	126	137	195	197	207	240

For the above data the β rays from Uranium were used.

Crowther, Philosophical Magazine, 12, p. 379, 1906.

TABLE 401 Absorption of	of 7	' Rays by	Various	Substances.
-------------------------	------	-----------	---------	-------------

Culture	Denite	Radiu	m rays.	Uranit	ım rays.	Th. D.	Meso, Th2	Range of	
Substance.	Density.	μ (cm) ⁻¹	100µ/D	μ(cm)—1	100µ/D	μ(cm)-1	μ(cm)-1	thickness cm.	
Hg Pb	13.59 11.40	.642 •495	4.72 4.34	.832 .725	6.12 6.36	.462	.620	.3 to 3.5 .0 " 7.9	
Cu' Brass Fe Sn Zn Slate Al	8.81 8.35 7.62 7.24 7.07 2.85 2.77	.351 .325 .304 .281 .228 .118 .111	3.98 3.89 3.99 3.88 3.93 4.14 4.06	.416 .392 .360 .341 .329 .134 .130	4.72 4.70 4.72 4.70 4.65 4.69 4.69	.294 .27 I .250 .236 .233 .096 .092	-373 -355 -316 -305 -300 -	.0 " 7.6 .0 " 5.86 .0 " 7.6 .0 " 5.5 .0 " 6.0 .0 " 9.4 .0 " 11.2	
Glass . S Paraffin .	2.52 1.79 .86	.105 .078 .042	4.16 4.38 4.64	.122 .092 .043	4.84 5.16 5.02	.089 .066 .031	.113 .083 .050	.0 " 11.3 .0 " 11.6 .0 " 11.4	

In determining the above values the rays were first passed through one cm. of lead. Russell and Soddy, Philosophical Magazine, 21, p. 130, 1911.

RADIOACTIVITY.

TABLE 402. — Total Number of Ions produced by the α , β , and γ Rays.

The total number of ions per second due to the complete absorption in air of the β rays due to 1 gram of radium is 9×10^{14} , to the γ rays, 13×10^{14} .

The total number of ions due to the α rays from 1 gram of radium in equilibrium is 2.56×10^{16} . If it be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows: 92.1 parts to the α , 3.2 to the β , 47 to the γ rays. (Rutherford, Moseley, Robinson.)

TABLE 403. - Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with 1 gram of pure radium one Curie. [More convenient units are the millicurie $(10^{-8}$ Curie) and the microcurie $(10^{-6}$ Curie)]. The rate of production of this emanation is 1.24×10^{-9} cu. cm. per second. The volume in equilibrium is 0.59 cu. mm. (760 cm., 0°C.) assuming the emanation mon-atomic.

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of 10^{-8} unit in a chamber of large dimensions. I curie $= 2.5 \times 10^{9}$ Mache units.

The amount of the radium emanation in the air varies from place to place; the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10^{-12} to 350×10^{-12} .

TABLE 404. - Vapor Pressure of the Radium Emanation in cms. of Marcury.

(Rutherford and Ramsay, Phil. Mag. 17, p. 723, 1909, Gray and Ramsay, Trans. Chem. Soc. 95, p. 1073, 1909.)

Temperature C°. -127° -101° -65° -56° -10° $+17^{\circ}$ $+49^{\circ}$ $+73^{\circ}$ $+100^{\circ}$ $+104^{\circ}$ (crit) Vapor Pressure. 0.9 5 76 100 500 1000 2000 3000 4500 4745

TABLE 405. — Referances to Spectra of Radioactive Subatancea.

Radium spectrum : Radium emanation spectrum :	Demarçay, C. R. 131, p. 258, 1900. Rutherford and Royds, Phil. Mag. 16, p. 313, 1908; Watson, Proc. Roy. Soc. A 83, p. 50, 1000.
Polonium spectrum :	Roy. Soc. A 83, p. 50, 1909. Curie and Debierne, Rad. 7, p. 38, 1910, C. R. 150, p. 386, 1910.

MISCELLANEOUS CONSTANTS (ATOMIC, MOLECULAR, ETC.).

Elementary electrical charge, charge on electron, $1/2$ charge on α particle,	$e = 4.774 \times 10^{-10} \text{ e. s. u. (M)}$ = 1.519×10 ⁻²⁰ e. m. u. = 1.591×10 ⁻¹⁹ coulombs	
Mass of an electron,	$m = about 6 \times 10^{-18}$ grams.	
Radius of an electron,	$1 = about 1 \times 10^{-18} cm.$	
Number of molecules per gram molecule,	$N = 6.06 \times 10^{23} \text{ gr}^{-1} (M)$	
Number of gas molecules per cc., 760 ^{mm} , 0°C,	$n = 2.70 \times 10^{19} (M)$	
Kinetic energy of a molecule at o°C,	$E_0 = 5.62 \times 10^{-14}$ ergs. (M)	
Constant of molecular energy, E_0/T ,	$\epsilon = 2.06 \times 10^{-16} \text{ ergs/degrees}$	(M)
Constant of entropy equation (Boltzmann), $= R/N$ (= $p_0V_0/TN = (2/3) \epsilon$,	$k = 1.37 \times 10^{-16}$ "	(M)
Elementary "Wirkungsquantum,"	$h = 6.62 \times 10^{-27}$ erg. sec.	(M)
Mass of hydrogen atom,	$=$ 1.64 \times 10 ⁻²⁴ gram.	
Radius of an atom,	= about 10-8 cm.	
Gas constant, $R = 22.412/273.1$ for 1 gram molecule of an		
ideal gas. Pressure in atmospheres, $g = 980.6$, vol. in liters,	R = .08207 liter. Atm/grm.	

CO₂ H_2 He N_3 02 Xe H₂O Sq. rt. of mean sq. molec. veloc., cm./sec. at 0° C. $\times 10^{-4}$ Mean free path cm. $\times 10^{6}$ Molecular diameter cm. $\times 10^{6}$ 4.61 18.4 2.28 7.08 13.1 28. 3.92 6.4 4.93 9.9 3.0 5.6 3.4 7.2 3.8 18. 9.4 2.2 2.2 3.3 4.2

(M) Millikan, Phys. Rev. 2, p. 109, 1913. The other values are mostly means.

342

PERIODIC SYSTEM OF THE ELEMENTS.

			<u> </u>					· · · · · · · · · · · · · · · · · · ·
0	I	11	III	IV	V	VI	VII	
	R ₂ O	RO	R_2O_8	RO ₂	R ₂ O ₅	RO ₈	R_2O_7	RO4 Oxides
				RH4	RH3	RH2	RH	– 🚚 Hydrides
He 4	Li 7	G1 9	B II	C 12	N 14	() 16	F 19	-
Ne 20	Na 23	Mg 24	A1 27	Si 28	Р 31	S 32	C1 35	-
A 40	к 39	Ca 40	Sc 44	Ti 48	V 5 ¹	Cr 5 ²	Mn 55	Fe Ni Co 56 59 59
-	Cu 64	Zn 65	Ga 70	Ge 72	As 75	Se 79	Br 80	-
Kr 82	Rb 85	Sr 88	Yt 89	Zr 91	СЪ 94	Mo 96	-	Ru Rh Pd 102 103 107
-	Ag 108	Cd 112	In 115	Sn 119	Sb 120	Te 128	I 127	-
X 128	Cs 133	Ba 137	La 139	Ce 140	-	-	=	-
	-	-	-			-	-	-
-	-	-	Yb 173	-	Ta 181	W 184	-	Os Ir Pt 191 193 195
	Au 197	Hg 201	T1 204	Pb 207	Bi 208	-	-	-
	-	Ra 226	-	Th 232	-	U 238	-	-

APPENDIX.

DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt. AMPERE. Unit of electrical current. The international ampere, "which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented a solution of nitrate of silver in water, and in accordance with accompanying specifications" (see pages xxxvi, 261), "deposits silver at the rate of 0.001118 of a gram per second."

The ampere = I coulomb per second = I volt through I ohm = 10^{-1} E. M. U. = 3 × 10⁹ E. S. U.*

Amperes = volts/ohms = watts/volts = $(watts/ohms)^{2}$.

Amperes × volts = amperes² × ohns = watts, ANGSTROM. Unit of wave-length = 10⁻¹⁰ meter. ATMOSPHERE. Unit of pressure.

English normal = 14.7 pounds per sq. in = 29.929 in. = 760.18 mm. Hg. 32° F. French "= 760 mm. of Hg. 0° C. = 29.922 in. = 14.70 lbs. per sq. in.

French

BOUGIE DECIMALE. Photometric standard; see page 178.

BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temper-ature of maximum density, 1 ° F. = 252 gram-calories.

CALORY. Small calory = gram-calory = therm = quantity of heat required to raise one gram of water at its maximum density, one degree Centigrade.

Large calory = kilogram-calory = 1000 small calories = one kilogram of water raised one degree Centigrade at the temperature of maximum density.

For conversion factors see page 237.

CANDLE. Photometric standard, see page 178. CARAT. The diamond carat standard in U. S. = 200 milligrams. Old standard = 205.3 milligrams = 3.168 grains.

The gold carat: pure gold is 24 carats; a carat is 1/24 part.

CARCEL. Photometric standard; see page 178.

CIRCULAR AREA. The square of the diameter = $1.2733 \times \text{true}$ area.

- True area = $0.785398 \times \text{circular}$ area.
- COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. = 10⁻¹ E. M. U. = 3 × 10⁹ E. S. U.
 - Coulombs = (volts-seconds)/ohms = amperes \times seconds.

CUBIT = 18 inches.

DAY. Mean solar day. = 1440 minutes = 86400 seconds = 1.0027379 sidereal day. Sidereal day = 86164.10 mean solar seconds.

- DIGIT. 3/4 inch; 1/12 the apparent diameter of the sun or moon. DIOPTER. Unit of "power" of a lens. The number of diopters = the reciprocal of the focal length in meters.
- DYNE. C. G. S. unit of force = that force which acting for one second on one gram pro-

= weight in grams divided by the acceleration of gravity in cm. per sec. ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.

- ENERGY. See Erg. ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter. For conversion factors see page 237.
- FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity. = 10^{-9} E. M. U. = 9×10^{11} E. S. U.

The one-millionth part of a farad (microfarad) is more commonly used.

Farads = coulombs/volts.

* E. M. U.=C. G. S. electromagnetic units. E. S. U.=C. G. S. electrostatic units.

duces a velocity of one centimeter per second.

FOOT-POUND. The work which will raise one pound one foot high.

For conversion factors see page 237. DOT-POUNDALS. The English unit of work = foot-pounds/g. FOOT-POUNDALS.

For conversion factors see page 237. The acceleration produced by gravity.

GAUSS. A unit of intensity of magnetic field = 1 E. M. U. = $\frac{1}{3} \times 10^{-10}$ E. S. U.

GRAM. See page 6. GRAM-CENTIMETER. The gravitation unit of work = g. ergs.

GRAM-MOLECULE, = x grams where x = molecular weight of substance.

GRAVITATION CONSTANT = G in formula $G \frac{m.m_2}{r_2} = 666.07 \times 10^{-10} \text{ cm.}^3/\text{gr. sec.}^2$

For further conversion factors see page 237. HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without self-induction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs \times volts)/4.181 in small calories.

The heat in small or gram-calories per second = $(amperes^2 \times ohms)/4.181 = volts^2/$ $(ohms \times 4.181) = (volts \times amperes)/4.181 = watts/4.181.$ HEAT. Absolute zero of heat = -273.13° C, -459.6° Fahrenheit, -218.5° Reaumur. HEFNER UNIT. Photometric standard; see page 178.

HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second." = 10° E. M. U. = ¹/₂ × 10⁻¹¹ E. S. U.
HORSE-POWER. The practical unit of power = 33,000 pounds raised one foot per minute. = 550ft. pds. per sec. = 0. 746 kilowatt = 746 watts.
JOULE. Unit of work = 10⁷ ergs.

Joules = $(volts^2 \times seconds)/ohms = watts \times seconds = amperes^2 \times ohms \times sec.$

For conversion factors see page 237. JOULE'S EQUIVALENT. The mechanical equivalent of heat = 4.185×10^7 ergs. See page 227. KILODYNE. 1000 dynes. About 1 gram.

LITER. See page 6. LUMEN. Unit of fu Unit of flux of light-candles divided by solid angles.

MEGABAR. Unit of pressure = 0.987 atmospheres. MEGADYNE. One million dynes. About one kilogram.

METER. See page 6. METER CANDLE. The intensity lumination due to standard candle distant one meter. The unit of electrical conductivity. It is the reciprocal of the ohm. MHO.

MICRO. A prefix indicating the millionth part. MICROFARAD. One millionth of a farad, the ordinary measure of electrostatic capacity.

MICRON. (μ) = one millionth of a meter.

MIL. One thousandth of an inch. MILE. See pages 5, 6. MILE, NAUTICAL or GEOGRAPHICAL = 6080.204 feet.

MILLI-. A prefix denoting the thousandth part.

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same node again = 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days (mean value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 10⁹ units of resistance of the C. G. S. system of electromagnetic units, and "is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters." = 10^{9} E. M. U. = $\frac{1}{9} \times 10^{-11}$ E. S. U. International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms.

Siemens' ohm = 0.94080 international ohms. See page 272. PENTANE CANDLE. Photometric standard. See page 178.

 $PI = \pi$ = ratio of the circumference of a circle to the diameter = 3.14159265359.

POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound. RADIAN = $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ} 17' 45'' = 206625''$.

SECOHM. A unit of self-induction = I second $\times I$ ohm.

THERM = small calory = quantity of heat required to warm one gram of water at its temperature of maximum density one degree Centigrade. THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water

- at its temperature of maximum density one degree Fahrenheit = 252 gram-calories. VOLT. The unit of electromotive force (E. M. F.). The international volt is "the elec-
- tromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere, and which is represented sufficiently well for practical use by 1000/1434 of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C and prepared in the manner described in the accompanying specification." = 10^8 E. M. U. = 1/300 E. S. U. See pages xxxiv and 261. VOLT-AMPERE. Equivalent to Watt/Power factor.

WATT. The unit of electrical power = 10^7 units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.

Watts = volts \times amperes = amperes² \times ohms = volts²/ohms (direct current or alternating current with no phase difference).

For conversion factors see page 237.

Watts \times seconds = Joules.

WEBER. A name formerly given to the coulomb.

YEAR. See page 109.

Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds.

- Sidereal 9.314 seconds. 9
- " = 365 " 6
 " = 365 " 5
 "
 "** " Ordinary 48 46 +
- 68 Tropical same as the ordinary year.

INDEX.

For the definition of units, see Appendix.

	PAGE.
a rays, absorptive powers for	· 340
Dephilion and properties	· 340
Aberration constant	. 109
	81, 182
a-rays	. 340
β-rays	. 340
<u>y</u> rays	. 340
Absorpton of many hills	35, 336
Absorption of gases by liquids	• 144
color soreand	81, 182
color screens Jena glasses	. 201
various crystals	. 200
	04-107
Aerodynamic data: soaring data	125
wind pressures	. 124
Agonic line	. 116
Air: density	. 162
masses .	. 182
transmissibility for, of radiation	81,182
viscosity of	. 136
Air thermometer, comparisons Air: transmissibility of, for radiation	. 245 8T 182
Alcohol: density	81, 182 98-100
vapor pressure	. 149
viscosity	. 128
Alloys: densities	. 87
electrical conductivity of	277-280
resistance of	273-280
low temp	
melting-points	. 222
specific heats	. 241
thermal conductivity	· 205 · 269
thermoelectric powers .	. 209
Alternating currents, resistance of wires for Altitudes, determination of by barometer	169
of a few stations	. 183
Aluminum resistance	. 284
wire table, English	. 292
metric	. 293
Alums: indices of refraction	. 187 26–28
Antilogarithms .	. 110
Apex, solar motion Aqueous solutions: boiling-points	. 229
densities	. 92
	98~100
diffusion of	. 138
electrolytic conductivities.	
Aqueous vapor: pressure	154-155
saturated, weight of	. 156
transparency	
Astronomical data	109,110
Astronomical coneous vapor in	109,110
Atmosphere, aqueous vapor in transmissibility for radiation	109,110 157,182 181,182
Atmosphere, aqueous vapor in transmissibility for radiation Atomic numbers	109,110
Atmosphere, aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights	109, 110 157, 182 181, 182 336 301
Astronomiere, aqueous vapor in Atmosphere, aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights	109, 110 157, 182 181, 182 . 336 . 301
Astronomic aqueous vapor in Atmosphere, aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights β rays, absorption coefficients Barometer: boiling temperature of water for	109, 110 157, 182 181, 182 336 301 . 340 va-
Astmosphere, aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights β rays, absorption coefficients Barometer: boiling temperature of water for	109, 110 157, 182 181, 182 . 336 . 301 . 340 va- 170-171
Astronomic numbers, aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights β rays, absorption coefficients. Barometer: boiling temperature of water for rious beights correction for capillarity	109, 110 157, 182 181, 182 . 336 . 301 . 340 va- 170-171 . 123
Astronomical action of the second se	109, 110 157, 182 181, 182 336 301 340 va- 170-171 . 123 . 121
Astronomic aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights β rays, absorption coefficients Barometer: boiling temperature of water for rious beights correction for capillarity latitude, inch metric	109, 110 157, 182 131, 182 336 301 . 340 va- 170-171 . 123 . 121 . 122 . 120
Astronomic aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights β rays, absorption coefficients Barometer: boiling temperature of water for rious beights correction for capillarity latitude, inch metric sea level temperature	109, 110 157, 182 131, 182 336 301 . 340 va- 170-171 . 123 . 121 . 122 . 120
Astronomic aqueous vapor in transmissibility for radiation Atomic numbers Atomic numbers Atomic weights β rays, absorption coefficients. Barometer: boiling temperature of water for rious heights correction for capillarity latitude, inch metric sea level builded determination of by	109, 110 157, 182 181, 182 . 336 . 301 . 340 va- 170-171 . 123 . 121 . 122 . 120 . 119 . 169
Astronomical and the second s	109, 110 157, 182 181, 182 . 336 . 301 . 340 va- 170-171 . 123 . 121 . 122 . 120 . 119 . 169 . 262
Astmosphere, aqueous vapor in transmissibility for radiation Atmosphere, aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights \$ rays, absorption coefficients \$ rays, absorption coefficients barometer: boiling temperature of water for rious beights correction for capillarity latitude, inch temperature heights, determination of, by Batteries: composition, cleextomotive forces	109, 110 157, 182 181, 182 336 301 . 340 va- 170-171 . 123 . 121 . 122 . 120 . 119 . 169 . 262 . 81
Astronomic aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights β rays, absorption coefficients. Barometer: boiling temperature of water for rious beights. Correction for capillarity tatitude, inch metric sea level . temperature heights, determination of, by Batteries: composition, electromotive forces Baumé scale: conversion to densities Baumé scale: conversion to densities	109,110 157,182 1881,182 . 336 . 301 . 340 Va- 170-171 . 123 . 121 . 122 . 120 . 119 . 169 . 262 . 811 . 333
Astronomicer, aqueous vapor in transmissibility for radiation Atomic numbers Atomic numbers Atomic weights β rays, absorption coefficients Barometer: boiling temperature of water for rious heights correction for capillarity Latitude, inch metric sea level heights, determination of, by Batteries: composition, clectromotive forces Baumé scale: conversion to densities Bismuth, resistance of, in magnetic field	109,110 157,182 157,182 336 301 .340 va- 170-171 123 .121 .122 .120 .159 .262 .81 .333 .251
Astmosphere, aqueous vapor in transmissibility for radiation Atmosphere, aqueous vapor in transmissibility for radiation Atomic numbers Atomic weights β rays, absorption coefficients Barometer: boiling temperature of water for rious beights correction for capillarity latitude, inch metric sea level temperature heights, determination of, by Batteries: conversion to densities Bismuth, resistance of, in magnetic field "Back-body" radiation "Back-body" radiation	109,110 157,182 .336 .336 .337 .340 Va- 170-171 .122 .120 .120 .129 .120 .129 .120 .129 .120 .120 .120 .120 .251 .251
$\begin{array}{c} \text{Astmosphere, aqueous vapor in} \\ \text{transmissibility for radiation} \\ \text{Atomic numbers} \\ \text{Atomic numbers} \\ \text{Atomic weights} \\ \text{Atomic weights} \\ \text{Barometer: boiling temperature of water for} \\ \text{rous beights} \\ \text{correction for capillarity} \\ \text{Initude, inch} \\ \text{metric} \\ \text{sea level} \\ \text{temperature} \\ \text{heights, determination of, by} \\ \text{Batteries: composition, electromotive forces} \\ \text{Bature scale: conversion to densities} \\ \text{Bismuth, resistance of, in magnetic field} \\ \text{Watteries: chemical elements} \\ \text{Boiling-points: chemical elements} \\ Atomic scale scale is a scale scale scale scale scale scale is a scale s$	109,110 157,182 157,182 336 301 .340 va- 170-171 123 .121 .122 .120 .159 .262 .81 .333 .251

PAGE.
Boiling-point, raising of, by salts in solution . 219 of water and barometric pressure . 170
of water and barometric pressure . 170
Brick, crushing strength of
British weights and measures
-
y rays, absorption coefficients for
Cadmium line, wave-length of red
Cadmium line, wave-length of red
Candle power, standard
points, standard, for thermometer . 247
Capacity, specific inductive: crystals
gases
liquids 310
liquid gases 312 solids 313
Capillarity, correction to barometer for 123
liquids \ldots \ldots \ldots $145-146$
liquids near solidifying point 146
salt solutions in water
Carrying capacity of whes
Cells, voltaic: composition, E. M. F 262-263
double-fluid
secondary
single-fluid
standard
Chemical, electro-, equivalents
equivalent of silver , 261, 301
Chemical elements: atomic weights
boiling-points
conductivity, thermal
densities 82 of
electro-chemical equivalents, 301
hardness
melting-points
specific heats
thermal conductivities 205
expansion, linear . 232
Circular functions: argument (°)
(radians)
Cobalt, magnetic properties of
Combination, heat of
Combustion, heat of: coals
explosives
peats
Compressibility: chemical elements
gases 70–78, 104–108
liquids
solids
Conductivity, electrical: see Resistance.
alloys
alloys
magnetic field, effect of 333
electrolytic
ionic (separate ions) 308
specific molecular 303
limiting values 304
temp'ture coef 304
glass and porc'l'n, temp'ture coef
Conductivity, thermal: gases
liquids

Conductivity, thermal: salt solutions 207 solids 205 solids, high temperature . 206
water
Baumé to specific gravities 81
Cooling by radiation, perfect radiator 251 and convection
English units
Cosines, circular natural
logarithmic
Cotangents, circular natural
hyperbolic natural 41 logarithmic 41
Critical data for gases
concretes 68
timber, wood 69
Crystals: dielectric constant
indices of refraction
Cubical thermal expansion: gases 236 liquids
solids
Current, absolute, measures
Cyclic magnetization, energy losses in
Declination, secular change of magnetic III Degrees, length of, on earth
Demagnetizing factors for rods
Density: air: values of h7/60
methyl 100 alloys
aqueous alcohol
salt, acid, basic solutions . 92 sulphuric acid
chemical elements 83.91 earth
gases
liquids
metals
organic compounds
woods
Dielectric constant: (specific inductive capacity) calibration, standards for , 313
crystals
pressure coef 310 temperature coef 309
liquids
solids
steady potential 294 kerosene 296
large spark-gaps 295 pressure effect 295
various materials 296 Difference of potential:
cells: double fluid
single fluid
storage
metals in salt solutions . 267 salts with liquids 264
solids-solids in air 266
thermo-electric
placibulit couples 209

Differential formulæ					•	•	٠	٠	12
Diff	ons,	wa	ter		•	•	•	•	138
gases and vapo	ors: o	:oef	ficie	ente	3		•		140
metals into me	tals					•	•		140
		•	÷.			•			139
vapors	•	•	•	•	•	•	•	•	60
Diffusion integral	•	•	•	•	•	•	•	•	~~~
Diffusivities, thermal	•	•	•	•	•	•	•	٠	208
Dip. magnetic \cdot \cdot \cdot	•	•	•	•	•	•	•	٠	113
Secular CD2	ange	•	•	•	•	•		•	113
Dispersion of Kerr Consta	ant								331
Dynamical equivalent of	ther	mal	่าาท	it					237
Dynamical equivalent of						•	•	•	-0,
e, value of			•	•	•	•	•	•	14
e^{x} , e^{-x} , and their logarith	ms			-	•				48
log et a from a to IO								2	48
log. e^x , x, from 0 to 10 $e^{x^2}e^{-x^2}$, and their logarit	h	•	•	•			•	•	
					•	•	•	•	54
$e^{\pi}_{4}x$, $e^{-\pi}_{4}x$, and their loga	rith	ma							55
						-	•	-	
$e^{\sqrt{\pi}x}, e^{-\sqrt{\pi}x}$, and their	1.000								
e^{-x} , e^{-x} , and then	toga	IILL	uma		•	•	•	•	55
$\frac{e^{x}+e^{-x}}{2}$, and their logarith	hme								41
2 , and men regard		•	• •		•		•	•	4-
ex-e-x									
• • • • • •			•	•				•	41
									-
Earth: data	•	•	•	•			•	• 3	108
densities				•				•	108
distance from sun									100
length of degrees					. '				108
miscellaneous data	•	•	•	- '				1	108
Earth: data densities distance from sun length of degrees miscellaneous datz Elasticity: crystals modulu of rigid modulus, Youn Electric lights, efficiency of Electrical conductivity: a magn	•••	•	•	•	•		۰.		-77
Elasticity: crystals	· · ·	•	•	•	• •	•	- 1	74	-75
moduli of rigid	uty	•	•	•	•		•	•	71
modulus, Your	ng's	•	•	•			•	•	72
Electric lights, efficiency (of		•					• •	79
Electrical conductivity: a	alloy	s					277	7-2	270
alterr	natin	ig c	um	ent	. ef	fec	t o	f :	207
magn	etic	fiel	d. e	ffe	t n	f.			222
Electrical resistance: see (metal	Cond	luct	ivit	v.					
Electrical resistance, set	le an	d o	llos	. 1	0.117	to	mo	. ,	180
nictas		ana	do	3, 1			- mp		200
onm,	van	ous	11	.er i	uin	au	ous		272
specif	hc: n	neți	anno	w	res		•	• 4	273
	me	tals	3					. :	274
tomo									
UCIII D	erau	ne	coe	ffici	ent	:s		. :	276
temp	erati	ire	coe effe	ffici ct.	eni gla	.ss			276 282
ohm, specif temp temp	erati of	ire	coe effe	ffici ct,	ent gla	:9 .SS			276 282 268
Electricity, specific heat o	erati	ire ire	coe effe	ffici ct,	ent gla	.9 .55			276 282 268
Electricity, specific heat of Electric units, dimensiona	erati of l for	ire ire mu	coe effe læ	ffici ct,	ent gla	.ss .ss	1		276 282 268 VIII
temp temp Electricity, specific heat o Electric units, dimensiona Electrochemical equivaler	erati of l for its	mu	coe effe læ	ffici ct,	eni gla	ss .ss	301		276 282 268 VIII 261
Electricity, specific heat o Electric units, dimensiona Electrochemical equivaler	eration of l for nts si	ire ire mu iver	coe effe	ffici ct,	eni gla	ss ss	301 301		276 282 268 7111 261 261
Electricity, specific heat of Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity:	erati of l for its si	ire ire mu lver	coe effe læ	ffici ct,	eni gla	s s	301		276 282 268 viii 261 261 261 261
Electricity, specific heat of Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute	eration of l for nts si	ire mu iver itio	coe effe læ	ffici ct,	gla	.s .ss	301		276 282 268 208 201 261 261 261 308 302
Electricity, specific heat o Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv	eration of il for its si solu alen	mu lver itio	læ . ns				301 301 302		viii 261 261 308 302
Electricity, specific heat o Electric units, dimensiona Electrochemical equivalez Electrolytic conductivity: dilute equiv jonic	eration of l for nts si solu alen	mu lver itio	læ . ns				301 301 302		viii 261 261 308 302
Electricity, specific heat o Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv jonic specific	eration of l for its si alen fic m	mu lver itio	læ . ns				301 301 302		viii 261 261 308 302
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivalen Electrolytic conductivity: dilute equiv ionic specif	l for its si solu alen ic m	mu lver itio t	læ ns	ır			301 301 302 302		viii 261 261 308 302 308 308 308 308
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un si ic solu alen f un tatio sec sin sta	itio its cur gle nda rag	læ ns culaimi tem nits flui flui ard e	r tin p. (uid d	g v	alu	301 301 302 302 302 302 302 202		viii 261 261 261 268 268 263 263 263 263 263 263 265 265 265 265 265 265 265 265
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un si ic solu alen f un tatio sec sin sta	itio its cur gle nda rag	læ ns culaimi tem nits flui flui ard e	r tin p. (uid d	g v	alu	301 301 302 302 302 302 302 202		viii 261 261 261 268 268 263 263 263 263 263 263 265 265 265 265 265 265 265 265
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells	f un sin sin solu alen f un tatio sec sin sta sta sta	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2011 2011 2011 2011 2011
Electricuty, specific fue solution in the second se	f un solution ic m f un static ic m f un static ic m static ic m static static ic m static static ic m static static ic m static	itio t its uble gle rag	læ ns cula limi tem flui flui ard e ds i	r tin p. d d	g v coel	alu	301 301 302 302 302 302 302 202	x	2011 2011 2011 2013 2008 2008 2003 2003 2003 2003 2003 200
Electricuty, specific fuer Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells cont liqui met Pett salts solid ther Elementary "Wirkungsqu Electrons, miscellaneous Elements: atomic weights boiling-points	i for its si solu alen ic m f un ttatic sec sin sta sto sto sto sto sto sto sto sto	intio t its its its inda rag	læ ns ints limitem its flui ard e ds is qui tric ,	ir tin = v iid d air pla	g v coel	alu	301 301 302 302 302 302 302 202		xxiii xxiii xxiii xxiii xxii xxii xxii
Electricuty, specific fuel Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic system o Electromagnetic / electros Electromotive force: cells cond liqui met Electrons, miscellaneous o Electrons,	i for its si solu alen ic m f un ttatic sec sin sta sto sto sto sto sto sto sto sto	intio t its its its inda rag	læ ns ints limitem its flui ard e ds is qui tric ,	r tin p. d d	g v coel	alu	26 25		Sviii 261 263 302 308 304 304 203 203 304 203 203 203 203 203 204 205 205 205
Electricuty, specific fuer Electricuty, international Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic equiv e e equiv equiv equiv equiv e e e e e e e e eq	l for sta solution alen f un tatic f un tatic sec sin sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sto sto sto sto sto sto sto	itio itis itis gle nda rag iqui h li lids elec um	ilæ ns iulaimi iulaitai	tin p. v iid d	g v coel	alu	26 25		xxiii x61 x62 x63 x63 x64 x72 x66 x63 x66 x65 x66 x66 x66 x66 x66 x66 x66 x66
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler equivaler Electromagnetic system o Electromagnetic / electros Electromotive force: cells conto liqui met Electros, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Elementary "Wirkungsqu Electrons, miscellaneous o Elements: atomic weights bolling-points compressibility, conductivity, f densitieselectrochemica	l for sta solution alen f un tatic f un tatic sec sin sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sta sto sto sto sto sto sto sto sto	itio itis itis gle nda rag iqui h li lids elec um	ilæ ns iulaimi iulaitai	tin p. v iid d	g v coel	alu	26 25		xiii xiii xiii xiii xiii xiii xiii xii
Electricuty, specific fuer siona Electricuty, inite, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic specif Electromagnetic ystem o Electromagnetic / electros Electromagnetic / electros Electromotive force: cells cond liqui met Felt Elementary "Wirkungsq Electrons, miscellaneous Electrons, miscellaneous Elements: atomic weights boiling-points compressibility conductivity, densities electrochemicas hardness	I for state solutional i for alentic i com functational i com functational i com functational i com state i com state state i com state i com state st	itio itis itis gle nda rag iqui h li lids elec um	ilæ ns iulaimi iulaitai	tin p. v uid d	g v coel	alu	26 25		xiii xifi xifi xifi xifi xifi xifi xifi
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler equivaler Electromagnetic system o Electromagnetic / electros Electromotive force: cells Cont Electromotive force: cells cont Electros, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o electrochemica hardness - melting-points	I for solutions solutions ic m f un static ic m f un static ic m static ic m static m static ic m static ic m static ic m static ic m s	itio itis itis gle nda rag iqui h li lids elec um	ilæ ns iulaimi iulaitai iulai	tin p. v uid d	g v coel	alu	26 25		Soliii 261 263 263 264 265 265 266 266 266 266 266 266 266 266 276 266 2774 2342 2
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler equivaler Electromagnetic system o Electromagnetic / electros Electromotive force: cells Cont Electromotive force: cells cont Electros, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o Electrons, miscellaneous o electrochemica hardness - melting-points	I for solutions solutions ic m f un static ic m f un static ic m static ic m static m static ic m static ic m static ic m static ic m s	itio itis itis gle nda rag iqui h li lids elec um	ilæ ns iulaimi iulaitai iulai	tin p. v uid d	g v coel	alu	301 301 302 302 302 302 302 302 302 302 302 302		Sviii Sviii 1261 State 1261 State 1261 State 1261 State 1261 State 1261 State 1262 State 1263 State <
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic Electromagnetic system o Electromagnetic / electros Electromotive force: cells Condu liqui met Pelt Elementary "Wirkungsqu Electrons, miscellaneous Electrons, miscellaneous Elements: atomic weights conductivity, densities . electrochemics hardness . melting-points comductivity,	I for its si solution ic m f unitation ic m f unitation ic m f unitation ic m sta sto sto sto sto sto sto sto sto	its its its its its its its its its its	ilæ ns iulaimi iulaitai iulai	tin p. v uid d	g v coel		301 301 302 302 302 302 302 302 302 302 302 302		Sviii Sviii 1261 State 1261 State 1261 State 1261 State 1261 State 1261 State 1262 State 1263 State <
Electricuty, specific fuer siona Electricuty, and specific fuer sional Electrochemical equivaler Electrochemical equivaler equivier ionic equivier ionic equivier ionic equivier specific Electromagnetic system o Electromagnetic / electros Electromagnetic / electros Electromotive force: cells cond liqui met Felt Elementary "Wirkungsq Electrons, miscellaneous d Elements: atomic weights boiling-points compressibility conductivity, densities atomic signature electrochemica hardness melting-points periodic system	I for its si solution ic m f unitation ic m f unitation ic m f unitation ic m sta sto sto sto sto sto sto sto sto	its its its its its its its its its its	ilæ ns iulaimi iulaitai iulai	tin p. v uid d	g v coel		301 301 302 303 303 303 304 205 		Sviii Sviii Stati Sviii Stati Sviii Sviii Sviii Sviii
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic Electromagnetic system o Electromagnetic / electros Electromagnetic / electros Electromotive force: cells Condu liqui met Pelt Elementary "Wirkungsqu Electrons, miscellaneous o Elements: atomic weights conductivity, i densities . electrochemica hardness . melting-points periodic syster resistance, elec	I for si solution i solution i solutio	iver ilver ilver ilver ilver uble uble gle auble uble uble uble uble uble uble uble	ize . 	tin p. v uid d	g v coel		301 301 302 303 303 303 304 205 	1,1,2,2,3,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	xiii xiii xiii xiii xiii xiii xiii xii
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic Electromagnetic system o Electromagnetic / electros Electromagnetic / electros Electromotive force: cells Condu liqui met Pelt Elementary "Wirkungsqu Electrons, miscellaneous o Elements: atomic weights conductivity, i densities . electrochemica hardness . melting-points periodic syster resistance, elec	I for si solution i solution i solutio	iver ilver ilver ilver ilver uble uble gle auble uble uble uble uble uble uble uble	ize . 	tin p. v uid d	g v coel		301 301 302 303 303 303 304 205 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Sviii Sviii 161 100 160 100 160 100 160 100 160 100 160 100 160 100 160 100 160 100 160 100 160 100 160 100 170 100 170 100 170 100 170 100
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electronagnetic equivaler Electromagnetic system o Electromagnetic / electros Electromotive force: cells Cond Electromotive force: cells Electrons, miscellaneous o Electrons, miscellaneous o electrochemica hardness - melting-points periodic syster resistance, elec specific heats spectra (promi	I for its si solution is solution is sol	its its its its its its its its its its	ize	d	g v coel		301 301 302 303 303 303 304 205 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Sciii 161 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 170 160 170 170 170 170
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic Electromagnetic system o Electromagnetic / electros Electromagnetic / electros Electromotive force: cells Condu liqui met Pelt Elementary "Wirkungsqu Electrons, miscellaneous o Elements: atomic weights conductivity, i densities . electrochemica hardness . melting-points periodic syster resistance, elec	I for its si solution is solution is sol	its ublock its ublock	ize	d in au dair pla	g ve		301 301 302 303 303 303 304 205 	x	Sviii 1000 1611 1000 1600 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 </td
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electronagnetic equivaler Electromagnetic system o Electromagnetic / electros Electromotive force: cells Cond Electromotive force: cells Electrons, miscellaneous o Electrons, miscellaneous o electrochemica hardness - melting-points periodic syster resistance, elec specific heats spectra (promi	I for its si solution is solution is sol	its ublock its ublock	ize	d in au dair pla	g ve		301 301 302 303 303 303 304 205 	x	Sviii 160 160 160 160 160 160 160 160 160 160
Electricuty, specific fuer Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler equivaler Electromagnetic system o Electromagnetic / electros Electromotive force: cells Contentional for the solid Electron sinscellaneous o Electrons, miscellaneous o electrochemica hardness . melting-points periodic syster resistance, elect specific heats spectra (promi- thermal condu- expan	I for its si solution is solution is sol	its ublock its ublock	ize	d in au dair pla	y v coel		301 301 302 303 303 303 304 205 		Sviii 1000 1611 1000 1600 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1610 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 1000 1700 </td
Electric units, dimensiona Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler Electrolytic conductivity: dilute equiv ionic Electromagnetic system o Electromagnetic / electros Electromotive force: cells Electromotive force: cells Electrons, miscellaneous Electrons, miscellaneous Electrochemics boiling-points compressibility conductivity, densities electrochemics hardness melting-points periodic syster resistance, elec specific heats spectra (promi thermal condu expan	I for its si solution is solution is solution is solution is solution is stationary is solution is stationary is solution is solution is stationary is solution is solution	its ublock its ublock	ize	d	g v coel		301 301 302 303 303 303 304 205 	, , , , , , , , , , , , , , , , , , ,	30111111111111111111111111111111111111
Electricuty, specific fuer Electric units, dimensiona Electrochemical equivaler Electrochemical equivaler equivaler Electromagnetic system o Electromagnetic / electros Electromotive force: cells Contentional for the solid Electron sinscellaneous o Electrons, miscellaneous o electrochemica hardness . melting-points periodic syster resistance, elect specific heats spectra (promi- thermal condu- expan	I for its si solution is solution is solution is solution is solution is stationary is solution is stationary is solution is solution is stationary is solution is solution	its ublock its ub	ize	d in au dair pla	y v coel		301 301 302 303 303 303 304 205 	1	Sviii 160 160 160 160 160 160 160 160 160 160

Energy from candle	8
Equation of time	ŏ
Fauinalant, Jauloactive	7
)I
ionic	2
Equivalent, mechanical, of heat	17
	3
Entropy equation constant	2
Ethyl alachal and in 56-5	9
Ettinghausen effect	8
Eutertic mixtures, melting-points 222, 22	4
Ettinghausen effect Eutectic mixtures, melting-points Expansion, thermal: cubical, crystals gases ilquids solids linear, elements gas Explosives, composition, etc. Exponential functions: e ^x , e ^{-x} , their logs	14
gases	36
liquids	35
solids	14
various	12
gas	10
Explosives, composition, etc.	1
Exponential functions: e^x , e^{-x} , their logs	18
$\begin{array}{c} \log e^{x}, x=0 - 10 \\ e^{x^2}, e^{-x^2}, \text{ their logs} \end{array}$	
e_{π}^{xz} , e_{π}^{xz} , their logs	
$ \begin{array}{c} \log e^{x}, x = 0 - 10, \\ e^{x^2}, e^{-x^2}, \text{ their logs} \\ e^{x}, e^{-x^2}, x = 0 \end{array} $	55
	55
$\frac{e^x+x-x}{2}$, their logs	11
-	
······································	
	II
diffusion integral 6	ja
gudermanians hyperbolic sines	μ1 μ1
hyperbolic sines 4 cosines 4 cotangents	
cotangents . 2	μĭ
tangents 4 logs. hyperbolic sines	
cotangents A	LI LI
tangents . 2	i.
tangents . 2	
probability integral 50, 5	7
probability integral 56, 5 Eye, sensitiveness of, to radiation	7
Eye, sensitiveness of, to radiation	7
probability integral 50,5 Eye, sensitiveness of, to radiation	2
probability integral 50,5 Eye, sensitiveness of, to radiation	2
probability integral 50,5 Eye, sensitiveness of, to radiation	2
probability integral 50,5 Eye, sensitiveness of, to radiation	2
probability integral 50,5 Eye, sensitiveness of, to radiation	2
probability integral 50,5 Eye, sensitiveness of, to radiation	2
probability integral 50,5 Eye, sensitiveness of, to radiation	2
Eye, sensitiveness of to radiation	2
Eye, sensitiveness of to radiation	2
Eye, sensitiveness of to radiation	2
Eye, sensitiveness of, to radiation	70 2720075314062
Eye, sensitiveness of, to radiation	70 272007531466232
Eye, sensitiveness of, to radiation	70 2720075314662322
Eye, sensitiveness of, to radiation	70 27200753146623223
Figure 1 50.5 Eye, sensitiveness of, to radiation	70 2720075314662322
Figure 1 50.5 Eye, sensitiveness of, to radiation Fabry-Buisson, standard arc Fe wave-lengths Factorials n/ 1-20. logarithms, 1-100 logarithms, 1-100 Fechner's law resistance of metals in resistance of metals in rotation of plane of polarization thermo-, galvanometric effects Formulæ, conversion: dynamic units electric fundamental geometric magnetic Formulæ, conversion: dynamic units see Introprotrom. see Introprotrom. fundamental see Introprotrom. Fraunhofer lines, wave-lengths of	70 272007531466232233 7
Figure 1 50.5 Eye, sensitiveness of, to radiation	70 272007531406232233 70
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials nl 1-20. 4 gamma function, n=1 to 2, 4 logarithms, 1-100 4 Fechner's law 7 resistance of metals in 315-32 rotation of plane of polarization 326-33 thermo-, galvanometric effects 3 Films, thin: thickness, colors, tension of 143-14 Fluorite: index of refraction 143-14 Formulæ, conversion: dynamic units 16 electric 114-14 Fraunhofer lines, wave-lengths of 17 Freezing mixtures 32 Freezing coints, lowering of, by salts in solution. 32	70 272007531406232233 70
Eye, sensitiveness of, to radiation	70 272007531466232233 707
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials nl 1-20. 4 gamma function, n=1 to 2, 4 logarithms, 1-100 4 Fechner's law 78 Field: earth's magnetic field, component's of 111-11 111 magnetic, behavior of metals in 315-32 resistance of metals in 3326-33 thermo-, galvanometric effects 33 Films, thin: thickness, colors, tension of 145-14 Fluorite: index of refraction 145-14 Formula, conversion: dynamic units 140 electric	70 272007531466232233 707 8
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials nl 1-20. 4 gamma function, n=1 to 2, 4 logarithms, 1-100 4 Fechner's law 78 Field: earth's magnetic field, component's of 111-11 111 magnetic, behavior of metals in 315-32 resistance of metals in 3326-33 thermo-, galvanometric effects 33 Films, thin: thickness, colors, tension of 145-14 Fluorite: index of refraction 145-14 Formula, conversion: dynamic units 140 electric	70 272007531466232233 707 86
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials nl 1-20. 4 gamma function, n=1 to 2, 4 logarithms, 1-100 4 Fechner's law 78 Field: earth's magnetic field, component's of 111-11 111 magnetic, behavior of metals in 315-32 resistance of metals in 3326-33 thermo-, galvanometric effects 33 Films, thin: thickness, colors, tension of 145-14 Fluorite: index of refraction 145-14 Formula, conversion: dynamic units 140 electric	70 272007531466232233 707 8602
Eye, sensitiveness of, to radiation	70 272007531400232233 707 86027
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials n/ 1-20. 17 Gamma function, n=1 to 2, 17 fechner's law 17 Field: earth's magnetic field, components of 111-11 magnetic, behavior of metals in 315-32 resistance of metals in 326-33 resistance of metals in 315-32 resistance of metals in 316-32 resistance of metals in 316-32 resistance of metals in 316-32 resistance of metals in 326-33 films, thin: thickness, colors, tension of 145-14 Fluorite: index of refraction 145-14 Formula, conversion: dynamic units 145-14 fundamental . . geometric . . magnetic . . . see INTRODUCTION. Freezing mixtures . . . Freezing-points, lowering of, by salts in solution. Freezing-points, lowering of, by salts in solution. 	70 272007531400232233 707 800271
Eye, sensitiveness of, to radiation	70 272007531400232233 707 800271
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials n/ 1-20. 17 gamma function, n=1 to 2. 2 logarithms, 1-100 12 fechner's law 17 Field: earth's magnetic field, components of 111-11 111 magnetic, behavior of metals in 315-32 resistance of metals in 326-33 resistance of plane of polarization 326-33 resistance of metals in 326-33 resistance of plane of polarization 326-33 films, thin: thickness, colors, tension of 145-14 Fluorite: index of refraction 145-14 Formula, conversion: dynamic units 145-14 Formula, conversion: dynamic units 145-14 Freezing mixtures 145-14	70 272007531466232233 707 8602712
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials n/ 1-20. 17 Gamma function, n=1 to 2. 17 Factorials n/ 1-20. 17 Gamma function, n=1 to 2. 16 Iogarithms, 1-100 17 Feld:earth's magnetic field, components of 111-11 111 magnetic, behavior of metals in 315-32 resistance of metals in 326-33 resistance of metals in 315-32 resistance of metals in 316-32 Films, thin: thickness, colors, tension of 145-14 Fluorite: index of refraction 145-14 Formulæ, conversion: dynamic units 145-14 geometric 145 freezing mixtures 127 Freezing mixtures 128 <t< td=""><td>70 272007531466232233 707 8602712212</td></t<>	70 272007531466232233 707 8602712212
Eye, sensitiveness of, to radiation	70 272007531466232233 707 86027122126
Eye, sensitiveness of, to radiation 50.5 Fabry-Buisson, standard arc Fe wave-lengths 17 Factorials n/ 1-20. 17 Factorials n/ 1-20. 17 Ggarma function, n=1 to 2, 10 Iogarithms, 1-100 12 Fechner's law 17 Field: earth's magnetic field, component's of 111-11 111 magnetic, behavior of metals in 315-32 resistance of metals in 326-33 resistance of metals in 315-32 films, thin: thickness, colors, tension of 145-14 Fluorite: index of refraction 145-14 fundamental 14 geometric 14 fundamental 14 see INTRODUCTION. 17 Freezing mixtures <t< td=""><td>70 272007531466232233 707 86027122126</td></t<>	70 272007531466232233 707 86027122126
Eye, sensitiveness of, to radiation	70 272007531466232233 707 860271221269
Eye, sensitiveness of, to radiation	70 272007531466232233 707 860271221269
Eye, sensitiveness of, to radiation	70 272007531466232233 707 860271221269 422
Eye, sensitiveness of, to radiation	70 272007531466232233 707 860271221269 4224
Eye, sensitiveness of, to radiation	70 272007531466232233 707 860271221269 42241
Eye, sensitiveness of, to radiation	70 272007531406232233 707 860271221269 422418

Gases: densities	•	•	•		•				91
dielectric consta	nts						3	00	310
diffusion	•	•			•			•	140
expansion of		•	•	•	•	•	1		-168
expansion, thern	au		•	•	• •	•	•		236
heat, conductivit)г.	•	•	•	•	•		207
indices of refract magnetic suscep	hihili	tv	•	•		•	•		193
magneto-optic re	tati	011			•		•		332 330
magneto-optic re refractive indices	of								193
sound, velocity of	of, ir	1.							102
solubility of .		•	•				. 1		144
specific heats	· • · .	•	•	•	•	•	•	•	243
sound, velocity of solubility of specific heats . thermal conduct thermal expansion	ivity	<i>.</i>	•	• •	•	•	•	•	207
viscosity of	n.	•	•	• •	•	· · · · · · · · · · · · · · · · · · ·	•	•	236
viscosity of volume of (1+0.	002	60		• •	•	•	•	6.	136 -168
Gas thermometry					•			44-	-247
Gages, wire								**	283
							•		108
Geometric units, conver Glass: indices of refract	rsion	ı fa	cto	rs f	or		•		2
Glass: indices of refract	ion		•		•	•	•	•	184
sinca, specific ne	al	•	•	• •	•	•	•	•	240
transmissibility of	n Je	na	ous		• •	•	•	•	199
electric resistance					tio	. '	-	101-	-202 282
Glass vessels, volumes o	f CC	ւր					•	•	11
Gravitation constant	· .							:	109
Gravity, acceleration of		•					1	04-	-106
correction to b	Daroi	met	er		•				120
Gudermanians	•	•	•		•		•	•	41
Gyration, radii of	•	•	•	•	•	•	•	•	67
Hall offeet									
Hall effect Hardness	•	•	• •	• •	•	•		•	334
Harmonics, zonal.	•	•			•	•	•	•	73 64
Heat: combination, hea	t of	•				:	•	:	212
combustion: coa	ls					:			210
exp	losiv	7es					•		211
fue	la liq	lnic	1,		•	•	•	•	210
pea	ts	•	•	•	•	•	•		210
conductivity for:			. •		•	•	•		207
	liqu		3 . +	-	•	•	•		207
	soli	ide		101	s.	•	•	•	207
	soli	ids.	hi	zh i	tem	ne	rati	ıre	206
	soli wa	ids, ter	hi	gh i	еп	pe	rati	ıre.	205 206 207
diffusivities		ids, ter			tem				208
latent heat of fus	ion	•				:		:	208 216
latent heat of fus	ion poriz	ati	on			:		:	208 216
latent heat of fus vaj mechanical equiv	ion poriz alen	ati	on			:		:	208 216
latent heat of fus vaj mechanical equiv specific: elements	ion poriz alen	ati	on			:		:	208 216 259 237 240
latent heat of fus vaj mechanical equiv specific: elements gases	ion poriz alen	ati	on		•	. 21		54- 38,	208 210 -259 237 240 243
latent heat of fus vaj mechanical equiv specific: elements	ion poriz alen	ati	on		•	. 21		54- 38,	208 216 -259 237 240 243 241
latent heat of fus vaj mechanical equiv specific: elements gases . liquids	ion poriz alen	ati	on			. 21	4, 2	54 38,	208 216 259 237 240 243 241 239 242
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks .	ion poriz alen	ati	on			. 21	4, 2	54- 38,	208 216 -259 237 240 243 241 239 242 242 242
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids	ion poriz alen	ati	on			. 21	4, 2	54- 38,	208 216 -259 237 240 243 241 239 242 242 242 242
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors	ion poriz alen	ati t o	on			. 21	4,2	54- 38,	208 216 -259 237 240 243 241 239 242 242 242 242 241 243
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water	ion poriz alen	ati t of	on			. 21	4,2	54- 38,	208 216 -259 237 240 243 241 239 242 242 242 242 243 239
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water	ion poriz alen	ati t of	on			. 21	4, 2	38,	208 216 -259 237 240 243 241 239 242 242 242 242 243 239 337
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec	ion poriz alen	ati t of	on			. 21	4, 2	38,	208 216 237 243 243 241 239 242 242 242 242 243 243 243 243 243 243
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni	ion poriz alen	t of	on			. 21	4, 2	38,	208 216 -259 237 240 243 241 239 242 242 242 242 243 239 337
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations	ion poriz alen trici t of b adin	t of the second se	on			. 21	4, 2	38,	208 216 259 240 243 241 239 242 242 242 242 243 244 239 268 278
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations	ion poriz alen trici t of b adin	t of the second se	on	, d	ter	. 21	4, 2	38,	208 216 237 240 241 239 242 242 242 242 239 242 242 239 208 208 209 242 242 239 208 209 240 242 242 243 209 240 337 80 259 240 240 240 240 240 240 240 240 240 240
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations to Heium, — relation to r Horizontal intensity of	ion poriz alen trici t of b adin	t of the second se	on	, d	ter	. 21	4, 2	38,	208 210 2259 2243 2242 2242 2242 2242 2242 2242 2337 207 207 2242 2242 2337 207 207 237 243 207 243 207 243 207 243 207 243 207 243 200 2259 2259 2243 2243 2243 2243 2243 2243 2243 224
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations to Heium, — relation to r Horizontal intensity of	ion poriz alen trici t of b adin	t of the second se	on	, d	ter	. 21	4, 2	38,	208 216 2257 2243 2242 2242 2242 2337 2439 2242 2337 2337 2337 2439 2337 2337 2439 2337 2439 2337 2439 2337 2439 2337 2439 2441 2337 2443 2441 2337 2443 2459 2459 2459 2459 2459 2459 2459 2459
latent heat of fus vaj mechanical equiv specific: elements gases liquids mercury minerals rocks solids vapors water Heating effect, radium "Heat, specific." of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative Humidity term, 0.378	ion poriz alen trici t of b adin eart	t of t of t y t y t y h s	on	, d	ter	. 21	4, 2 2	38,	208 216 2259 2243 2242 2242 2242 2242 2239 2242 2338 207 337 337 1150 101
latent heat of fus vaj mechanical equiv specific: elements gases liquids mercury minerals rocks solids vapors water Heating effect, radium "Heat, specific." of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative Humidity term, 0.378	ion poriz alen trici t of b adin eart	t of t of t y t y t y h s	on	d	eter	. 21	4, 2 2	38, 38,	208 216 2259 237 240 243 241 239 242 242 242 243 239 337 268 337 115 115 115 1160 161 244
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific." of elec Hefner photometric uni Heights determinations Helium, — relation tor Horizontal intensity of Humidity, relative Humidity, term, 0.378e Hydrogen thermometer	ion poriz alen	t of t of ty ty h's	on	d	eter	. 21	4, 2 2	38, 38,	208 216 2259 237 240 243 241 239 242 242 242 242 243 239 268 178 169 337 115 160 161 144 41
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Heium, — relation to r Horizontal intensity of Humidity, relative Humidity, relative Hydrogen thermometer Hyperbolic cosines, natt	ion poriz alen trici t of b adin eart ural	t of t of t of t of t of t of t of t of	on	d	eter	. 21	4, 2 2	38, 38,	208 216 2259 237 240 243 241 239 242 242 242 242 243 337 268 169 337 115 160 161 151 160 161 44 41
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative . Humidity, term, 0.3786 Hydrogen thermometer Hyperbolic cosines, nati loga	ion poriz alen trici t of b adin earti ural ural ural natu loga	t of t of t of t of t of t of t of t of	on	d	eter	. 21	4, 2 2	38, 38,	208 216 -259 243 244 243 244 239 242 243 239 242 243 239 337 115 115 160 1244 41 41 41 41
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative Humidity term, 0.378¢ Hydrogen thermometer Hyperbolic cosines, natur	ion porizi alen 	t of t of t of t of t of t of t of t of	on	d	eter	. 21	4, 2 2	38, 38,	208 216 -259 243 241 243 242 243 239 242 243 239 242 243 239 242 243 239 337 115 160 161 14 41 41 41
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Humidity, relative Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cotangents, hyperbolic cotangents, Bart	ion porizialen alen trici t of b adin eart ural arith natu loga al	t of the second	on	d	ter	. 21	4, 2 2	38, 38,	208 216 -259 2237 2240 2241 2239 2242 2241 2239 2242 2241 2239 337 115 160 161 1244 41 41 41 41 41
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Heium, — relation to r Horizontal intensity of Humidity, relative . Humidity, relative . Humidity term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logart Hyperbolic sines, natur logarts, natur	ion poriza alen tricci t of b adin earti ural ural ural ural ural tricki loga al	t of the second	on	d	ter	. 21	4, 2 2	54- 38, 	208 216 2259 240 2241 239 2242 2241 239 2242 2241 239 2242 239 337 308 337 115 160 161 41 41 41 41 41 41
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, natur logari	ion poriza alen trici t of b adin earth natu loga al thmi turagarit	ty ty ty ty ty ty ty th's ty th's	on fiel	d	ulai	. 21	14, 2 2	38, 	208 216 2259 240 2241 239 242 241 243 239 242 241 243 238 268 178 337 115 160 161 41 41 41 41 41 41 41 41
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific." of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative . Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logar Hyperbolic sines, natur tangents, na box	ion porizi alen	ty ty ty ty ty ty ty th's ty th's	on	d	ulai	- 21	14, 2 2	38, 	208 2210 2237 2240 2241 2399 242 241 2399 242 241 2399 242 241 2399 3377 8155 1156 11561 244 41 41 41 41 41 41 41 41 322
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Humidity, relative Humidity term, 0.378¢ Hydrogen thermometer Hyperbolic cosines, natur logar Hyperbolic cosines, natur logar tangents, na log Hysteresis: soft iron cal	ion poriz alen itrici t of b adin earti hnatu loga al thmi tura garit thmi tura garit	t of t of t of t of t of t of t of t of	on fiel	d	ulai	. 21	4, 2 2	38, 	208 2259 2259 2243 2243 2242 2243 2242 2243 2242 2243 2242 2243 2268 2168 2268 2169 2242 2243 2268 2168 2169 2169 2169 2169 2169 2169 2169 2169
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horrizontal intensity of Humidity, relative Humidity, relative Hydrogen thermometer Hyperbolic cosines, natu logari tangents, na bi Hysteresie: soft iron cal with	ion porizi alen itrici t of b adin earti loga al thmi tura gariti lole ti re orme	to to ty ty ty ty ty ty th's mid thr tran	on	d	ulai	- 21	14, 2 2	38, 	208 2210 2259 2240 2241 2392 2442 2412 2392 2442 2412 2392 2442 2413 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2443 2492 2492
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative . Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na kun dity term, color cal hysteresis: soft iron cal wii steel, transfi	ion poriz alen trici t of b adin earti loga al al thmi thur garit ble t tura garit or me tural	to to to to to to to to to to to to to t	on fiel	d	ulai	. 21	4, 2 2	38, 	208 2259 2259 2243 2243 2242 2243 2242 2243 2242 2243 2242 2243 2268 2168 2268 2169 2242 2243 2268 2168 2169 2169 2169 2169 2169 2169 2169 2169
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative . Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na kun dity term, color cal hysteresis: soft iron cal wii steel, transfi	ion poriz alen trici t of b adin earti loga al al thmi thur garit ble t tura garit or me tural	to to to to to to to to to to to to to t	on fiel	d	ulai	. 21	4, 2 2	38, 	208 216 2259 2243 2242 2242 2242 2242 2242 2242 224
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative . Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na kun dity term, color cal hysteresis: soft iron cal wii steel, transfi	ion poriz alen trici t of b adin earti loga al al thmi thur garit ble t tura garit or me tural	to to to to to to to to to to to to to t	on fiel	d	ulai	. 21	4, 2 2	38, 	208 22159 2237 2243 2241 2243 2242 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2243 2243 2243 2243 2243 2243 2259 2243 2243 2243 2243 2243 2243 2243 224
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative . Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na logari tangents, na kun dity term, color cal hysteresis: soft iron cal wii steel, transfi	ion poriz alen trici t of b adin earti loga al al thmi thur garit ble t tura garit or me tural	to to to to to to to to to to to to to t	on fiel	d	ulai		4, 2 2	38, 	2086 2169 2237 2432 2441 2432 2442 2443 2337 8377 8377 1155 1161 2441 411 411 411 411 411 411 411 411 4
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Heium, — relation to r Horizontal intensity of Humidity, relative Humidity, relative Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na bo Hysteresis: soft iron cal win steel, transf various subs Iceland spar, refractive Ice-point on thermodyn Inclination (dip) of mas	ion jon jalen	to to to to to to to to to to to to to t	on fiel	d	ulai	- cł	4, 2 2	38, 	208 216 2259 2247 2243 2242 2242 2242 2242 2242 2337 268 337 80 337 115 160 1244 41 41 41 41 41 41 41 41 41 41 41 41 4
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative . Humidity, relative . Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na logari tangents, na logari tang	ion poriz alen 	to to to to to to to to to to to to to t	on fiel	d	ulai	. 21	4, 2 2 	38, 	208 216 2259 2237 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2337 1155 1160 161 441 411 411 411 3222 3325 2180 2180 2180 2180 2180 2180 2180 2180
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Heilum, — relative . Humidity, relative . Humidity term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na by Hysteresis: soft iron cal win steel, transfic various subb Iceland spar, refractive Icepoint on thermodym Inclination (dip) of mag secuar change	ion porizi alen trici t of b adin badin trici t of b adin trici t loga ad thus thus thus thus thus thus thus thus	to to to to to to to to to to to to to t	on fiel	d	ulai		4, 2 2 	38, 38, 	208 2159 2237 2431 2443 2443 2443 2443 2443 2443 2443
latent heat of fus vaj mechanical equiv specific: elements gases . liquids mercury minerals rocks . solids vapors water Heating effect, radium "Heat, specific," of elec Hefner photometric uni Heights determinations Helium, — relation to r Horizontal intensity of Humidity, relative Humidity, relative Humidity, relative Humidity, term, 0.378e Hydrogen thermometer Hyperbolic cosines, natur logari tangents, na hyperbolic cotangents, steel, transfe various subs Iceland spar, refractive Ice-point on thermodyn Inclination (dip) of mag Index of refraction: alur cry	ion poriz alen 	ation to to t	on fiel	d	eter ullan	. 21	4, 2 2 	38, 	208 216 2259 2237 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2242 2243 2337 1155 1160 161 441 411 411 411 3222 3325 2180 2180 2180 2180 2180 2180 2180 2180

INDEX.

32**8**

264 267 267 264 241 • metals . .

207

235

26

227 126

109 .

. 341 . 12 . 333

· 334 · 334 . .

> 334 .

-331 326 333 . . 334 117

321 -325 322

> 321 . 321

> 322 .

321 .

. 332

. 3 . 111

147 -155 102

120 130

. . 30

• . 24 28

• . 334 .

• . 321

• . 113 • 114

. 113 114 115 117 .

326 -331

. 110 . 68 . 68 . 68

69-70

69-70 . 237

219

226

. 222

. 223

. 123

. 239

. 151

97

68

. . . . 145 -146

> > • . • . . 123 . . 118

. • • • 273-274

. 195–196 . 195–196 . 195–196, 198 ls . . . 266

• : . . 221

. . . • . 226

• . 222

olutioas . . 267 . . 195–196,198 solutions

. 195–196,198

eous 100 British equiv. . 7–10 U. S. equivalents 5-6

.

. 195-196 273,284~293

• • • • . 334

Index of refraction: glass	Liquids: magneto-optic rotation
Iceland spar	potential differences with liquids
nquids	metals salts
monorefringent solids 188	salts salts salts salts salts surface tensions tensions tensions tensions surface tensions surface tensions te
nitroso-dimethyl-aniline . 186	surface tensions
nitroso-dimetnyl-anline 180 quartz	thermal conductivity
rock-salt	expansion
salt solutions	vapor pressures 147-
silvine	velocity of sound
solids, isotropic	viscosity
Inductive capacity, specific: calibration st ds 313	
gases, atm. pressure 309 pressure coel . 309	1000-2000
temp. coef 310	
liquids	Longitude of a few stations
liquids	Lowering of freezing-points by salts
solids 313-314	Lubricants for cutting tools
Inertia, table of moments of 67	Lubricants for cutting tools
Inorganic compounds: boiling-points 219	Manha malianatinita anit
melting-points	Mache radioactivity unit Maclaurin's theorem Magnetic field: bismuth, resistance in Ettiogshausen effect
Insulators, resistances	Magnetic field: hismuth resistance in
Integral diffusion	Ettingshausen effect
elliptic	
gamma function $\ldots \ldots \ldots$	Hall effect
probability 54, 57–58	Leduc effect
solids . 313-314 Inertia, table of moments of	Nernst effect
Intensity, borizontal, of earth's held 114	nickel, resistance in
	optical rotation
total, of earth's field	galvanomagnetic effects
Intriosic brightness of various lights	Magnetic observatories, magnetic elements
Ionization of water	Magnetic properties: of cobalt at 100° C
Ionization, α , β , γ , rays	iron: hysteresis . 322-
a	permeability
X-rays	315-317, 320-
Ions: equivalent conductivity of	saturated
Iron: hysteresis in soit	weak fields
magnetic properties of, weak neids 322	magnetite
$\begin{array}{c c} & secular variation & 115\\ Intrinsic brightness of various lights & 178\\ Ionization of water & $	Magnetic suscentibility, liquids gases
standard arc lines. Fabry-Buisson	Magnetic susceptibility, liquids, gases Magnetic units, conversion formulæ
secondary standards . 172	Magnetic units, conversion formulæ
tertiary standards 176	declination
	dip
Joule's (mechanical) equivalent of heat 237	horizontal intensity .
TT	inclination
Kerosene, dielectric strength	intensity, horizontal .
Kerr's constant dispersion of	total
Kerr's constant	total
Kerr's constant	total observatories Magneto-optic rotation
Kerr's constant, dispersion of	total observatories Magneto-optic rotation
Kerr's constant, dispersion of	total
Kerr's constant, dispersion of	total observatories Magneto-optic rotation
Kerr's constant, dispersion of	total observatories
Kerr's constant, dispersion of	total observatories Magneto-optic rotation
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks concrete metals stones timber
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks concrete metals stones timber
Kerr's constant, dispersion of	total observatories
Kerr's constant, dispersion of	total observatories
Kerr's constant, dispersion of	total observatories
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Mechanical equivalent of heat eutectics inorganic compounds minerals minerals stores Mething-points: chemical elements inorganic compounds minerals minerals minerals
Kerr's constant, dispersion of	total observatories
Kerr's constant, dispersion of	total observatories
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Mechanical equivalent of heat eutectics inorganic compounds mixtures (alloys) (Jow melting-points) organic compounds pressure effect
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Mechanical equivalent of heat eutectics inorganic compounds mixtures (alloys) (Jow melting-points) organic compounds pressure effect
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Mechanical equivalent of heat eutectics inorganic compounds mixtures (alloys) (Jow melting-points) organic compounds pressure effect
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Mechanical equivalent of heat eutectics inorganic compounds mixtures (alloys) (Jow melting-points) organic compounds pressure effect
Kerr's constant, dispersion of	total
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber woods Mechanical equivalent of heat eutectics inorganic compounds minerals (low melting-points) organic compounds minerals (low melting-points) organic compounds minerals (low melting-points) organic compounds minerals pressure effect Meniscus, volume of meniscus, volume of pressure of columns of specific heat
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber woods Mechanical equivalent of heat eutectics inorganic compounds minerals (low melting-points) organic compounds minerals (low melting-points) organic compounds minerals (low melting-points) organic compounds minerals pressure effect Meniscus, volume of meniscus, volume of pressure of columns of specific heat
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stoaes timber Methanical equivalent of heat Melting-points: chemical elements ioorganic compounds minerals (low melting-points) organic compounds pressure effect Meniscus, volume of mercury Mercury: density of electric resistance of pressure of columns of specific heat vapor pressure Metals: diffusion of, into metals
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks concrete metals stones timber Methanical equivalent of heat minerals minerals minerals minerals minerals mixtures (alloys) (low melting-points: chemical elements mixtures (alloys) loorganic compounds mixtures (alloys) loorganic compounds loorganic com
$\begin{array}{rrrrr} Kerr's constant, dispersion of $	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Wechanical equivalent of heat eutectics inorganic compounds minerals (low melting-points) organic compounds minerals (low melting-points) organic compounds minerals minerals (low melting-points) organic compounds minerals (low melting-points) organic compounds minerals (low melting-points) organic compounds meniscus, volume of pressure effect Meniscus, volume of specific heat vapor pressure Metals: diffusion of, into metals indices of refraction potential differences with solids potential differences with solids
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of i bricks metals stones timber Wechanical equivalent of heat eutectics Melting-points: chemical elements ioorganic compounds minerals forganic compounds mixtures (alloys) (low melting-points) organic compounds pressure effect Meniscus, volume of mercury Mercury: density of mercury density of pressure of columns of specific heat vapor pressure Metals: diffusion of, into metals iodices of refraction yotential differeoces with solids solutions
$\begin{array}{rrrr} Kerr's constant, dispersion of $	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stoaes timber Mething-points: chemical elements ioorganic compounds minerals mixtures (alloys) (low melting-points) organic compounds pressure effect Meniscus, volume of mercury Mercury: density of electric resistance of specific heat vapor pressure Metals: ioorganic site mercury density of specific heat vapor pressure Metals: iodices of refraction ionganic solutions for specific heat vapor pressure metals iodices of refraction iodices of refraction iodices of refraction indices of solutions iodices of refraction iodices of refraction
$\begin{array}{rrrr} Kerr's constant, dispersion of $	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber woods Mechanical equivalent of heat eutectics minerals mixtures (alloys) (low melting-points) organic compounds mixtures (alloys) (low melting-points) organic compounds mixtures (alloys) etertics Meniscus, volume of mercury Mercury: density of meniscus, volume of specific heat vapor pressure feat wetals mixtures (alloys) feat Meniscus, volume of meniscus, volume of specific heat vapor pressure meniscus vapor pressure vapor pressure meniscus vapor pressure meniscus vapor pressure meniscus vapor pressure meniscus vapor pressure vapor vapo
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber woods Methanical equivalent of heat eutectics minerals minerals minerals mixtures (alloys) organic compounds pressure effect Meniscus, volume of mercury Mercury: density of mercury of compounds pressure of columns of specific heat vapor pressure Metals timber specific heat vapor pressure metals solutions meniscus, volume of pressure of columns of specific heat vapor pressure Metals: diffusion of, into metals indices of refraction potential differences with solids reflection of light by resistance, electrical argna arguest solutions resistance, electrical mercury meniscus solutions resistance, electrical meniscus meniscus solutions resistance, electrical meniscus meniscus solutions specific hast solutions solutions reflection of light by resistance, electrical meniscus solutions specific argna argna argna solutions specific hast solutions solutions reflection of light by resistance, electrical meniscus solutions specific hast solutions solutions resistance, electrical meniscus solution
Kerr's constant, dispersion of	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber woods Mechanical equivalent of heat eutectics minerals mixtures (alloys) (low melting-points) organic compounds mixtures (alloys) (low melting-points) organic compounds mixtures (alloys) etertics Meniscus, volume of mercury Mercury: density of meniscus, volume of specific heat vapor pressure feat wetals mixtures (alloys) feat Meniscus, volume of meniscus, volume of specific heat vapor pressure meniscus vapor pressure vapor pressure meniscus vapor pressure meniscus vapor pressure meniscus vapor pressure meniscus vapor pressure vapor vapo
$\begin{array}{rrrrr} & \mbox{constant}, \mbox{dispersion of}, \mbox{dispersion of}, \mbox{definition of}, \mbox{definitio}, definition o$	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Metanical equivalent of heat eutectics minerals
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber Wechanical equivalent of heat eutectics inorganic compounds minerals minerals minerals forganic compounds minerals forganic compounds minerals forganic compounds minerals forganic compounds minerals forganic compounds minerals forganic compounds minerals forganic compounds minerals forganic compounds forganic compounds forganic compounds minerals forganic compounds forganic com
$\begin{array}{rrrrr} & \mbox{constant}, \mbox{dispersion of}, dispersi$	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber woods Mechanical equivalent of heat eutectics minerals minerals minerals minerals minerals minerals metalical equivalent of heat minerals minerals minerals minerals minerals metalical dow melting-points organic compounds meniscus, volume of mercury Mercury : density of meniscus, volume of meniscus, volume of meniscus, volume of meniscus, volume of specific heat vapor pressure a indices of refraction reflection of light by reflection of light by reflection of sheet, weight of transparency of Metallic reflection Metallic endor the daueous Metallic endor the daueous Metallic endor the daueous Metallic endor the daueous
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of i bricks metals stones timber woods Mechanical equivalent of heat eutectics minerals mixtures (alloys) (low melting-points) organic compounds minerals mixtures (alloys) organic compounds melting-points) organic compounds melting-points) organic compounds mixtures (alloys) torganic compounds meniscus, volume of mercury Mercury : density of pressure effect pressure of columns of specific heat vapor pressure Metals: diffusion of, into metals vapor pressure metication pressite of columns of specific heat vapor pressure metals metal constants sheet, weight of Metallic reflection transparency of Metallic reflection transparency of Metallic reflection Metallic reflection Metalic sciences Metallic reflection Metalic sciences Metalic reflection Metalic reflection Metalicholo d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of: bricks metals stones timber woods Mechanical equivalent of heat eutectics inorganic compounds minerals mixtures (alloys) (low melting-points) organic compounds mixtures (alloys) (low melting-points) organic compounds meniscus, volume of pressure effect Meniscus, volume of specific heat vapor pressure of optical constants metals indices of refraction potential differences with solids reflection of light by reflection of light by metals differences with solids reflection of light by reflection of light by reflection r
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	total observatories Magneto-optic rotation Masses of the earth and planets Materials, strength of i bricks metals stones timber woods Mechanical equivalent of heat eutectics minerals mixtures (alloys) (low melting-points) organic compounds minerals mixtures (alloys) organic compounds melting-points) dow melting-points) organic compounds melting-points) organic compounds mixtures (alloys) therefore Meniscus, volume of mercury Mercury : density of pressure effect pressure of columns of specific heat vapor pressure Metals: diffusion of, into metals indices of refraction potential differences with solids reflection of light by resistance, electrical sheet, weight of Metallic reflection transparency of Metallic reflection transparency of Metallic reflection Metallic reflection Metallicholo density of a Metallic reflecti

									INI
Minerals specific to									
Minerals, specific heat Mixtures, freezing	ats of	:	:	:	•	•		•••	242 230
Mixtures, freezing Moduli of elasticity:	rigid	ity		:	:			: :	71
Molecular conductiv	Your ities:	ig s eau	ival	lent	• ·	•		305-	72 -308
			ific	:	•	•		301-	-304
Molecular magnitude Molecules per cu. cm Moments of inertia	us . 1. gas	:	:	:	:			: :	342 342
				•		•		• •	67
Monthly temperatur Moon's light and rac	liatio	n	:			•			183 110
Musical scales	• •	•	•	•	•	•	•	• •	103
Neutral points them	etic o	liffe	ren	ce d	of p	ote	nti	al.	334
Neutral points, therm Newton's rings and s Nickel: Kerr's consta magnetic per	no-ele	ectri	C		•	•	•	268-	-269
Nickel: Kerr's consta	ants f	or		.8				: :	204 331
Magnetic pro resistance in Nitroso-dimethyl-an	perti	es o netic	f,a fie	t re	000	C.	•		321
Nitroso-dimethyl-an	iline,	refr	acti	ive	ind	ex			333 186
Numbers atomic . Nutation	: .	:	•	•	•	•	•	•••	336 109
			•	•	•	•	•	•••	109
Observatories, magn Ohm, various determ	etic, e iinati	elem	of	s	•	•			117 272
legal value	•••		•						272
Oils, viscosity of Organic compounds,	boili	ng-c	oin	ts	:	•	•	· ·	128
	densi	ities				•		223-	-224
Oscillation constant,	wire	less	poir tele	nts gra					-224 298
Parallax: solar; luna				-	• •				
Parallax: stellar	· ·	:	:	:	:	•		: :	109 110
Peltier effect Pendulum, length of			•	•	•	•		268,	271
Periodic system of the	he ele	mer	its	:		:	•	•••	343
Permeabilities, magn	ietic			•	315	-31		310	
Phosphorescence fro Photometric standar	ds .			• •	•	.es		: :	337 178
Pi, π , value of Planck's radiation for			•	•	•	•	•	• •	12
Plane, data for the s			à	:	:	•		: :	251 125
Planetary data Planets, miscellaneou	 10 dei	•	·	·	•	•	•	• •	110 110
Platinum resistance			eter	ŗ	:	:	•	: :	247
Poisson's ratio Polarized light: by re	aflecti		•	•	•	•	•	•••	73 197
byn	netall	ic re				:		:;	195
rota	tion t	y n	lut	net.	ic fi	eld			-331 20 3
Potential difference:	cells:	doı	ıple	e flu	ıid	•			263
		sec sin	ond øle	lary flui	/ id	:	•	• •	263 262
		sta	nda	urd				261	263
	conta	sto	rag lion	e miđ-	lia	biu	•	: .	263 264
	Contra		liqt	uid	-sal	t	•		264
					-liqı olic			: :	267 266
	sparl		: ai	r				204	-295
					ene us				296 296
D	therr	noel	ecti	rić		•	•	268	-271 109
Precession Pressure: barometric	meas	ure	5	:	:	:		119	-123
barometric	and	boili heig	ing	wa			•	170-	-171 169
mercury co	lumn					•	•	•	118
water colu wind	nns,				:	:		: :	118 124
Pressure effect on me			nts	•	•	•	•	• •	221
Pressure, vapor: alco	hol. e	y thv	1 ar	id ı	net	hyl			143 149
aqui							•	154	-155 157
mer	cury	in a	•	ເປັດເ					151
salt	solut			•		• •		 	152
Probable errors .		:	:	:				. 50	5-59
Probability tables		•	•	•	•			50	5-59 180
Purkinje's phenomen		•	•	•	•			••	
Quartz fibers, strengt	h of	•	•	•	•				68 187
refractive ind specific heat		:	:	:	•			: :	240
Radiation: black-bod	v								251
constants	of				•	•			251
cooling by eye, sensi	y, and tiven	1 CO ess o	ave of, t	to	on •			-	-253 180

Radiation: Planck's formula	51
resistance, wireless telegraphy	
"solar constant" of	31
solar, monthly change	
transmissibility of atmosphere to 181, 18	52
Radii of gyration	57
Radio-activity	LI LI
Radium emanation	1 I
Radio-active equilibrium Reflection of light: by metals 195, 196, 19	17
terms of "n" and "i" . Ig	· •
various substances 19 Refraction, indices of: alums)8 37
crystals 185–19	00
fluorite	
glass	93 34
Iceland spar	36
metals 195-10	6
monorefringent solids . 18	38
nitroso-dimethyl-aniline . 18 quartz 18	36 37
rock-salt	35
salt solutions 19 silvine)I 35
solids, isotropic	88
Relative humidity	j0
alloys, low temperature	so
alternating current, effect of 29	27
600000 A	34
electrolytic, see Conductivity.	
glass and porcelain	
magnetic field, of bismuth in 3;	33
metals in	
metals at low temperatures	50
ohm, various determinations of 27	
platinum, thermometer	50
specific: metals	
wites 272 a86-of	70
temperature variation $276, 280, 282, 280$	70 73 15
temperature variation 276, 280, 282, 28 Rigidity, modulus of	35 71
temperature variation 276, 280, 282, 28 Rigidity, modulus of	
temperature variation 276, 280, 282, 2 Rigidity, modulus of . temperature variation . Ring correction (magnetization) . Rock solt indices of seferation	35 71 71 71
temperature variation 276, 280, 282, 2 Rigidity, modulus of . temperature variation . Ring correction (magnetization) . Rock solt indices of seferation	35 71 71 71
temperature variation 276, 280, 282, 2 Rigidity, modulus of . temperature variation . Ring correction (magnetization) . Rock solt indices of seferation	35 71 71 71
temperature variation 276, 280, 282, 2 Rigidity, modulus of . temperature variation . Ring correction (magnetization) . Rock solt indices of seferation	35 71 71 71
temperature variation 276, 280, 282, 2 Rigidity, modulus of . temperature variation . Ring correction (magnetization) . Rock solt indices of seferation	35 71 71 71
temperature variation 276, 280, 282, 22 Rigidity, modulus of	35117536636036 3177536636036
temperature variation 276, 280, 282, 22 Rigidity, modulus of	3511775336633603187
temperature variation 276, 280, 282, 28 Rigidity, modulus of	351177533663360318279
temperature variation 276, 280, 282, 22 Rigidity, modulus of	35117752366326031827990
temperature variation 276, 280, 282, 22 Rigidity, modulus of	351177533663369318279903
temperature variation 276, 280, 282, 28 Rigidity, modulus of	3511775336633601879903 79
temperature variation 276, 280, 282, 28 Rigidity, modulus of	35117753366336038279903 7921
temperature variation 276, 280, 282, 28 Rigidity, modulus of	351175336633603827903 7913
temperature variation 276, 280, 282, 22 Rigidity, modulus of	
temperature variation 276, 280, 282, 28 Rigidity, modulus of	
temperature variation 276, 280, 282, 28 Rigidity, modulus of	35117753366336038279903 79213275330
temperature variation 276, 280, 282, 28 Rigidity, modulus of	3511175336633601879903 79913273309
temperature variation 276, 280, 282, 28 Rigidity, modulus of	35117753663601879903 791327330901
temperature variation 276, 280, 282, 28 Rigidity, modulus of	35111753663601879903 79132733094015
temperature variation 276, 280, 282, 28 Rigidity, modulus of	
temperature variation 276, 280, 282, 28 Rigidity, modulus of	3511175336633691879903 7913273309015072
temperature variation 276, 280, 282, 28 Rigidity, modulus of	351177536663601879903 7913275330901507251
temperature variation 276, 280, 282, 28 Rigidity, modulus of	
temperature variation 276, 280, 282, 28 Rigidity, modulus of	35117533663600187903 7913273309015507251930
temperature variation 276, 280, 282, 28 Rigidity, modulus of	3511753366360187903 7913273379015072519309
temperature variation 276, 280, 282, 28 Rigidity, modulus of	351175336636001879903 79132733090150725193093

Solar wave-lengths, Ro	wlai	nd'	s							173
Solids: compressibility	•								3	173
densities								. 8	3.3	-87
dielectric consta electrical resista	nt									313
electrical resista	nce							272	2-	297
hardness										73
indices of refrac	tion						•	18	÷	190
' magneto-optic 1	ota	tio	n b	v			•	. `		327
thermal conduct					2			209	-	206
expansi						•				234
Solubility gases			:							142
pressure effect	+ [*]			:		:		:		143
salts	·•.		:			:		:		141
Solutions: boiling-point	rai	isin	o h	vs	alt	s in				229
boiling-point	s of	20	1100	119						229
conductivity	th	arn	nal	us						207
conductivity		CIL	uai		•	•	•		:	207
densities of a	ele	cu	oly			·	•	302	-	308 100
densities of a diffusion of a	que	ou	3	•	•	92-	-93	, 98		100
dinusion of a	que	ou	9.	۰.	•	۰.	•	•		138
freezing-poin	ts, I	low	erir	ıg i	by	salt				227
		ot a	qu	eou	15	•	•	•		227
indices of ref	ract	ion	1	•	•	•				191
magneto-opt	ic ro	otai	tion	ιot			•	•		329
potential (co	ntac	ct)	diff	ere	nce	9		264	-	267
specific heats								241	-	242
surface tensio								. ' .		145
viscosities .								131		135
Sound, velocity of, in so	bids									101
1	iqui	da	and	İσ	ase			•		102
Sparking potentials .	iqui	1013	and		auc	5	•			296
			•					294		290
Specific gravity, see Der	isic	у.								
heat of air	•									243
element	s	•	•	•	•	•	•	238		240
gases	•		•		•		•	•		243
liquids		•		•	•	•	•	•		241
mercury	7									239
mineral		ıd ı	rocl	s						242
platinu										240
quartz										240
silica gl	388									240
solids		•	•	•	•	•	•			241
	•	•		•						
vapors	•	•	•	•	•					243
water			•				•	•		239
"Specific heat of electri	City									
			•	•	•	•	•	•		268
Specific inductive capac	ity:	: ga	ses		•	:		309		
Specific inductive capac	ity:	i ga lio	quic		•	•		309 310	<u>ا</u>	310
		i ga lio so	luid lids		•			309 310	<u>ا</u>	310
molecular cond		i ga lio so	luid lids		•			309 310 303	<u>ا</u>	310
molecular condu	ucti	i ga lia so viti	iuid lids ies	•	• • •			303 273		310 312 313 304 276
molecular condu	ucti	i ga lia so viti	iuid lids ies	•	•	•		303 273 136		310 312 313 304 276 137
molecular cond	ucti and	i ga lic so viti l va	lids lids apo	rs	•	•		303 273 136		310 312 313 304 276
molecular condi resistance viscosity: gases liquic	and and	i ga lic so viti l va	lids lids apo	rs	•	•		303 273 136 128		310 312 313 304 276 137 130
molecular condi resistance viscosity: gases liquic soluti	and and ls ai	i ga lic so viti l va nd	ids lids apo oils	rs	•	•		303 273 136	I I I I I I I I I	310 312 313 304 276 137 130 135
molecular condu resistance viscosity: gases liquic soluti Spectra: elements, brigt	and and ls an ons	i ga lio so viti l va nd lin	ids lids apo oils	rs	•	•		303 273 136 128		310 312 313 304 276 137 130 135 172
molecular condi resistance viscosity: gases liquic soluti Spectra: elements, brig <u>i</u> iron, Fabry-Bu	and and ls an ons	i ga lio so viti l va nd lin	ids lids apo oils	rs	•	•		303 273 136 128	II TITTT	310 312 313 304 276 137 130 135 172
molecular condi resistance viscosity: gases liquic soluti Spectra: elements, brigt iron, Fabry-Bu Röntzen rav	and ls and ons iter iisso	i ga lic so viti i va nd lin n	idids ies apo oils es	rs	•	•		303 273 136 128	II TITTT	310 312 313 304 276 137 130 135 172 172 336
molecular condi resistance viscosity: gases liquic soluti Spectra: elements, brigi ron, Fabry-Bu Röntgen ray solar, Fraunho	and ls and ons iter isso	i ga so viti i va nd line	ies apo oils es	rs	• • • • • • • • • •	•		303 273 136 128	I F F I F F F F F F F F F F F F F F F F	310 312 313 304 276 137 130 135 172 172 336 177
molecular cond resistance viscosity: gases liquic soluti Spectra: elements, brigf iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland	and ls and ons iter isso	i ga so viti i va nd line	ies apo oils es	rs	• • • • • • • • • •	•		303 273 136 128 131		310 312 313 304 276 137 130 135 172 172 336 177 173
molecular condi resistance viscosity: gases liquic soluti Spectra: elements, brigt iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables	anc ls an ons iter isso fer l 's n	inea	ies apo oils es suro	rs	• • • • • • • • • • •	•		303 273 136 128 131		310 312 313 304 276 137 130 135 172 336 177 173 -49
molecular condi resistance viscosity: gases ilquic Spectra: elements, brigf prion, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard calibration ter	anc ls an ons iter isso fer l 's n	inea	ies apo oils es suro	rs	• • • • • • • • • • • •	•		303 273 136 128 131		310 312 304 276 137 130 135 172 336 177 173 -49 247
molecular condi resistance viscosity: gases liquic Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard calibration ter Standard cells	and ls and ls and iter isso fer l 's n npe	i ga lic so viti l v: nd lin n line nea	uid lids apo oils es s sun ure	·	· · · · · · · · · · · · · · · · · · ·	•		303 273 136 128 131		310 312 304 276 137 130 135 172 336 177 173 -49 247 263
molecular condi resistance viscosity: gases ilquic Spectra: elements, brigf prion, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard calibration ter	anc ls an ons iter isso fer l 's n npe Fal	inea inea inea inea inea	uid lids apo oils es sur ure	·		•		303 273 136 128 131		310 312 313 304 276 130 135 172 336 177 173 -49 247 263 172
molecular condi resistance viscosity: gases liquic Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard calibration ter Standard cells	anci ls an ons iter isso fer l 's n	ga lic so viti 1 v: nd lin n inea inea inea bry ma	uid lids apo oils s s ure	rs		•		303 273 136 128 131 4 261		310 312 313 304 276 137 130 135 172 336 177 173 -49 247 263 172 172
molecular condi resistance viscosity: gases liquic Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard calibration ter Standard cells	ancti ls an ons iter isso fer l fer l Fal pri Ro	ind so ind ine ine ine ine ine ine ine ine ine ine	uid lids apo oils es ure -Bu ry and	rs		•		303 273 136 128 131 		310 312 313 304 276 137 130 135 172 172 336 177 173 -49 247 263 172 172
molecular condi resistance viscosity: gases liquic Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard calibration ter Standard cells	ancti ls an ons ons iter l isso fer l Fal pri Ro sec	inea so inea inea inea inea inea inea inea inea	uid lids apo oils es ure -Bu ry and	rs		•		303 273 136 128 131 		310 312 313 304 276 137 130 135 172 336 177 173 -49 247 203 172 172 172
molecular condi resistance viscosity: gases liquic soluti Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Quares, least, tables Standard calibration ter Standard calibration ter Standard cells wave-lengths:	ancti ls an ons iter isso fer l fer l Fal pri Ro	inea so inea inea inea inea inea inea inea inea	uid lids apo oils es ure -Bu ry and	rs		•		303 273 136 128 131		310 312 313 304 276 137 130 135 172 336 177 247 247 247 247 247 247 247 247 247 2
molecular condi resistance viscosity: gases liquic Spectra: elements, brig iron, Fabry-Bu Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric	ancti ls an ons ons iter l isso fer l Fal pri Ro sec	inea so inea inea inea inea inea inea inea inea	uid lids apo oils es ure -Bu ry and	rs	· · · · · · · · · · · · · · · · · · ·	•		303 273 136 128 131 4 261		310 312 313 304 276 137 130 135 172 336 177 173 -49 247 203 172 172 172
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric Stars, distance of .	ancti ancons iter ancons iter lisso fer l s n Fal pri Ro sec ter	inea so inea inea inea inea inea inea inea inea	uid lids es apo oils s s ure Bu ry	rs	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		303 273 136 128 131 4 261		310 312 313 304 276 137 130 135 172 336 177 247 247 247 247 247 247 247 247 247 2
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric Stars, distance of .	ucti anc ls an ons iter l isso fer l s n Fal pri Ro sec ter	inea so inea inea inea inea inea inea inea inea	uid lids es apo oils s s ure Bu ry	rs	•	· · · · · · · · · · · · · · · · · · ·		303 273 136 128 131 131 4 4 261		310 312 313 304 276 137 130 135 172 336 177 247 247 247 2172 173 172 173 1772 1772
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric Stars, distance of .	ucti and ls an ons iter iisso fer l s fer l Fal pri Ro sec ter	inea so inea inea inea inea inea inea inea inea	uid lids apo oils sure Burry and lary	rs	•	· · · · · · · · · · · · · · · · · · ·		303 273 136 128 131 131 4 261		310 312 313 304 276 135 172 336 177 247 317 247 3172 263 2172 2172 2172 2172 2172 2172 2172 217
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigf iron, Fabry-Bu Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard calibration ter Standard cells . wave-lengths: Standards, photometric Stars, distance of . Stars, parallax . Stars, parallax .	ucti ls and ons liter lisso fer l 's n Fal pri Roc ter	inea so inea inea inea inea inea inea inea inea	uid lids apo oils sure Bu ry and lar		•			3032733136		310 312 313 304 276 137 130 135 172 336 177 173 172 263 172 173 172 247 247 247 173 177 173 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 178 177 177
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Quares, least, tables Standard calibration ter Standard calibration ter Standard cells . wave-lengths: Stars, distance of . Stars, parallax . Stars, velocities of Steam tables: metric un	ucti ls and ons liter lisso fer l 's n Fal pri Roc ter	inea so inea inea inea inea inea inea inea inea	uid lids apo oils sure Bu ry and lar	· · · · · · · · · · · · · · · · · · ·	•			3032733136		310 312 313 304 276 130 135 172 173 173 173 247 263 2172 173 172 263 2172 1773 1772 1773 1772 1773 1775 1772 1775 1775 1775 1775 1775 1775
molecular condi resistance viscosity: gases liquic soluti Spectra: elements, brigf Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric Stars, distance of Stars, parallax Stars, parallax Stars, velocities of . Stars, tables: metric un common	ancti ls an ons iter l isso fer l 's n Fal pri Ro sec ter	ga lic soviti soviti lic nd lin inea rat brya wola	uid lids apoo oils es sure Bu ry	· · · · · · · · · · · · · · · · · · ·	• • • • • • • •			3032733136		310 312 313 304 2767 1130 1172 3367 1172 247 247 247 247 247 247 2173 2173 2173 2173 2173 2173 2173 217
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigi iron, Fabry-Bu Röntgen ray solar, Fraunho Quares, least, tables Standard calibration ter Standard calibration ter Standard cells . wave-lengths: Stars, distance of . Stars, parallax . Stars, velocities of Steam tables: metric un	ancti ls an ons iter l isso fer l 's n Fal pri Ro sec ter	ga lic soviti soviti lic nd lin n inea rat bry a who tia	uid lids apoo oils es sure Bu ry	rs 	•••••		9.	303 273 136 128 131 		310 312 313 3076 1130 1135 1172 11730 1172 11730 1172 11730 1172 11730 1172 11730 1172 11730 1172 11730 1172 11730 1172 11730 1172 11730 1172 1172 1172 1172 1172 1172 1172 117
molecular condi resistance viscosity: gases liquic soluti Spectra: elements, brigf rion, Fabry-Bu Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric Stars, distance of Stars, velocities of Stars, velocities of Stars, velocities of Stars, pretric un common Steel: magnetic properti	ancti ls ai ons aiter lisso fer l r Fal pri Roc sec ter	ga soviti lon line inea rat bry make ono tia	uid lids apo oils es sure -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 136 128 131 		310 312 313 3046 1135 1172 11736 1173 1173 1173 1173 1173 1173 117
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigj iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard cells . vave-lengths: Standard cells . Standard .	ancti anci ls an ons iter is. I fer fri Ro sec ter	ga soviti lon line inea rat bry make ono tia	uid lids apo oils es sure -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu	rs 	· · · · ·		9.	303 273 136 128 131 	 - - - - -	310 312 313 3076 1377 1305 1372 1376 1377 1377 1377 1377 1377 1377 1377
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigj iron, Fabry-Bu Röntgen ray solar, Fraunho Rowland Squares, least, tables Standard cells . vave-lengths: Standard cells . Standard .	ancti anci ls an ons iter is. I fer fri Ro sec ter	ga soviti lon line inea rat bry make ono tia	uid lids apo oils es sure -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 136 128 131 		310 312 333 3076 1335 172 3377 1335 172 2632 1772 2632 1772 1772 1772 1772 1772 1772 1772 17
molecular condi resistance - viscosity: gases liquic soluti Spectra: elements, brigf Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric Stars, distance of Stars, parallax Stars, parallax Stars, parallax Stars, parallax Stars, velocities of . Steel: magnetic propert Stefan-Boltzmann radia Stellar velocities	its and its its its its its its its its its and its an	ga lic so viti i va linen inea rat brymak wono tia	uid lids apo oils es sure -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 136 128 131 		310 312 313 3076 1335 172 1335 1772 1336 1773 1772 1772 1772 1773 1772 1773 1775 1170 1110 1110 1110 1110 1110 1110
molecular cond resistance viscosity: gases liquic Spectra: elements, brigt rion, Fabry-Bu Röntgen ray solar, Fraunho Squares, least, tables Standard calibration ter Standard calibration ter Standard cells wave-lengths: Standards, photometric Stars, parallax Stars, velocities of Steam tables: metric un common Steel: magnetic propert Stellar velocities . Store: strength of . thermal conducti	its and its its its its its its its its its and its an	ga lic so viti i va linen inea rat brymak wono tia	uid lids apo oils es sure -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 136 128 131 		310 312 333 277 332 277 337 247 247 2172 2172 2172 2172 2172 2177 2177
molecular condu- resistance	its and its an	ga so viti i vind lin inea rat bryma wola tian	uid lids apo oils es sure -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu -Bu	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 136 128 131 		310 312 330 312 310 40 12 310 40 12 20 12 20 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigj iron, Fabry-Bu Röntgen ray solar, Fraunho Quares, least, tables Standard cells . vave-lengths: Standard cells . standard s, photometric Stars, eleventa . Stars, velocities of . Steam tables: metric un common Steel: magnetic propert Stefan-Boltzmann radia Stellar velocities . stone: strength of . thermal conducti Storege batterics .	ucti ls and ons iter iter iter fall pri Roc ter its ites: tion	ga lid soviti i vind lin inea rat bryand bryand i hypen fo	uid lids apooils es sure ry and lar: · · · ·	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 1128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 136 128 136 136 128 14 14 14 14 14 14 14 14 14 14 14 14 14		310 312 330 312 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 12 310 40 10 20 20 20 20 20 20 20 20 20 20 20 20 20
molecular condi resistance viscosity: gases liquit Spectra: elements, brigt rion, Fabry-Bu Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standard cells standard cells Standard s, photometric Stars, distance of Stars, velocities of Stear, velocities of Steel: magnetic properti Steflar.Boltzmann radias Stellar velocities . Storage batteries . Storage batteries .	ucti ls and ons iter isso fer 1 s . npe Fali Roceter 	solution in the second	uid lids apooils es sure ry and lar: · · · ·	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 136 128 131 		3102 3123 32767 31352 22632 31776 31773 31776 31773 31776 31773 31776 31773 31776 31773 31776 31775 31776 31775 31776 31775 31755 31775 31
molecular condu- resistance	ucti Is and Is and iter isso fer l 's n Fall pri Roo sec ter 	solution in the second	uid lids apooils es sure ry and lar ry	rs 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	9.	303 273 1128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 128 131 136 128 136 136 128 14 14 14 14 14 14 14 14 14 14 14 14 14		3102 3123332767 313447 317497 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 31772 31772 32555 32521 31766 32555 32525 32510 325555 325555 325555 325555 325555 325555 3255555 3255555 3255555 32555555 32555555 3255555555
molecular cond resistance viscosity: gases liquic Spectra: elements, brigt rion, Fabry-Bu Röntgen ray solar, Fraunho Squares, least, tables Standard calibration ter Standard calibration ter Standard cells wave-lengths: Standards, photometric Stars, parallax Stars, velocities of Stars, velocities of Steam tables: metric un common Steel: magnetic propert Stellar velocities . Storage batteries . Storage batteries . Strength of materials: b	ucti ls and ons iter isons fer fis for for for for for for for for for for	ga solid solid in line interation interation interation br>interation interation	uid lids apooils apooils es Bu ry and dary 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9,	303 273 136 128 131 131 		3102 312332767 3132767 317767 317767 31776 3177776 317777777777
molecular condu- resistance viscosity: gases liquic soluti Spectra: elements, brigf Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standards, photometric Stars, distance of Stars, parallax Stars, parallax Stars, velocities of . Stear tables: metric un common Steel: magnetic propert Stefan-Boltzmann radia Stellar velocities thermal conducti Storage batteries . Strength of materials: b	ucti ls and ls and iter isso. Fall pri Roce ter	sition in the state of the second sec	uid lids apools .apools 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.	303 273 136 128 131 131 		3102 3123332767 313447 317497 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 317739 31772 31772 32555 32521 31766 32555 32525 32510 325555 325555 325555 325555 325555 325555 3255555 3255555 3255555 32555555 32555555 3255555555
molecular cond resistance viscosity: gases liquic Spectra: elements, brigt rion, Fabry-Bu Röntgen ray solar, Fraunho Squares, least, tables Standard calibration ter Standard calibration ter Standard cells wave-lengths: Standards, photometric Stars, parallax Stars, olistance of Stars, parallax Stars, velocities of Stean tables: metric un common Steel: magnetic propert Stellar velocities . Storage batteries . Storage batteries . Strength of materials: b Corr Stean tables: metricals . Sterneght of materials: b Corr Stars, parallax	and ls au ons iter on fail pri Rosecter .	siti via lin inea iri bryakaona i bryakaonaona i bryakaona i bryakaona i bryakaona i bryak	uid lids apools ools es sure	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.		7	3102 312332767 3132767 317767 317767 31776 3177776 317777777777
molecular cond resistance viscosity: gases liquic Spectra: elements, brigt rion, Fabry-Bu Röntgen ray solar, Fraunho Squares, least, tables Standard calibration ter Standard calibration ter Standard cells wave-lengths: Standards, photometric Stars, parallax Stars, olistance of Stars, parallax Stars, velocities of Stean tables: metric un common Steel: magnetic propert Stellar velocities . Storage batteries . Storage batteries . Strength of materials: b Corr Stean tables: metricals . Sterneght of materials: b Corr Stars, parallax	and ls au ons iter on fail pri Rosecter its ites: tion vity onca imb	siti via lin inea iri bryakaona i bryakaonaona i bryakaona i bryakaona i bryakaona i bryak	uid lids apools ools es sure	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.		7	31023332767 311233277267 311722172217221722 32173067 32177397 3217722177221772 3221708 3221700000000000000000000000000000000000
molecular condu- resistance viscosity: gases liquic soluti Spectra: elements, brigh Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard calibration ter Standard calibration ter Standard calibration ter Standard cells wave-lengths: Standards, photometric Stars, parallax Stars, velocities of Stear, tables: metric un common Steel: magnetic propert Steflar velocities . Stone: strength of thermal conducti Storage batteries . Strength of materials: b common Stear, densities aqueou Sugar, densities aqueou Sulphuric acid, densitie	action and a second sec	siti via lin inea iri bryakaona i bryakaonaona i bryakaona i bryakaona i bryakaona i bryak	uid lids apools ools es sure	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.		7	310 312 332767 11352 177397 24732 11772 11772 11778 11100 12555 22668 668 6700 11000
molecular condi resistance . viscosity: gases liquic soluti Spectra: elements, brigj iron, Fabry-Bu Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard calibration ter Standard calibration ter Standard cells . wave-lengths: Standards, photometric Stars, distance of . Stars, velocities of . Stars, velocities of . Stars, velocities of . Stars, velocities of . Steal: magnetic propert Stefan-Boltzmann radia Stellar velocities . Stone: strength of . thermal conducti Storage batteries . Strength of materials: h Stength of materials: h Sugar, densities aqueou Sulphuric acid, densitie	activity and the second	solution in the second	uid lids lids apoo oils es sure try	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.			3102 312332767 3327772 3327772 337777 337777 337777 337777 337777 337777 337777 337777 337777 337777 377777 377777 377777 3777777
molecular condi resistance viscosity: gases liquic Spectra: elements, brigt ron, Fabry-Bu Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard calibration ter Standard calibration ter Standard cells wave-lengths: Standards, photometric Stars, parallax Stars, velocities of Stear, velocities of Steal: magnetic properti Steflar velocities Storage batteries Storage batteries Storage batteries Strength of materials: h Sugar, densities aqueou Sulphuric acid, densitie Sun: constant of radiati	and is a solution of the solut	solution in the second	uid lids lids apoo oils es sure try	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.			3102 3123332767 3113522772 33772 37772 3777 3777 3777 3777 3777 3777 37777 37777 37777 37777 377777 3777777
molecular condu resistance viscosity: gases liquic soluti Spectra: elements, brigf Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standard cells standard cells standard cells standard cells standard septon Standard septon Stars, elextente Stars, distance of Stars, parallax stars, velocities of Stars, velocities Stars, velociti	action and a same action	isouties in the set of	uid lids lids apoo oils es sure try	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.		7	3102 3123 332777 332777 3332777 3332777 3226 332777 3226 32272 32772 327773 327773 327773 327773 3277773 3277773 3277777777
molecular cond resistance viscosity: gases liquic Spectra: elements, brigt rion, Fabry-Bu Röntgen ray solar, Fraunho Squares, least, tables Standard calibration ter Standard calibration ter Standard calibration ter Standard cells wave-lengths: Standards, photometric Stars, parallax Stars, velocities of Steam tables: metric un common Steel: magnetic propert Stellar velocities . Storage batteries . Sterngth of . Sternal conducti Storage batteries . Strength of materials: b Compared the second Stellar velocities . Strength of materials: b Sugar, densities aqueon Sulphuric acid, densitie Sun: constant of radiati dista; distribution distance from eart light; ratio to sky	action and a same action	isouties in the set of	uid lids lids apoo oils es sure try	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.			3102 312332777 312332777 317335226 31739 3
molecular condu resistance viscosity: gases liquic soluti Spectra: elements, brigf Röntgen ray solar, Fraunhoo Rowland Squares, least, tables Standard cells wave-lengths: Standard cells standard cells standard cells standard cells standard septon Standard septon Stars, elextente Stars, distance of Stars, parallax stars, velocities of Stars, velocities Stars, velociti	action and a same action	isouties in the set of	uid lids lids apoo oils es sure try	rs · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	9.			3102 3123 332777 332777 3332777 3332777 3226 332777 3226 32272 32772 327773 327773 327773 327773 3277773 3277773 3277777777

Sun: parallax radiation											
		•	•	•	•	•	•	•	•	٠	109
	•	•	•	•	•	•	•	•	•	٠	181
spectrum				•	•	•			173	3,	181
temperature .						•				•	181
Surface tension						•			14	5-	-146 185
Sylvine, refractive in	dic	69							. "		185
oything, ichidedite it.		~	•	•	•	•	•	•	•	•	
Tongento ducular as		1									-
Tangents circular, na	ιcu	a.	٠.	•	•	•	•	•	• •	52	· 37 · 37
lo	gar	ithr	nıc		•	•	:	•	• 3	32	. 37
hyperbol	ic 1	natı	ıral	L		•		•		•	41
••	1	loga	rit	hmi	ic						41
Taylor's series						-	-			-	13
Telegraphy, wireless	•	•	•	•	•	•	•	•		:	
Telegraphy, wheless	• * •	•	•	•	•	•	•	•	290	,	300
Temperature, critica	1, 10	org	ase	s	•	•	•	•	•	•	231
resista	nce	10 te	or lo	wc			•		•		280
resista	nce	CO	effie	cien	its				270	5-	285
sun's											181
therm	÷.,	<u>.</u>		•	•	•	•	•	•		
					•	•	•	•	•	•	247
Temperatures, mean	m	onti	шу		•	•	•	•	•	•	183
Tensile strengths .	•		•	•	•	•	•	•		58	-70
Tension, surface .									145	5-	146
vapor, see V	/an	01 1	Tes	8111	re.						•
											116
Terrestrial magnetis	щ÷	ago	щç	m	e	٠.	•	:	•	•	
		clin	au	on,	sec	:ula	ar c	nai	age		III
	dij	P	•	•	•	•	•		•	•	113
		sec	cula	ir c	ha	nge			•		113
	bo	rizo	nte	al ir	nte	nsi	tv				114
	~~~				00	111	ar	ha	nee	•	114
	÷	11-			96	cui			LEC		
	m	lina	auc	m	•	٠.	•	:	•	•	113
						cul	aro	ha	nge		113
	ob	serv	7ati	orie	s		•	•			117
		tal i									115
						t	·	ha			115
(T)					50	сш	aro				
Thermal conductiviti	les:	gas	ses		•	•	•	•	•		207
		liq	uid	s	•	•		•		•	207
		sal	t se	olut	tion	15	· *		•	•	207
		sol	ida					-			205
		801	ida	hi	åh.	÷.	* *			:	205 206
		201	ius	, ш				erai	ure	7	200
		wa	ter		•	•	•	•	•	•	207
Thermal diffusivities						•		•	•	•	208
Thermal expansion:	շոր	ical	l: c	rvs	tals	8			•		234
				ase			•		•		236
						•	•	•	•	•	230
				qui			•	•	•		235
				olid		•	•	•	•	•	234
	line	ar:	ele	me	nts						232
			va	rioi	15						233
Thermal unit, dynan	1ica	1 0				•	•	•			227
			-		cine		•		•		
Thermodynamic ice-	hon	<u>п</u> с		•	:	•	•	•	•	•	247
Thermodynamic scal	e oi	t te	mp	era	tur	e	•	•	•	•	247
Thermo-electricity					•	•			268	<u>}</u> _	271
Pel	tieı	r eff	ect						268		27I
					•	•	•	•			
Thormo-alamonte m	libr		<b>n n</b>								
Thermo-elements, ca	libr	au	on (	cui			•	•	•		250
Thermo-elements, ca Thermo-magnetic effe	libr	auo	on (	: ui	<u>.</u>	•	:	:	•		250 334
Thermo-elements, ca Thermo-magnetic eff Thermometer: air-16,	libr	to	on ( 300	, i	ż.	•	:	:	•	•	
Thermo-elements, ca Thermo-magnetic effo Thermometer: air-16, 59	libr	to	on ( 300 to :	, 00 ( 200	ż.		•	•	•	:	334 245
Thermo-magnetic effe Thermometer: air-16, 59	libr ects o ⁰ , 10	to 000	300 to :	jo ( 200 atu		.50	•	•	•		334 245 245
Thermo-magnetic effe Thermometer: air-16, 59	libr ects o ⁰ , 10	to 000	300 to :	jo ( 200 atu		.50			•	•	334 245 245 246
Thermo-magnetic effe Thermometer: air-16, 59	libr ects o ⁰ , 10	to 000 tem	300 to per	, 200 200 atu	ire-	.59	C		•	•	334 245 245 246 244
Thermo-magnetic effe Thermometer: air-16, 59	libr ects o ⁰ , 10	to 000 tem	300 to per	, 200 200 atu	ire-	.59	C	; ; ; 0 (	•	•	334 245 245 246 244 244
Thermo-magnetic effe Thermometer: air-16, 59	libr ects o ⁰ , 10	to 00 ⁰ tem -16 16 59	300 to per , 0 ⁰	o ^o ( 200 atu ) to ), -	ire-	.59	C		•••••	•	334 245 245 246 244 244 244
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro	libr ects o ⁰ , 10 gh-1 gen	to bo ^o tem -16 16 59 va	300 to : per , 0 ⁰ , 50 , 0 ⁰	) 200 atu to ), -	; ire- 50 10	.59	C		•••••	•	334 245 245 246 244 244 244 244 244
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro	libr ects o ⁰ , 10 gh-1 gen	to bo ^o tem -16 16 59 va	300 to : per , 0 ⁰ , 50 , 0 ⁰	) 200 atu to ), -	; ire- 50 10	.59	C		•••••	•	334 245 245 246 244 244 244 244 244
Thermo-magnetic eff Thermometer: air-16, 59 hiq bydro platin	libr ects o ⁰ gh-1 gen um	to bo ^o tem -16 16 59 va res	300 to : per , 0 ⁰ , 50 , 0 ⁰	bo ( 200 atu to to to us	; . ire- 50 50 10	·	C -39 C	;• (	•••••	•	334 245 245 246 244 244 244 244 246 247
Thermo-magnetic eff Thermometer: air-16, 59 hig bydro platin stand:	libr ects o ⁰ gh-1 gen um ard	to tem -16 59 va res cal	300 to per , 0 [°] , 5 [°] , 0 [°] rio ista	bo ( 200 atu to to to us	; . ire- 50 50 10	·	C -39 C	;• (	•••••••••••••••••••••••••••••••••••••••	•	334 245 245 246 244 244 244 244 246 247 247
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro, platin stand: Thermometer stem c	um ard	to bo ^o -16 -16 59 va res cal	300 to per , 0 [°] , 0 [°] , 0 [°] , 0 [°] , 0 [°]	to to to us atic		·	C -39 C	;• (	•••••	•••••••	334 245 245 246 244 244 244 244 246 247 247 247
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro. platin stand: Thermometer stem c Thomson thermo-elec	um ard	to boo tem -16 16 59 va res cal ectio c ef	300 to per , 0 ^C , 0 ^C , 0 ^C , 1 ^C , 0 ^C , 0 ^C , 1 ^C , 0 ^C	to to to to us anc atio	5 ( 10 5 10 6 10	·	C -39 C	;• (	248	•••••••••••••••••••••••••••••••••••••••	334 245 246 244 244 244 244 246 247 247 247 249 268
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of	libr ects o ⁰ gh-1 gen um ard	to bo ^o -16 -16 59 va res cal	300 to per , 0 [°] , 0 [°] , 0 [°] , 0 [°] , 0 [°]	to 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 20		·	C -39 C	;• (	248		334 245 245 246 244 244 244 244 247 247 247 247 249 268 -70
Thermo-magnetic eff Thermometer: air-16, 50 hig bydro. platin stand: Thermometer stem c Thomson thermo-ele Timber, strength of Time equation of	um ard	to bem -16 59 va res cal ecti c ef	300 to per , 0 ^C , 0 ^C , 0 ^C , 1 ^C , 0 ^C , 0 ^C , 1 ^C , 0 ^C	to 2000 2000 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 200 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 2000 to 200 to 2000 to 2000 to 2000 to 200 to 200 to 200 to 2000 to 2000 to 200 to 200 to 2000 to 2000 to 2000 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 to 200 t 200 to 200 t 20 t 2	5 ( 10 5 10 6 10	·	C -39 C	;• (	248		334 245 245 246 244 244 244 244 246 247 247 247 247 247 247 247 247 110
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar	um ard	to boo item -16 59 va res cal ectie	300 to per , 0° , 50 iista ibr on fec	to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to cature to to cature to to to to to to to to to to to to to	50 ( 50 ( 50 (	·	C -39 C	;• (	248		334 245 245 246 244 244 244 244 247 247 247 247 249 268 -70
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar	um ard	to boo item -16 59 va res cal ectie	300 to per , 0° , 50 iista ibr on fec	bo ( 2000 atu to us anc atio		·	C -39 C	;• (	248		334 245 245 246 244 244 244 244 246 247 247 247 247 249 268 -70 110
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elee Timber, strength of Time equation of Time, sidereal, solar Tools, lubricants for	um ard cut	to tem -16 59 va res cal ection c ef	300 to per , 0 ^c , 50 iist iibr on fec	to atu to to atu to atu to to to to to to to to to to		·	C -3! C	;• (	248		334 245 245 246 244 244 244 246 247 247 247 247 247 247 268 -70 110 109 126
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elee Timber, strength of Time equation of Time, sidereal, solar Tools, lubricants for	um ard cut	to tem -16 59 va res cal ection c ef	300 to per , 0 ^c , 50 iist iibr on fec	to atu to to atu to atu to to to to to to to to to to		·	C -3: C	· · · · · · · · · · · · · · · · · · ·	248		334 245 245 246 244 244 244 246 247 247 247 247 247 247 247 247 247 247
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poim Transformer-iron, pe	um ard cut ts, ::	to be tem 16, 16 59 va res cal ecti c ef	300 per per , 0 ^o , 0 ^o iista iibr on ffec	b) (2200 rature) to b) to us ance t t 		·	C -39 C	· · · · · · · · · · · · · · · · · · ·	248		334 245 245 246 244 244 244 247 247 247 247 247 247 247
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poim Transformer-iron, pe	um ard cut ts,	to be tem 16, 16 59 va res cal ecti c ef	300 per per , 0 ^o , 0 ^o iista iibr on ffec	b) (2200 rature) to b) to us ance t t 		·	C -39 C	· · · · · · · · · · · · · · · · · · ·	248		334 245 246 244 244 244 247 247 247 247 2408 1109 126 320 325
Thermo-magnetic eff Thermometer: air-16, 50 940 bydro. platin stand: Thermometer stem of Thomson thermo-elee Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poim Transformer-iron, pe	um ard cut ts,	to be tem 16, 16 59 va res cal ecti c ef	300 per per , 0 ^o , 0 ^o iista iibr on ffec	b) (2200 rature) to b) to us ance t t 		·	C -39 C	· · · · · · · · · · · · · · · · · · ·	248		334 245 246 244 244 244 247 247 247 247 2408 1109 126 320 325
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poim Transformer-iron, pe	um ard cut ts,	to be tem 16, 16 59 va res cal ecti c ef	300 to per , 0° , 50 iista iibr on fec gera ility loss n:	o (2000 atu) to us ance t	in nos		C3! C		248		334 245 246 244 244 244 247 247 247 247 240 277 10 9 120 325 182
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poim Transformer-iron, pe	um ard cut ts, ::	to be tem 16, 16 59 va res cal ecti c ef	300 to performance , o ^c , 50 iista iibr on fec guera ility loss n: :	op (2000 atu) to to to to to to to to to to to to to t	in nos		C -3 C ints 	· · · · · · · · · · · · · · · · · · ·	248		334 245 246 244 244 244 247 247 247 247 247 247 247
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem c Thomson thermo-ele Timber, strength of Time equation of . Time, sidereal, solar Toals, lubricants for Transformer-iron, pe steels, e Transmissibility to ra	um ard orrectri cut ts, ::	to be tem16, 16 59 va res cal ectific c ef	300 to performance performance intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro i i i i i i i i i i i i i i i i i i i	op ( 2000 atu ) to ) to us ancco t 	inosass	· · · · · · · · · · · · · · · · · · ·	C -39 C		248		334 245 246 244 244 247 247 247 247 247 247 247 247
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem c Thomson thermo-ele Timber, strength of Time equation of . Time, sidereal, solar Toals, lubricants for Transformer-iron, pe steels, e Transmissibility to ra	um ard orrectri cut ts, ::	to be tem16, 16 59 va res cal ectific c ef	300 to performance performance intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro i i i i i i i i i i i i i i i i i i i	op ( 2000 atu ) to ) to us ancco t 	inosass	· · · · · · · · · · · · · · · · · · ·	C -39 C	· · · · · · · · · · · · · · · · · · ·	248 . 6 . 316 . 322		334 245 246 244 2246 247 247 247 247 247 247 247 247 247 247
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem c Thomson thermo-ele Timber, strength of Time equation of . Time, sidereal, solar Toals, lubricants for Transformer-iron, pe steels, e Transmissibility to ra	um ard orrectri cut ts, ::	to be tem16, 16 59 va res cal ectific c ef	300 to performance performance intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro i i i i i i i i i i i i i i i i i i i	op ( 2000 atu ) to ) to us ancco t 	inosass		C $-3C \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	· · · · · · · · · · · · · · · · · · ·	248		334 245 246 244 2247 247 247 247 247 247 247 247 24
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro platin stand: Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poim Transformer-iron, pe	um ard orrectri cut ts, ::	to be tem16, 16 59 va res cal ectific c ef	300 to performance performance intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro i i i i i i i i i i i i i i i i i i i	op ( 2000 atu ) to ) to us ancco t 	inosass		C $-3C \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$		248		334 245 246 244 2246 247 247 247 247 247 247 247 247 247 247
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem c Thomson thermo-ele Timber, strength of Time equation of . Time, sidereal, solar Toals, lubricants for Transformer-iron, pe steels, e Transmissibility to ra	um ard orrectri cut ts, ::	to be tem16, 16 59 va res cal ectific c ef	300 to performance performance intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro intro i i i i i i i i i i i i i i i i i i i	op ( 2000 atu ) to ) to us ancco t 	inosass		C $-3C \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	· · · · · · · · · · · · · · · · · · ·	248		334 245 246 244 2247 247 247 247 247 247 247 247 24
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem c Thomson thermo-eler Time equation of Time, sidereal, solar Tools, lubricants for Transformation poin Transformation poin Transformation poin Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi	um ard orrectri cut ts, :: adia ons	to boo item info ifo ifo ifo ifo ifo ifo ifo ifo ifo i	300 to per per , 50 iist iibr on fec gueralloss n::	o ^o ( ) 22000 atu ) to us anciation t t t t t t s sets atu glas wate	in stass		C -3! C ints		248 		334 245 246 244 2247 247 247 247 247 247 247 247 24
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro. platin stand: Thermometer stem c Thomson thermo-eler Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformer-iron, pe steels, e Transmissibility to r Trigonometric functi United States weight	um ard orrectri cut ts, :: adia ons	to boo item info ifo ifo ifo ifo ifo ifo ifo ifo ifo i	300 to per per , 50 iist iibr on fec gueralloss n::	o ^o ( ) 22000 atu ) to us anciation t t t t t t s sets atu glas wate	in stass		C -3! C ints		248 		334 245 246 2247 2249 2244 2247 2249 208 700 1126 320 325 1800 325 1800 199 202 32 37
Thermo-magnetic eff Thermometer: air-16, 50 hit, bydro. platin stand. Thermometer stem c Thomson thermo-elee Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poin Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units .	libr ects of gen um ard orrectri 	to boo tem -16, 59 va res cal ection gy atio	300 to per per solution istribution ffec  gueras llity loss n:::::::::::::::::::::::::::::::::::	o ^o (2200 2200 ), -o v to us antic t t  set wat wat wat wat wat wat wat wat wat wa	in stass		C -3: C	50 (	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	334 245 246 244 2247 247 247 247 247 247 247 247 24
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem c Thomson thermo-eler Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformer-iron, pe steels, e Transformer iron, pe steels, e Transformer functi United States weight to metric units .	libr ects of gen um ard orrectri cut ts, : cut ts, : cut ts a t: o	to boo tem -16 59 va res cal ection gy atio	300 per per per so per so per so per so so per so so per so so so so so so so so so so	of (22000 22000), - to us antic t	in sta		C -3: C	50 (	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	334 245 246 2247 2249 2244 2247 2249 208 700 1126 320 325 1800 325 1800 199 202 32 37
Thermo-magnetic eff Thermometer: air-16, 50 hit bydro. Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Trools, lubricants for Transformation poim Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . Units of measuremen	um ard orrectri cut ts, : cut ts a t: cons	to to to to to to to to to to	· 300 per per , 50 iista iibr on fec · · · · geras lity n: · · · · · · ·	of (22000) to 22000) to 22000 to 2000 to 200	in sta		C -3: C		248 		334 245 246 2247 2249 2244 2247 2249 208 700 1126 320 325 1800 325 1800 199 202 32 37
Thermo-magnetic eff Thermometer: air-16, 50 hit bydro. Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Trools, lubricants for Transformation poim Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . Units of measuremen	um ard orrectri cut ts, : cut ts a t: cons	to to to to to to to to to to	· 300 per per , 50 iista iibr on fec · · · · geras lity n: ; geras iitr n: ; ; ; ; ; ; ; ; ; ; ; ; ;	of (22000) to 22000) to 22000 to 2000 to 200	in sta		C -3: C		248 		334 245 245 246 2246 2247 2249 2247 2249 2267 109 126 325 325 320 325 37 5-6
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. Thermometer stem c Thomson thermo-eler Timber, strength of Time equation of Time, sidereal, solar Tools, lubricants for Transformation poin Transformation br>transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transf	um ard orrectri cut ts, : cut ts a t: cons	to boo tem -16 59 va res cal ection gy atio	· 300 per per , 50 iista iibr on fec · · · · geras lity n: ; geras iitr n: ; ; ; ; ; ; ; ; ; ; ; ; ;	of (22000) to 22000) to 22000 to 2000 to 200	in sta		C -3: C		248 		334 245 2246 2244 2247 2247 2247 2247 2247 2247
Thermo-magnetic eff Thermometer: air-16, 50 50 ju bydro. platin stand. Thermometer stem of Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poin Transformation poin Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . Units of measuremen cor dis photometric	um ard orractri cuttis, cuttis, cuttis international ons t: cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cutti	to to to to to to to to to to	· 300 to per o 50 niistaibr on fec  geraallity loss niition n f.	o ( ) 2000 ( )	in stass ter in st		C -3: -3: C		248 		334 245 2246 2244 2247 2247 2268 270 1109 1226 3225 3182 232 37 5 6 37 5 7 7 8
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. Thermometer stem c Thomson thermo-eler Timber, strength of Time equation of Time, sidereal, solar Tools, lubricants for Transformation poin Transformation br>transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transformation transf	um ard orractri cuttis, cuttis, cuttis international ons t: cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cuttis cutti	to to to to to to to to to to	· 300 to per o 50 niistaibr on fec  geraallity loss niition n f.	o ( ) 2000 ( )	in stass ter in st		C -3: -3: C		248 		334 245 2246 2244 2247 2247 2247 2247 2247 2247
Thermo-magnetic eff Thermometer: air-16, 59 hij bydro. Thermometer stem c Thomson thermo-elec Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . Units of measuremen dis photometric ratio of electro	libr ects of gen umard orr ctri ts, cut ts, cut ts, cut ts, cut cut cut cut cut	to to to to to to to to to to	· 300 to performance of the second se	of ( 2000) 2000 (	in a stars	· · · · · · · · · · · · · · · · · · ·	C -3: C - ints · · · · · · · · · · · · · · · · · · ·	so (	248 		334 245 2245 2245 2245 2247 2247 2247 2268 710 1126 3225 325 325 325 37 5-6 2-3 178 260
Thermo-magnetic eff Thermometer: air-16, 50 hit, bydro. platin stand. Thermometer stem c Thomson thermo-elee Time equation of . Time, sidereal, solar Trools, lubricants for Transformation poin Transformation poin Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . Units of measuremen cor dis photometric ratio of electro-m	libracto o O gh-1 gen umard orrectri 	to to to to to to to to to to	· 300 to performance performance inistation flec · · · · · · · · · · · · · · · · · · ·	of ( 2000) 2000 (	in a stars	· · · · · · · · · · · · · · · · · · ·	C -3: C - ints · · · · · · · · · · · · · · · · · · ·	so (	248 		334 245 2246 2244 2247 2247 2268 270 1109 1226 3202 3182 232 37 5 6 37 5 7 7 8
Thermo-magnetic eff Thermometer: air-16, 50 hit, bydro. platin stand. Thermometer stem c Thomson thermo-elee Time equation of . Time, sidereal, solar Trools, lubricants for Transformation poin Transformation poin Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . Units of measuremen cor dis photometric ratio of electro-m	libracto o O gh-1 gen umard orrectri 	to to to to to to to to to to	· 300 to performance performance inistation flec · · · · · · · · · · · · · · · · · · ·	of ( 2000) 2000 (	in a stars	· · · · · · · · · · · · · · · · · · ·	C -3: C - ints · · · · · · · · · · · · · · · · · · ·	so (	248 		334 245 2246 2444 2247 2248 2247 2247 2247 2247 2247
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem C Thomson thermo-eler Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poin Transformation poin Transformation poin Transformation poin Transformation poin Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . United States weight to metric units . Viatu of measuremen Cor V, ratlo of electro-rm: Vacuo, reduction of .	libracto or of the second seco	to been info soo vares califo gy atio	· 300 to performance of the second se	o ( ) 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2	in a stars	· · · · · · · · · · · · · · · · · · ·	C -3: C - ints · · · · · · · · · · · · · · · · · · ·	so (	248 		3345 2455 22444 22452 22472 22492 22472 22492 22472 22492 22472 22492 22472 22492 22472 22492 22472 22492 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22452 22472 22472 22472 22472 22472 22472 22472 22472 22472 22472 22472 22472 22472 22472 22472 22472 2252 225
Thermo-magnetic eff Thermometer: air-16, 50 hij bydro. platin stand: Thermometer stem C Thomson thermo-eler Timber, strength of Time equation of . Time, sidereal, solar Tools, lubricants for Transformation poin Transformation poin Transformation poin Transformation poin Transformation poin Transformer-iron, pe steels, e Transmissibility to ra Trigonometric functi United States weight to metric units . United States weight to metric units . Viatu of measuremen Cor V, ratlo of electro-rm: Vacuo, reduction of .	libracto or of the second seco	to 000 beem	. 300 to peroversion of the second se	o ( ) to ) to	in a stars	· · · · · · · · · · · · · · · · · · ·	C -3: C - ints · · · · · · · · · · · · · · · · · · ·	so (	248 		3345 2455 22444 22467 22477 22408 22477 22407 11096 23205 3382 2325 337 5-6 3 7 80 260 282 82

Vapor, aqueous: relative	hymi	dity					. 1	бо
(saturat Vaporization, latent heat	ed)w tof	reigh		•	:	•	. 1	
Vapors: densities	fo	r ste	am	•			4, 2	55
diffusion of	•••	• •		•	•			
indices of refrac	i	• •	•	٠	•		9, 1	
pressures: alcohe		<u>.</u>	•		•	•	. I	
				nyı	•	•	. I	
aqueo		• •	• •	•	•		4-I	
mercu	iry	• •	• •	•	•	•		51
salt s	olutio	ns .	•	•	•	•	. 1	52
vario		•	• •	•			7-I	
specific heats	• •	•	• •		•		. 2	43
viscosity	••					13	6-1	37
Velocity of light							. I	ōġ -
sound; in gas	ses an	d lio	quid	s			. I	
sol	ids						. I	or
stars							. 1	
sun							. 1	
Verdet's constants: Verd	let an	dΚ	und	t's			. 3	
gase							. 3	
liqui					•	•	. 3	28
solid					•	:		
	tions,	aar		. '		•	. 3	
Viscosity: alcohol in wat	er	aqu	ιτομ		•	•		28
gases	-	•	• •	•	•		16-1	
liquids .	• •	•	•	•	•			
vapors	• •	•	• •	•			1-8	
water: temper	· · · ·	:	3.41	•			38-1	
specific: gases	ature	vai	lau	n	•		; I	
	•	•	• •	•	٠		36-1	
oils	· · ·		•••		•		. I	
	ions	•	• •	•	•		31-1	
vapo			• •	•	٠		36–1	
wate	r: tem	ıp. ۱	var.	•			. 1	
Visibility of white lights	<u>.</u>	1.	<u>.</u> .	•	•	•	. 1	78
Voltaic cells: compositio		м.	F.	•		20	. 1 52-2	163
double-flui				•			. 2	163
secondary		•			•			:63
single-fluid	•						. 2	62
standard						20	óI, 2	63
storage . Volts, legal (internationa							. 2	:63
Volts, legal (international	al)				3	CXX	vi, 2	61
Volume of mercury men	iscus						. 1	
Volume of mercury men Volumes: critical, for ga	ses						. 2	231
								64
glass vessels, d	eterm	ina	tion	s of				
Water: boiling-points for							-	
	com					s .	. 1	70
	met							
densities, temper								
densities, temper	acuse	1.01			•	•	201	

Water: ionization of
solutions in: boiling-points
solutions in: boiling-points
electrolytic conduction 302-308
solutions of alcohol, densities
solutions of alcohol, densities
transparency of
vapor pressure of, in atmosphere
vapor, pressure or, in achiesphere 157
(saturated) weights of 156
transparency of 181
viscosity: absolute, temp. var
specific, temp. var
Wave-lengths: cadmium red line
elements, brighter lines 172
Fabry-Buisson iron arc lines 172
Fraunhofer lines
iron lines, Fabry-Buisson 172
primary standards
Rowland's solar lines
secondary standards
tertiary standards
wireless telegraphy 298–300
Weighings-reduction to vacuo
Weights and measures: British to metric 9-10
metric to British 7–8
metric to U.S 6
U. S. to metric 5
Weights of bodies
Weights of sheet metal
Wind pressures
Wire gages
Wire gages
" metric
copper English
metric
Wires, carrying capacity of
Wireless telegraphy
Woods: densities of
strength of 69–70
X-rays
Vearly temperature means
Young's modulus of elasticity
-
Zero, thermodynamic ice-point
Zonal harmonics

# The Riverside Press

CAMBRIDGE · MASSACHUSETTS  $\mathbf{U} \cdot \mathbf{S} \cdot \mathbf{A}$ 

